1
|
Thompson KA, Brandvain Y, Coughlan JM, Delmore KE, Justen H, Linnen CR, Ortiz-Barrientos D, Rushworth CA, Schneemann H, Schumer M, Stelkens R. The Ecology of Hybrid Incompatibilities. Cold Spring Harb Perspect Biol 2024; 16:a041440. [PMID: 38151331 PMCID: PMC11368197 DOI: 10.1101/cshperspect.a041440] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Ecologically mediated selection against hybrids, caused by hybrid phenotypes fitting poorly into available niches, is typically viewed as distinct from selection caused by epistatic Dobzhansky-Muller hybrid incompatibilities. Here, we show how selection against transgressive phenotypes in hybrids manifests as incompatibility. After outlining our logic, we summarize current approaches for studying ecology-based selection on hybrids. We then quantitatively review QTL-mapping studies and find traits differing between parent taxa are typically polygenic. Next, we describe how verbal models of selection on hybrids translate to phenotypic and genetic fitness landscapes, highlighting emerging approaches for detecting polygenic incompatibilities. Finally, in a synthesis of published data, we report that trait transgression-and thus possibly extrinsic hybrid incompatibility in hybrids-escalates with the phenotypic divergence between parents. We discuss conceptual implications and conclude that studying the ecological basis of hybrid incompatibility will facilitate new discoveries about mechanisms of speciation.
Collapse
Affiliation(s)
- Ken A Thompson
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota - Twin Cities, St Paul, Minnesota 55108, USA
| | - Jenn M Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Kira E Delmore
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Hannah Justen
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Catherine R Linnen
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queensland, Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, Queensland 4072, Australia
| | - Catherine A Rushworth
- Department of Biology and Ecology Center, Utah State University, Logan, Utah 84322, USA
| | - Hilde Schneemann
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca," A.C., Calnali 43240, Mexico
- Hanna H. Gray Fellow, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Rike Stelkens
- Division of Population Genetics, Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
2
|
Schneemann H, De Sanctis B, Welch JJ. Fisher's Geometric Model as a Tool to Study Speciation. Cold Spring Harb Perspect Biol 2024; 16:a041442. [PMID: 38253415 PMCID: PMC11216183 DOI: 10.1101/cshperspect.a041442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Interactions between alleles and across environments play an important role in the fitness of hybrids and are at the heart of the speciation process. Fitness landscapes capture these interactions and can be used to model hybrid fitness, helping us to interpret empirical observations and clarify verbal models. Here, we review recent progress in understanding hybridization outcomes through Fisher's geometric model, an intuitive and analytically tractable fitness landscape that captures many fitness patterns observed across taxa. We use case studies to show how the model parameters can be estimated from different types of data and discuss how these estimates can be used to make inferences about the divergence history and genetic architecture. We also highlight some areas where the model's predictions differ from alternative incompatibility-based models, such as the snowball effect and outlier patterns in genome scans.
Collapse
Affiliation(s)
- Hilde Schneemann
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Bianca De Sanctis
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - John J Welch
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|
3
|
McFarlane SE, Jahner JP, Lindtke D, Buerkle CA, Mandeville EG. Selection leads to remarkable variability in the outcomes of hybridisation across replicate hybrid zones. Mol Ecol 2024; 33:e17359. [PMID: 38699787 DOI: 10.1111/mec.17359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024]
Abstract
Hybrid zones have been viewed as an opportunity to see speciation in action. When hybrid zones are replicated, it is assumed that if the same genetic incompatibilities are maintaining reproductive isolation across all instances of secondary contact, those incompatibilities should be identifiable by consistent patterns in the genome. In contrast, changes in allele frequencies due to genetic drift should be idiosyncratic for each hybrid zone. To test this assumption, we simulated 20 replicates of each of 12 hybrid zone scenarios with varied genetic incompatibilities, rates of migration, selection and different starting population size ratios of parental species. We found remarkable variability in the outcomes of hybridisation in replicate hybrid zones, particularly with Bateson-Dobzhansky-Muller incompatibilities and strong selection. We found substantial differences among replicates in the overall genomic composition of individuals, including admixture proportions, inter-specific ancestry complement and number of ancestry junctions. Additionally, we found substantial variation in genomic clines among replicates at focal loci, regardless of locus-specific selection. We conclude that processes other than selection are responsible for some consistent outcomes of hybridisation, whereas selection on incompatibilities can lead to genomically widespread and highly variable outcomes. We highlight the challenge of mapping between pattern and process in hybrid zones and call attention to how selection against incompatibilities will commonly lead to variable outcomes. We hope that this study informs future research on replicate hybrid zones and encourages further development of statistical techniques, theoretical models and exploration of additional axes of variation to understand reproductive isolation.
Collapse
Affiliation(s)
- S Eryn McFarlane
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Joshua P Jahner
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | | | - C Alex Buerkle
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | - Elizabeth G Mandeville
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Biology Department, Northern Michigan University, Marquette, Michigan, USA
| |
Collapse
|
4
|
Martins ARP, Warren NB, McMillan WO, Barrett RDH. Spatiotemporal dynamics in butterfly hybrid zones. INSECT SCIENCE 2024; 31:328-353. [PMID: 37596954 DOI: 10.1111/1744-7917.13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/21/2023]
Abstract
Evaluating whether hybrid zones are stable or mobile can provide novel insights for evolution and conservation biology. Butterflies exhibit high sensitivity to environmental changes and represent an important model system for the study of hybrid zone origins and maintenance. Here, we review the literature exploring butterfly hybrid zones, with a special focus on their spatiotemporal dynamics and the potential mechanisms that could lead to their movement or stability. We then compare different lines of evidence used to investigate hybrid zone dynamics and discuss the strengths and weaknesses of each approach. Our goal with this review is to reveal general conditions associated with the stability or mobility of butterfly hybrid zones by synthesizing evidence obtained using different types of data sampled across multiple regions and spatial scales. Finally, we discuss spatiotemporal dynamics in the context of a speciation/divergence continuum, the relevance of hybrid zones for conservation biology, and recommend key topics for future investigation.
Collapse
Affiliation(s)
- Ananda R Pereira Martins
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada
- Smithsonian Tropical Research Institute, Gamboa, Panama City, Panama
| | - Natalie B Warren
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Gamboa, Panama City, Panama
| | - Rowan D H Barrett
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Dean LL, Whiting JR, Jones FC, MacColl ADC. Reproductive isolation in a three-way contact zone. Mol Ecol 2024; 33:e17275. [PMID: 38235507 DOI: 10.1111/mec.17275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Contact zones between divergent forms within a species provide insight into the role of gene flow in adaptation and speciation. Previous work has focused on contact zones involving only two divergent forms, but in nature, many more than two populations may overlap simultaneously and experience gene flow. Patterns of introgression in wild populations are, therefore, likely much more complicated than is often assumed. We begin to address this gap in current knowledge by investigating patterns of divergence and introgression across a complex natural contact zone. We use phenotypic and genomic data to confirm the existence of a three-way contact zone among divergent freshwater resident, saltwater resident and saltwater migratory three-spined stickleback (Gasterosteus aculeatus) on the island of North Uist, Scottish Western Isles. We find evidence for hybridization, mostly between saltwater resident and saltwater migratory forms. Despite hybridization, genomic analyses reveal pairwise islands of divergence between all forms that are maintained across the contact zone. Genomic cline analyses also provide evidence for selection and/or hybrid incompatibilities in divergent regions. Divergent genomic regions occur across multiple chromosomes and involve many known adaptive loci and several chromosomal inversions. We also identify distinct immune gene expression profiles between forms, but no evidence for transgressive expression in hybrids. Our results suggest that reproductive isolation is maintained in this three-way contact zone, despite some hybridization, and that reduced recombination in chromosomal inversions may play an important role in maintaining this isolation.
Collapse
Affiliation(s)
- Laura L Dean
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - James R Whiting
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Felicity C Jones
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
6
|
Coughlan JM. The role of conflict in shaping plant biodiversity. THE NEW PHYTOLOGIST 2023; 240:2210-2217. [PMID: 37667567 PMCID: PMC11077469 DOI: 10.1111/nph.19233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/27/2023] [Indexed: 09/06/2023]
Abstract
Although intrinsic postzygotic reproductive barriers can play a fundamental role in speciation, their underlying evolutionary causes are widely debated. One hypothesis is that incompatibilities result from genomic conflicts. Here, I synthesize the evidence that conflict generates incompatibilities in plants, thus playing a creative role in plant biodiversity. While much evidence supports a role for conflict in several classes of incompatibility, integrating knowledge of incompatibility alleles with natural history can provide further essential tests. Moreover, comparative work can shed light on the relative importance of conflict in causing incompatibilities, including the extent to which their evolution is repeatable. Together, these approaches can provide independent lines of evidence that conflict causes incompatibilities, cementing its role in plant speciation.
Collapse
Affiliation(s)
- Jenn M Coughlan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
7
|
Farnitano MC, Sweigart AL. Strong postmating reproductive isolation in Mimulus section Eunanus. J Evol Biol 2023; 36:1393-1410. [PMID: 37691442 PMCID: PMC10592011 DOI: 10.1111/jeb.14219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 09/12/2023]
Abstract
Postmating reproductive isolation can help maintain species boundaries when premating barriers to reproduction are incomplete. The strength and identity of postmating reproductive barriers are highly variable among diverging species, leading to questions about their genetic basis and evolutionary drivers. These questions have been tackled in model systems but are less often addressed with broader phylogenetic resolution. In this study we analyse patterns of genetic divergence alongside direct measures of postmating reproductive barriers in an overlooked group of sympatric species within the model monkeyflower genus, Mimulus. Within this Mimulus brevipes species group, we find substantial divergence among species, including a cryptic genetic lineage. However, rampant gene discordance and ancient signals of introgression suggest a complex history of divergence. In addition, we find multiple strong postmating barriers, including postmating prezygotic isolation, hybrid seed inviability and hybrid male sterility. M. brevipes and M. fremontii have substantial but incomplete postmating isolation. For all other tested species pairs, we find essentially complete postmating isolation. Hybrid seed inviability appears linked to differences in seed size, providing a window into possible developmental mechanisms underlying this reproductive barrier. While geographic proximity and incomplete mating isolation may have allowed gene flow within this group in the distant past, strong postmating reproductive barriers today have likely played a key role in preventing ongoing introgression. By producing foundational information about reproductive isolation and genomic divergence in this understudied group, we add new diversity and phylogenetic resolution to our understanding of the mechanisms of plant speciation.
Collapse
|
8
|
Duvernell DD, Remex NS, Miller JT, Schaefer JF. Variable rates of hybridization among contact zones between a pair of topminnow species, Fundulus notatus and F. olivaceus. Ecol Evol 2023; 13:e10399. [PMID: 37560181 PMCID: PMC10408002 DOI: 10.1002/ece3.10399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/11/2023] Open
Abstract
Pairs of species that exhibit broadly overlapping distributions, and multiple geographically isolated contact zones, provide opportunities to investigate the mechanisms of reproductive isolation. Such naturally replicated systems have demonstrated that hybridization rates can vary substantially among populations, raising important questions about the genetic basis of reproductive isolation. The topminnows, Fundulus notatus and F. olivaceus, are reciprocally monophyletic, and co-occur in drainages throughout much of the central and southern United States. Hybridization rates vary substantially among populations in isolated drainage systems. We employed genome-wide sampling to investigate geographic variation in hybridization, and to assess the possible importance of chromosome fusions to reproductive isolation among nine separate contact zones. The species differ by chromosomal rearrangements resulting from Robertsonian (Rb) fusions, so we hypothesized that Rb fusion chromosomes would serve as reproductive barriers, exhibiting steeper genomic clines than the rest of the genome. We observed variation in hybridization dynamics among drainages that ranged from nearly random mating to complete absence of hybridization. Contrary to predictions, our use of genomic cline analyses on mapped species-diagnostic SNP markers did not indicate consistent patterns of variable introgression across linkage groups, or an association between Rb fusions and genomic clines that would be indicative of reproductive isolation. We did observe a relationship between hybridization rates and population phylogeography, with the lowest rates of hybridization tending to be found in populations inferred to have had the longest histories of drainage sympatry. Our results, combined with previous studies of contact zones between the species, support population history as an important factor in explaining variation in hybridization rates.
Collapse
Affiliation(s)
- David D. Duvernell
- Department of Biological SciencesMissouri University of Science and TechnologyRollaMissouriUSA
| | - Naznin S. Remex
- Department of Biological SciencesMissouri University of Science and TechnologyRollaMissouriUSA
- Present address:
Department of Molecular and Cellular PhysiologyLouisiana State University Health Sciences CenterShreveportLouisianaUSA
| | - Jeffrey T. Miller
- Molecular, Cellular, and Biomedical SciencesUniversity of New HampshireDurhamNew HampshireUSA
| | - Jacob F. Schaefer
- Department of Biological SciencesUniversity of Southern MississippiHattiesburgMississippiUSA
| |
Collapse
|
9
|
Irregularities in Meiotic Prophase I as Prerequisites for Reproductive Isolation in Experimental Hybrids Carrying Robertsonian Translocations. DIVERSITY 2023. [DOI: 10.3390/d15030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The basic causes of postzygotic isolation can be elucidated if gametogenesis is studied, which is a drastically different process in males and females. As a step toward clarifying this problem, we obtained an experimental inbred lineage of the eastern mole vole Ellobius tancrei, whose founder animals were animals with identical diploid numbers 2n = 50 but with different Robertsonian translocations (Rb), namely 2Rb4.12 and 2Rb9.13 in the female and 2Rb.2.18 and 2Rb5.9 in the male. Here, we analyzed strictly inbred hybrids (F1, fertile and F10, sterile) using immunocytochemical methods in order to study spermatocytes during the meiotic prophase I. Previously, the presence of trivalents was assumed to have no significant effect on spermatogenesis and fertility in hybrids, but we demonstrated that spermatogenesis might be disturbed due to the cumulative effects of the retarded synapses of Rb bivalents as well as trivalents and their associations with XX sex bivalents. Alterations in the number of gametes due to the described processes led to a decrease in reproductive capacity up to sterility and can be examined as a mechanism for reproductive isolation, thus starting speciation.
Collapse
|
10
|
Xiong T, Mallet J. On the impermanence of species: The collapse of genetic incompatibilities in hybridizing populations. Evolution 2022; 76:2498-2512. [PMID: 36097352 PMCID: PMC9827863 DOI: 10.1111/evo.14626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/23/2022] [Indexed: 01/22/2023]
Abstract
Species pairs often become genetically incompatible during divergence, which is an important source of reproductive isolation. An idealized picture is often painted where incompatibility alleles accumulate and fix between diverging species. However, recent studies have shown both that incompatibilities can collapse with ongoing hybridization, and that incompatibility loci can be polymorphic within species. This paper suggests some general rules for the behavior of incompatibilities under hybridization. In particular, we argue that redundancy of genetic pathways can strongly affect the dynamics of intrinsic incompatibilities. Since fitness in genetically redundant systems is unaffected by introducing a few foreign alleles, higher redundancy decreases the stability of incompatibilities during hybridization, but also increases tolerance of incompatibility polymorphism within species. We use simulations and theories to show that this principle leads to two types of collapse: in redundant systems, exemplified by classical Dobzhansky-Muller incompatibilities, collapse is continuous and approaches a quasi-neutral polymorphism between broadly sympatric species, often as a result of isolation-by-distance. In nonredundant systems, exemplified by co-evolution among genetic elements, incompatibilities are often stable, but can collapse abruptly with spatial traveling waves. As both types are common, the proposed principle may be useful in understanding the abundance of genetic incompatibilities in natural populations.
Collapse
Affiliation(s)
- Tianzhu Xiong
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMA02138USA
| | - James Mallet
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMA02138USA
| |
Collapse
|