1
|
Martinez Q, Amson E, Ruf I, Smith TD, Pirot N, Broyon M, Lebrun R, Captier G, Gascó Martín C, Ferreira G, Fabre PH. Turbinal bones are still one of the last frontiers of the tetrapod skull: hypotheses, challenges and perspectives. Biol Rev Camb Philos Soc 2024; 99:2304-2337. [PMID: 39092480 DOI: 10.1111/brv.13122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Turbinals are bony or cartilaginous structures that are present in the nasal cavity of most tetrapods. They are involved in key functions such as olfaction, heat, and moisture conservation, as well as protection of the respiratory tract. Despite recent studies that challenged long-standing hypotheses about their physiological and genomic correlation, turbinals remain largely unexplored, particularly for non-mammalian species. Herein, we review and synthesise the current knowledge of turbinals using an integrative approach that includes comparative anatomy, physiology, histology and genomics. In addition, we provide synonyms and correspondences of tetrapod turbinals from about 80 publications. This work represents a first step towards drawing hypotheses of homology for the whole clade, and provides a strong basis to develop new research avenues.
Collapse
Affiliation(s)
- Quentin Martinez
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon-CC 064 - 34095, Montpellier Cedex 5, France
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, DE-70191, Germany
| | - Eli Amson
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, DE-70191, Germany
| | - Irina Ruf
- Abteilung Messelforschung und Mammalogie, Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Frankfurt am Main, 60325, Germany
- Institut für Geowissenschaften, Goethe-Universität Frankfurt am Main, Frankfurt am Main, 60438, Germany
- Research Center of Paleontology and Stratigraphy, Jilin University, Changchun, 130026, China
| | - Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, PA, 16057, USA
| | - Nelly Pirot
- BioCampus Montpellier (BCM), Université de Montpellier, CNRS, INSERM, Montpellier, 34090, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut du Cancer de Montpellier (ICM), INSERM, Montpellier, 34298, France
| | - Morgane Broyon
- BioCampus Montpellier (BCM), Université de Montpellier, CNRS, INSERM, Montpellier, 34090, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut du Cancer de Montpellier (ICM), INSERM, Montpellier, 34298, France
| | - Renaud Lebrun
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon-CC 064 - 34095, Montpellier Cedex 5, France
| | - Guillaume Captier
- Laboratoire d'anatomie, UFR médecine, Université Montpellier, Montpellier, 34060, France
- Département chirurgie pédiatrique, CHU Montpellier, université Montpellier, Montpellier, 34295, France
| | | | - Gabriel Ferreira
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the Eberhard Karls University of Tübingen, Tübingen, 727074, Germany
- Department of Geosciences, Faculty of Sciences, Eberhard Karls University of Tübingen, Tübingen, 727074, Germany
| | - Pierre-Henri Fabre
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon-CC 064 - 34095, Montpellier Cedex 5, France
- Mammal Section, Department of Life Sciences, The Natural History Museum, London, SW7 5DB, UK
- Institut Universitaire de France (IUF), Paris, 75231, France
- Division of Vertebrate Zoology (Mammalogy), American Museum of Natural History, Central Park West, 79th St, New York, NY, 10024-5192, USA
| |
Collapse
|
2
|
Camacho J, Bernal-Rivera A, Peña V, Morales-Sosa P, Robb SMC, Russell J, Yi K, Wang Y, Tsuchiya D, Murillo-García OE, Rohner N. Sugar assimilation underlying dietary evolution of Neotropical bats. Nat Ecol Evol 2024; 8:1735-1750. [PMID: 39198571 PMCID: PMC11383804 DOI: 10.1038/s41559-024-02485-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/27/2024] [Indexed: 09/01/2024]
Abstract
Dietary specializations in animals lead to adaptations in morphology, anatomy and physiology. Neotropical bats, with their high taxonomic and trophic diversity, offer a unique perspective on diet-driven evolutionary adaptations. Here we assess the metabolic response to different dietary sugars among wild-caught bats. We found that insectivorous bats had a pronounced metabolic response to trehalose, whereas bats with nectar and fruit-based diets showed significantly higher blood glucose levels in response to glucose and sucrose, reaching levels over 750 mg dl-1. The genomic analysis of 22 focal species and two outgroup species identified positive selection for the digestive enzyme trehalase in insect eaters, while sucrase-isomaltase showed selection in lineages with omnivorous and nectar diets. By examining anatomical and cellular features of the small intestine, we discovered that dietary sugar proportion strongly impacted numerous digestive traits, providing valuable insight into the physiological implications of molecular adaptations. Using hybridization chain reaction (HCR) RNA fluorescence in situ hybridization, we observed unusually high expression in the glucose transporter gene Slc2a2 in nectar bats, while fruit bats increased levels of Slc5a1 and Slc2a5. Overall, this study highlights the intricate interplay between molecular, morphological and physiological aspects of diet evolution, offering new insights into the mechanisms of dietary diversification and sugar assimilation in mammals.
Collapse
Affiliation(s)
- Jasmin Camacho
- Stowers Institute for Medical Research, Kansas City, MO, USA.
| | - Andrea Bernal-Rivera
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Grupo de Investigación en Ecología Animal, Departamento de Biología, Universidad del Valle, Cali, Colombia
| | - Valentina Peña
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Sofia M C Robb
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Kexi Yi
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Yongfu Wang
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Oscar E Murillo-García
- Grupo de Investigación en Ecología Animal, Departamento de Biología, Universidad del Valle, Cali, Colombia.
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
3
|
Martinez Q, Wright M, Dubourguier B, Ito K, van de Kamp T, Hamann E, Zuber M, Ferreira G, Blanc R, Fabre PH, Hautier L, Amson E. Disparity of turbinal bones in placental mammals. Anat Rec (Hoboken) 2024. [PMID: 39099296 DOI: 10.1002/ar.25552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Turbinals are key bony elements of the mammalian nasal cavity, involved in heat and moisture conservation as well as olfaction. While turbinals are well known in some groups, their diversity is poorly understood at the scale of placental mammals, which span 21 orders. Here, we investigated the turbinal bones and associated lamellae for one representative of each extant order of placental mammals. We segmented and isolated each independent turbinal and lamella and found an important diversity of variation in the number of turbinals, as well as their size, and shape. We found that the turbinal count varies widely, from zero in the La Plata dolphin, (Pontoporia blainvillei) to about 110 in the African bush elephant (Loxodonta africana). Multiple turbinal losses and additional gains took place along the phylogeny of placental mammals. Some changes are clearly attributed to ecological adaptation, while others are probably related to phylogenetic inertia. In addition, this work highlights the problem of turbinal nomenclature in some placental orders with numerous and highly complex turbinals, for which homologies are extremely difficult to resolve. Therefore, this work underscores the importance of developmental studies to better clarify turbinal homology and nomenclature and provides a standardized comparative framework for further research.
Collapse
Affiliation(s)
- Quentin Martinez
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Montpellier Cedex 5, France
| | - Mark Wright
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Montpellier Cedex 5, France
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Benjamin Dubourguier
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Montpellier Cedex 5, France
| | - Kai Ito
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- Department of Anatomy, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Thomas van de Kamp
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Elias Hamann
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Marcus Zuber
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Gabriel Ferreira
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Geosciences, Faculty of Sciences, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Rémi Blanc
- Thermo Fisher Scientific, Bordeaux, France
| | - Pierre-Henri Fabre
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Montpellier Cedex 5, France
- Mammal Section, Department of Life Sciences, The Natural History Museum, London, UK
- Institut Universitaire de France (IUF), Paris, France
- Division of Vertebrate Zoology (Mammalogy), American Museum of Natural History, New York, New York, USA
| | - Lionel Hautier
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Montpellier Cedex 5, France
- Mammal Section, Department of Life Sciences, The Natural History Museum, London, UK
| | - Eli Amson
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| |
Collapse
|
4
|
Martinez Q, Amson E, Laska M. Does the number of functional olfactory receptor genes predict olfactory sensitivity and discrimination performance in mammals? J Evol Biol 2024; 37:238-247. [PMID: 38297391 DOI: 10.1093/jeb/voae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/05/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
The number of functional genes coding for olfactory receptors differs markedly between species and has repeatedly been suggested to be predictive of a species' olfactory capabilities. To test this assumption, we compiled a database of all published olfactory detection threshold values in mammals and used three sets of data on olfactory discrimination performance that employed the same structurally related monomolecular odour pairs with different mammal species. We extracted the number of functional olfactory receptor genes of the 20 mammal species for which we found data on olfactory sensitivity and/or olfactory discrimination performance from the Chordata Olfactory Receptor Database. We found that the overall olfactory detection thresholds significantly correlate with the number of functional olfactory receptor genes. Similarly, the overall proportion of successfully discriminated monomolecular odour pairs significantly correlates with the number of functional olfactory receptor genes. These results provide the first statistically robust evidence for the relationship between olfactory capabilities and their genomics correlates. However, when analysed individually, of the 44 monomolecular odourants for which data on olfactory sensitivity from at least five mammal species are available, only five yielded a significant correlation between olfactory detection thresholds and the number of functional olfactory receptors genes. Also, for the olfactory discrimination performance, no significant correlation was found for any of the 74 relationships between the proportion of successfully discriminated monomolecular odour pairs and the number of functional olfactory receptor genes. While only a rather limited amount of data on olfactory detection thresholds and olfactory discrimination scores in a rather limited number of mammal species is available so far, we conclude that the number of functional olfactory receptor genes may be a predictor of olfactory sensitivity and discrimination performance in mammals.
Collapse
Affiliation(s)
| | - Eli Amson
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
5
|
Ferreira JS, Bruschi DP. Tracking the Diversity and Chromosomal Distribution of the Olfactory Receptor Gene Repertoires of Three Anurans Species. J Mol Evol 2023; 91:793-805. [PMID: 37906255 DOI: 10.1007/s00239-023-10135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Olfaction is a crucial capability for most vertebrates and is realized through olfactory receptors in the nasal cavity. The enormous diversity of olfactory receptors has been created by gene duplication, following a birth-and-death model of evolution. The olfactory receptor genes of the amphibians have received relatively little attention up to now, although recent studies have increased the number of species for which data are available. This study analyzed the diversity and chromosomal distribution of the OR genes of three anuran species (Engystomops pustulosus, Bufo bufo and Hymenochirus boettgeri). The OR genes were identified through searches for homologies, and sequence filtering and alignment using bioinformatic tools and scripts. A high diversity of OR genes was found in all three species, ranging from 917 in B. bufo to 1194 in H. boettgeri, and a total of 2076 OR genes in E. pustulosus. Six OR groups were recognized using an evolutionary gene tree analysis. While E. pustulosus has one of the highest numbers of genes of the gamma group (which detect airborne odorants) yet recorded in an anuran, B. bufo presented the smallest number of pseudogene sequences ever identified, with no pseudogenes in either the beta or epsilon groups. Although H. boettgeri shares many morphological adaptations for an aquatic lifestyle with Xenopus, and presented a similar number of genes related to the detection of water-soluble odorants, it had comparatively far fewer genes related to the detection of airborne odorants. This study is the first to describe the complete OR repertoire of the three study species and represents an important contribution to the understanding of the evolution and function of the sense of smell in vertebrates.
Collapse
Affiliation(s)
- Johnny Sousa Ferreira
- Laboratório de Citogenética Evolutiva e Conservação Animal (LabCECA), Departamento de Genética, Universidade Federal do Paraná (UFPR), Paraná, Brazil
| | - Daniel Pacheco Bruschi
- Laboratório de Citogenética Evolutiva e Conservação Animal (LabCECA), Departamento de Genética, Universidade Federal do Paraná (UFPR), Paraná, Brazil.
| |
Collapse
|
6
|
Anthwal N, Hall RP, de la Rosa Hernandez FA, Koger M, Yohe LR, Hedrick BP, Davies KTJ, Mutumi GL, Roseman CC, Dumont ER, Dávalos LM, Rossiter SJ, Sadier A, Sears KE. Cochlea development shapes bat sensory system evolution. Anat Rec (Hoboken) 2023. [PMID: 37994725 DOI: 10.1002/ar.25353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
Sensory organs must develop alongside the skull within which they are largely encased, and this relationship can manifest as the skull constraining the organs, organs constraining the skull, or organs constraining one another in relative size. How this interplay between sensory organs and the developing skull plays out during the evolution of sensory diversity; however, remains unknown. Here, we examine the developmental sequence of the cochlea, the organ responsible for hearing and echolocation, in species with distinct diet and echolocation types within the ecologically diverse bat super-family Noctilionoidea. We found the size and shape of the cochlea largely correlates with skull size, with exceptions of Pteronotus parnellii, whose high duty cycle echolocation (nearly constant emission of sound pulses during their echolocation process allowing for detailed information gathering, also called constant frequency echolocation) corresponds to a larger cochlear and basal turn, and Monophyllus redmani, a small-bodied nectarivorous bat, for which interactions with other sensory organs restrict cochlea size. Our findings support the existence of developmental constraints, suggesting that both developmental and anatomical factors may act synergistically during the development of sensory systems in noctilionoid bats.
Collapse
Affiliation(s)
- Neal Anthwal
- King's College London, Centre for Craniofacial and Regenerative Biology, London, UK
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Ronald P Hall
- Department of Life and Environment Sciences, University of California Merced, Merced, California, USA
| | | | - Michael Koger
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Laurel R Yohe
- Department of Bioinformatics and Genomics, University of North Carolina Charlotte, Charlotte, North Carolina, USA
| | - Brandon P Hedrick
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Kalina T J Davies
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Gregory L Mutumi
- Department of Life and Environment Sciences, University of California Merced, Merced, California, USA
| | - Charles C Roseman
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois, USA
| | - Elizabeth R Dumont
- Department of Life and Environment Sciences, University of California Merced, Merced, California, USA
| | - Liliana M Dávalos
- Department of Ecology and Evolution and Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, New York, USA
| | - Stephen J Rossiter
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Alexa Sadier
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
7
|
Courcelle M, Fabre PH, Douzery EJP. Phylogeny, Ecology, and Gene Families Covariation Shaped the Olfactory Subgenome of Rodents. Genome Biol Evol 2023; 15:evad197. [PMID: 37972291 PMCID: PMC10653590 DOI: 10.1093/gbe/evad197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2023] [Indexed: 11/19/2023] Open
Abstract
Olfactory receptor (OR) genes represent the largest multigenic family in mammalian genomes and encode proteins that bind environmental odorant molecules. The OR repertoire is extremely variable among species and is subject to many gene duplications and losses, which have been linked to ecological adaptations in mammals. Although they have been studied on a broad taxonomic scale (i.e., placental), finer sampling has rarely been explored in order to better capture the mechanisms that drove the evolution of the OR repertoire. Among placental mammals, rodents are well-suited for this task, as they exhibit diverse life history traits, and genomic data are available for most major families and a diverse array of lifestyles. In this study, 53 rodent published genomes were mined for their OR subgenomes. We retrieved more than 85,000 functional and pseudogene OR sequences that were subsequently classified into phylogenetic clusters. Copy number variation among rodents is similar to that of other mammals. Using our OR counts along with comparative phylogenetic approaches, we demonstrated that ecological niches such as diet, period of activity, and a fossorial lifestyle strongly impacted the proportion of OR pseudogenes. Within the OR subgenome, phylogenetic inertia was the main factor explaining the relative variations of the 13 OR gene families. However, a striking exception was a convergent 10-fold expansion of the OR family 14 among the phylogenetically divergent subterranean mole-rat lineages belonging to Bathyergidae and Spalacidae families. This study illustrates how the diversity of the OR repertoire has evolved among rodents, both shaped by selective forces stemming from species life history traits and neutral evolution along the rodent phylogeny.
Collapse
Affiliation(s)
- Maxime Courcelle
- Institutdes Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
| | - Pierre-Henri Fabre
- Institutdes Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
- Mammal Section, Life Sciences, Vertebrate Division, The Natural History Museum, London, United Kingdom
- Institut Universitaire de France (IUF), Section Biologie-Médecine-Santé, Paris, France
| | - Emmanuel J P Douzery
- Institutdes Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| |
Collapse
|
8
|
Yohe LR, Krell NT. An updated synthesis of and outstanding questions in the olfactory and vomeronasal systems in bats: Genetics asks questions only anatomy can answer. Anat Rec (Hoboken) 2023; 306:2765-2780. [PMID: 37523493 DOI: 10.1002/ar.25290] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
The extensive diversity observed in bat nasal chemosensory systems has been well-documented at the histological level. Understanding how this diversity evolved and developing hypotheses as to why particular patterns exist require a phylogenetic perspective, which was first outlined in the work of anatomist Kunwar Bhatnagar. With the onset of genetics and genomics, it might be assumed that the puzzling patterns observed in the morphological data have been clarified. However, there is still a widespread mismatch of genetic and morphological correlations among bat chemosensory systems. Novel genomic evidence has set up new avenues to explore that demand more evidence from anatomical structures. Here, we outline the progress that has been made in both morphological and molecular studies on the olfactory and vomeronasal systems in bats since the work of Bhatnagar. Genomic data of olfactory and vomeronasal receptors demonstrate the strong need for further morphological sampling, with a particular focus on receiving brain regions, glands, and ducts.
Collapse
Affiliation(s)
- Laurel R Yohe
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
- North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Nicholas T Krell
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
9
|
Mutumi GL, Hall RP, Hedrick BP, Yohe LR, Sadier A, Davies KTJ, Rossiter SJ, Sears KE, Dávalos LM, Dumont ER. Disentangling Mechanical and Sensory Modules in the Radiation of Noctilionoid Bats. Am Nat 2023; 202:216-230. [PMID: 37531274 DOI: 10.1086/725368] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
AbstractWith diverse mechanical and sensory functions, the vertebrate cranium is a complex anatomical structure whose shifts between modularity and integration, especially in mechanical function, have been implicated in adaptive diversification. Yet how mechanical and sensory systems and their functions coevolve, as well as how their interrelationship contributes to phenotypic disparity, remain largely unexplored. To examine the modularity, integration, and evolutionary rates of sensory and mechanical structures within the head, we analyzed hard and soft tissue scans from ecologically diverse bats in the superfamily Noctilionoidea, a clade that ranges from insectivores and carnivores to frugivores and nectarivores. We identified eight regions that evolved in a coordinated fashion, thus recognizable as evolutionary modules: five associated with bite force and three linked to olfactory, visual, and auditory systems. Interrelationships among these modules differ between Neotropical leaf-nosed bats (family Phyllostomidae) and other noctilionoids. Consistent with the hypothesis that dietary transitions begin with changes in the capacity to detect novel food items followed by adaptations to process them, peak rates of sensory module evolution predate those of some mechanical modules. We propose that the coevolution of structures influencing bite force, olfaction, vision, and hearing constituted a structural opportunity that allowed the phyllostomid ancestor to take advantage of existing ecological opportunities and contributed to the clade's remarkable radiation.
Collapse
|
10
|
Martinez Q, Courcelle M, Douzery E, Fabre PH. When morphology does not fit the genomes: the case of rodent olfaction. Biol Lett 2023; 19:20230080. [PMID: 37042683 PMCID: PMC10092080 DOI: 10.1098/rsbl.2023.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
Linking genes to phenotypes has been a major question in evolutionary biology for the last decades. In the genomic era, few studies attempted to link olfactory-related genes to different anatomical proxies. However, they found very inconsistent results. This study is the first to investigate a potential relation between olfactory turbinals and olfactory receptor (OR) genes. We demonstrated that despite the use of similar methodology in the acquisition of data, OR genes do not correlate with the relative and the absolute surface area of olfactory turbinals. These results challenged the interpretations of several studies based on different proxies related to olfaction and their potential relation to olfactory capabilities.
Collapse
Affiliation(s)
- Quentin Martinez
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM-EPHE), Université de Montpellier, Place E. Bataillon - CC 064 - 34095, Montpellier Cedex 5, France
- Staatliches Museum für Naturkunde Stuttgart DE-70191, Stuttgart, Germany
| | - Maxime Courcelle
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM-EPHE), Université de Montpellier, Place E. Bataillon - CC 064 - 34095, Montpellier Cedex 5, France
| | - Emmanuel Douzery
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM-EPHE), Université de Montpellier, Place E. Bataillon - CC 064 - 34095, Montpellier Cedex 5, France
| | - Pierre-Henri Fabre
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM-EPHE), Université de Montpellier, Place E. Bataillon - CC 064 - 34095, Montpellier Cedex 5, France
- Mammal Section, Department of Life Sciences, The Natural History Museum, London SW7 5DB, UK
- Institut Universitaire de France (IUF), Paris, France
- Division of Vertebrate Zoology (Mammalogy), American Museum of Natural History, Central Park West, 79th St., New York, NY 10024-5192, USA
| |
Collapse
|
11
|
Dornburg A, Mallik R, Wang Z, Bernal MA, Thompson B, Bruford EA, Nebert DW, Vasiliou V, Yohe LR, Yoder JA, Townsend JP. Placing human gene families into their evolutionary context. Hum Genomics 2022; 16:56. [PMID: 36369063 PMCID: PMC9652883 DOI: 10.1186/s40246-022-00429-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Following the draft sequence of the first human genome over 20 years ago, we have achieved unprecedented insights into the rules governing its evolution, often with direct translational relevance to specific diseases. However, staggering sequence complexity has also challenged the development of a more comprehensive understanding of human genome biology. In this context, interspecific genomic studies between humans and other animals have played a critical role in our efforts to decode human gene families. In this review, we focus on how the rapid surge of genome sequencing of both model and non-model organisms now provides a broader comparative framework poised to empower novel discoveries. We begin with a general overview of how comparative approaches are essential for understanding gene family evolution in the human genome, followed by a discussion of analyses of gene expression. We show how homology can provide insights into the genes and gene families associated with immune response, cancer biology, vision, chemosensation, and metabolism, by revealing similarity in processes among distant species. We then explain methodological tools that provide critical advances and show the limitations of common approaches. We conclude with a discussion of how these investigations position us to gain fundamental insights into the evolution of gene families among living organisms in general. We hope that our review catalyzes additional excitement and research on the emerging field of comparative genomics, while aiding the placement of the human genome into its existentially evolutionary context.
Collapse
Affiliation(s)
- Alex Dornburg
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA.
| | - Rittika Mallik
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
| | - Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Moisés A Bernal
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, USA
| | - Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Elspeth A Bruford
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Daniel W Nebert
- Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH, 45267, USA
- Department of Pediatrics and Molecular Developmental Biology, Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH, 45229, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Laurel R Yohe
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jeffrey P Townsend
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|