1
|
Li H, Wilhelm M, Baumbach CM, Hacker MC, Szardenings M, Rischka K, Koenig A, Schulz-Kornas E, Fuchs F, Simon JC, Lethaus B, Savković V. Laccase-Treated Polystyrene Surfaces with Caffeic Acid, Dopamine, and L-3,4-Dihydroxyphenylalanine Substrates Facilitate the Proliferation of Melanocytes and Embryonal Carcinoma Cells NTERA-2. Int J Mol Sci 2024; 25:5927. [PMID: 38892114 PMCID: PMC11172616 DOI: 10.3390/ijms25115927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
This study presents the effects of treating polystyrene (PS) cell culture plastic with oxidoreductase enzyme laccase and the catechol substrates caffeic acid (CA), L-DOPA, and dopamine on the culturing of normal human epidermal melanocytes (NHEMs) and human embryonal carcinoma cells (NTERA-2). The laccase-substrate treatment improved PS hydrophilicity and roughness, increasing NHEM and NTERA-2 adherence, proliferation, and NHEM melanogenesis to a level comparable with conventional plasma treatment. Cell adherence dynamics and proliferation were evaluated. The NHEM endpoint function was quantified by measuring melanin content. PS surfaces treated with laccase and its substrates demonstrated the forming of polymer-like structures. The surface texture roughness gradient and the peak curvature were higher on PS treated with a combination of laccase and substrates than laccase alone. The number of adherent NHEM and NTERA-2 was significantly higher than on the untreated surface. The proliferation of NHEM and NTERA-2 correspondingly increased on treated surfaces. NHEM melanin content was enhanced 6-10-fold on treated surfaces. In summary, laccase- and laccase-substrate-modified PS possess improved PS surface chemistry/hydrophilicity and altered roughness compared to untreated and plasma-treated surfaces, facilitating cellular adherence, subsequent proliferation, and exertion of the melanotic phenotype. The presented technology is easy to apply and creates a promising custom-made, substrate-based, cell-type-specific platform for both 2D and 3D cell culture.
Collapse
Affiliation(s)
- Hanluo Li
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan 430068, China;
- Department of Cranial Maxillofacial Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Martin Wilhelm
- Department of Ear, Nose and Throat Diseases, and Head and Neck Surgery, University of Greifswald, 17475 Greifswald, Germany;
| | - Christina Marie Baumbach
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University of Halle-Wittenberg, 06108 Halle, Germany;
| | - Michael C. Hacker
- Institute of Pharmaceutic Technology and Biopharmaceutics, Department of Pharmacy, Math.-Nat. Faculty, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany;
- Institute for Pharmacy, Faculty of Medicine, Leipzig University, Eilenburger Straße 15 A, 04317 Leipzig, Germany
| | - Michael Szardenings
- Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany;
| | - Klaus Rischka
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, 28359 Bremen, Germany;
| | - Andreas Koenig
- Polyclinic for Dental Prosthetics and Material Sciences, University Hospital Leipzig, 04103 Leipzig, Germany; (A.K.)
| | - Ellen Schulz-Kornas
- Department of Cariology, Endodontology and Periodontology, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Florian Fuchs
- Polyclinic for Dental Prosthetics and Material Sciences, University Hospital Leipzig, 04103 Leipzig, Germany; (A.K.)
| | - Jan Christoph Simon
- Clinic for Dermatology, Venereology and Allergology, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Bernd Lethaus
- Department of Cranial Maxillofacial Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Vuk Savković
- Department of Cranial Maxillofacial Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| |
Collapse
|
2
|
Li H, Masieri FF, Schneider M, Bartella A, Gaus S, Hahnel S, Zimmerer R, Sack U, Maksimovic-Ivanic D, Mijatovic S, Simon JC, Lethaus B, Savkovic V. The Middle Part of the Plucked Hair Follicle Outer Root Sheath Is Identified as an Area Rich in Lineage-Specific Stem Cell Markers. Biomolecules 2021; 11:biom11020154. [PMID: 33503918 PMCID: PMC7912066 DOI: 10.3390/biom11020154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
Hair follicle outer root sheath (ORS) is a putative source of stem cells with therapeutic capacity. ORS contains several multipotent stem cell populations, primarily in the distal compartment of the bulge region. However, the bulge is routinely obtained using invasive isolation methods, which require human scalp tissue ex vivo. Non-invasive sampling has been standardized by means of the plucking procedure, enabling to reproducibly obtain the mid-ORS part. The mid-ORS shows potential for giving rise to multiple stem cell populations in vitro. To demonstrate the phenotypic features of distal, middle, and proximal ORS parts, gene and protein expression profiles were studied in physically separated portions. The mid-part of the ORS showed a comparable or higher NGFR, nestin/NES, CD34, CD73, CD44, CD133, CK5, PAX3, MITF, and PMEL expression on both protein and gene levels, when compared to the distal ORS part. Distinct subpopulations of cells exhibiting small and round morphology were characterized with flow cytometry as simultaneously expressing CD73/CD271, CD49f/CD105, nestin, and not CK10. Potentially, these distinct subpopulations can give rise to cultured neuroectodermal and mesenchymal stem cell populations in vitro. In conclusion, the mid part of the ORS holds the potential for yielding multiple stem cells, in particular mesenchymal stem cells.
Collapse
Affiliation(s)
- Hanluo Li
- Department of Cranial Maxillofacial Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany; (H.L.); (A.B.); (S.G.); (R.Z.); (B.L.)
| | | | - Marie Schneider
- Clinic for Hematology, Cell Therapy and Hemostaseology, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Alexander Bartella
- Department of Cranial Maxillofacial Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany; (H.L.); (A.B.); (S.G.); (R.Z.); (B.L.)
| | - Sebastian Gaus
- Department of Cranial Maxillofacial Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany; (H.L.); (A.B.); (S.G.); (R.Z.); (B.L.)
| | - Sebastian Hahnel
- Polyclinic for Dental Prosthetics and Material Sciences, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Rüdiger Zimmerer
- Department of Cranial Maxillofacial Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany; (H.L.); (A.B.); (S.G.); (R.Z.); (B.L.)
| | - Ulrich Sack
- Medical Faculty, Institute for Clinical Immunology, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Danijela Maksimovic-Ivanic
- Department of Immunology, Institute for Biological Research ‘Sinisa Stankovic’ (IBISS)-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (D.M.-I.); (S.M.)
| | - Sanja Mijatovic
- Department of Immunology, Institute for Biological Research ‘Sinisa Stankovic’ (IBISS)-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (D.M.-I.); (S.M.)
| | - Jan-Christoph Simon
- Clinic for Dermatology, Venereology and Allergology, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Bernd Lethaus
- Department of Cranial Maxillofacial Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany; (H.L.); (A.B.); (S.G.); (R.Z.); (B.L.)
| | - Vuk Savkovic
- Department of Cranial Maxillofacial Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany; (H.L.); (A.B.); (S.G.); (R.Z.); (B.L.)
- Correspondence: ; Tel.: +49-341-9721115
| |
Collapse
|
3
|
Culturing of Melanocytes from the Equine Hair Follicle Outer Root Sheath. Processes (Basel) 2021. [DOI: 10.3390/pr9010177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hair follicles harbor a heterogeneous regenerative cell pool and represent a putative low-to-non-invasively available source of stem cells. We previously reported a technology for culturing human melanocytes from the hair follicle outer root sheath (ORS) for autologous pigmentation of tissue engineered skin equivalents. This study translated the ORS technology to horses. We de-veloped a culture of equine melanocytes from the ORS (eMORS) from equine forelock hair follicles cultured by means of an analogue human hair follicle-based in vitro methodology. The procedure was adjusted to equine physiology by addition of equine serum to the culture medium. The hair follicles were isolated by macerating forelock skin rests, enzymatically digested and subjected to air-medium-interface cultivation method. The procedure resulted in differentiated equine melanocytes, which exhibited typical morphology, presence of melanosomes, expression of cytoskeleton proteins vimentin, α-SMA, Sox2, S100ß and tyrosinase as well as tyrosinase activity followed by production of melanin. According to all assessed parameters, eMORS could be ranked as partially melanotic melanocytes. The results of the study offer an experimental base for further insight into hair follicle biology in equine and for comparative studies of hair follicles across different species.
Collapse
|
4
|
Generation of Epidermal Equivalents from Hair Follicle Melanocytes, Keratinocytes, and Dermal Fibroblasts. Methods Mol Biol 2021; 2269:175-201. [PMID: 33687680 DOI: 10.1007/978-1-0716-1225-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bench-to-bedside axis of therapeutic product development is currently being oriented towards minimum invasiveness on both ends-not only clinical application but harvesting of the starting biological material as well. This is particularly relevant for Advanced Therapy Medicinal Products and their specific legislative requirements, even more so in skin regeneration. It is precisely the skin equivalents and grafts that benefit from the minimum-to-noninvasive approach to a noteworthy extent, taking in account the sensitive nature of both skin harvesting and grafting.This chapter includes protocols for two separate steps of generating skin equivalent from the cells cultured from hair follicle outer root sheath. The first step is a non-pigmented epidermal equivalent generated from human keratinocytes from the outer root sheath named non-pigmented epidermal graft. The second step consists of co-cultivating human keratinocytes and human melanocytes from the outer root sheath, hereby producing a pigmented epidermal graft.
Collapse
|
5
|
Ghasemi M, Bajouri A, Shafiiyan S, Aghdami N. Hair Follicle as a Source of Pigment-Producing Cells for Treatment of Vitiligo: An Alternative to Epidermis? Tissue Eng Regen Med 2020; 17:815-827. [PMID: 33034877 DOI: 10.1007/s13770-020-00284-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/04/2020] [Accepted: 07/15/2020] [Indexed: 11/25/2022] Open
Abstract
To discuss the advantages and limitations of hair follicle-derived cell transplantation (FCT) in vitiligo, compared to the epidermal cell transplantation (ECT), and the knowledge gap which is required to be bridged. The papers relevant to the purpose was reviewed. Surgical approaches for treating vitiligo are based on the idea of replenishing lost melanocytes. Skin and hair follicles as the main sources of melanocytes have been applied for this purpose transferring the whole tissue or tissue-derived cell suspension to the vitiligo lesions. Considering the differences between hair follicle and epidermis in terms of the constituting cell populations, phenotype and function of melanocytes, and micro-environmental factors, different response of vitiligo patients to treatment with FCT or ECT would be expected theoretically. However, there is currently a lack of evidence on such a difference. However, ECT appears to be a more feasible, less time-consuming, and more comfortable treatment for both physicians and patients. Although the current evidence has not shown a significant difference between ECT and FCT in terms of efficacy, ECT appears to be more feasible specifically in the treatment of large lesions. However, further randomized controlled clinical trials with larger sample sizes and longer follow-up durations are required to be conducted to draw a definite conclusion on comparing FCT with ECT in terms of the safety, efficacy, durability of the therapeutic effects, and indications in vitiligo patients.
Collapse
Affiliation(s)
- Mahshid Ghasemi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, No. 9, Shaghayegh Deadend, Banihashem St., Resalat Ave., Tehran, Iran
- University of South Australia, Future Industries Institute, Adelaide, SA, Australia
| | - Amir Bajouri
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, No. 9, Shaghayegh Deadend, Banihashem St., Resalat Ave., Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Shafiiyan
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, No. 9, Shaghayegh Deadend, Banihashem St., Resalat Ave., Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, No. 9, Shaghayegh Deadend, Banihashem St., Resalat Ave., Tehran, Iran.
- Department of Infectious Diseases, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Li H, Masieri FF, Schneider M, Kottek T, Hahnel S, Yamauchi K, Obradović D, Seon JK, Yun SJ, Ferrer RA, Franz S, Simon JC, Lethaus B, Savković V. Autologous, Non-Invasively Available Mesenchymal Stem Cells from the Outer Root Sheath of Hair Follicle Are Obtainable by Migration from Plucked Hair Follicles and Expandable in Scalable Amounts. Cells 2020; 9:E2069. [PMID: 32927740 PMCID: PMC7564264 DOI: 10.3390/cells9092069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Regenerative therapies based on autologous mesenchymal stem cells (MSC) as well as stem cells in general are still facing an unmet need for non-invasive sampling, availability, and scalability. The only known adult source of autologous MSCs permanently available with no pain, discomfort, or infection risk is the outer root sheath of the hair follicle (ORS). METHODS This study presents a non-invasively-based method for isolating and expanding MSCs from the ORS (MSCORS) by means of cell migration and expansion in air-liquid culture. RESULTS The method yielded 5 million cells of pure MSCORS cultured in 35 days, thereby superseding prior art methods of culturing MSCs from hair follicles. MSCORS features corresponded to the International Society for Cell Therapy characterization panel for MSCs: adherence to plastic, proliferation, colony forming, expression of MSC-markers, and adipo-, osteo-, and chondro-differentiation capacity. Additionally, MSCORS displayed facilitated random-oriented migration and high proliferation, pronounced marker expression, extended endothelial and smooth muscle differentiation capacity, as well as a paracrine immunomodulatory effect on monocytes. MSCORS matched or even exceeded control adipose-derived MSCs in most of the assessed qualities. CONCLUSIONS MSCORS qualify for a variety of autologous regenerative treatments of chronic disorders and prophylactic cryopreservation for purposes of acute treatments in personalized medicine.
Collapse
Affiliation(s)
- Hanluo Li
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103 Leipzig, Germany; (H.L.); (T.K.); (B.L.)
| | - Federica Francesca Masieri
- School of (EAST) Engineering, Arts, Science & Technology, University of Suffolk, Ipswich, Suffolk IP41QJ, UK;
| | - Marie Schneider
- Clinic for Hematology, Cell Therapy and Hemostaseology, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Tina Kottek
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103 Leipzig, Germany; (H.L.); (T.K.); (B.L.)
| | - Sebastian Hahnel
- Polyclinic for Dental Prosthetics and Material Sciences, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Kensuke Yamauchi
- Kensuke Yamauchi, Department of Oral & Maxillofacial Surgery, Tohoku University, Sendai 980-8577, Japan;
| | | | - Jong-Keun Seon
- Chonnam National University Hwasun Hospital, Hwasun-gun 58128, Korea; (J.-K.S.); (S.J.Y.)
| | - Sook Jung Yun
- Chonnam National University Hwasun Hospital, Hwasun-gun 58128, Korea; (J.-K.S.); (S.J.Y.)
| | - Rubén A. Ferrer
- Clinic for Dermatology, Venereology and Allergology, University Hospital Leipzig, 04103 Leipzig, Germany; (R.A.F.); (S.F.); (J.-C.S.)
| | - Sandra Franz
- Clinic for Dermatology, Venereology and Allergology, University Hospital Leipzig, 04103 Leipzig, Germany; (R.A.F.); (S.F.); (J.-C.S.)
| | - Jan-Christoph Simon
- Clinic for Dermatology, Venereology and Allergology, University Hospital Leipzig, 04103 Leipzig, Germany; (R.A.F.); (S.F.); (J.-C.S.)
| | - Bernd Lethaus
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103 Leipzig, Germany; (H.L.); (T.K.); (B.L.)
| | - Vuk Savković
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103 Leipzig, Germany; (H.L.); (T.K.); (B.L.)
| |
Collapse
|
7
|
Isolation of Epidermal and Hair Follicle Melanocytes. Methods Mol Biol 2020. [PMID: 32314205 DOI: 10.1007/978-1-0716-0648-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Here we describe the isolation of epidermal melanocytes and hair follicle melanocytes from human skin tissue. Epidermal and hair follicle melanocytes are two distinct populations of melanocytes which are contained within the skin and the hair follicle, with differing yet overlapping roles. Epidermal melanocytes are normally isolated from the epidermis of vellus-haired skin tissue (e.g., face, breast, abdomen), while hair follicle melanocytes are derived from the outer root sheath (ORS) of the middle/lower terminal anagen hair follicles of the scalp. These methods utilize ethically sourced human skin tissue obtained from donors undergoing plastic surgery.
Collapse
|
8
|
Schneider M, Rother S, Möller S, Schnabelrauch M, Scharnweber D, Simon J, Hintze V, Savkovic V. Sulfated hyaluronan‐containing artificial extracellular matrices promote proliferation of keratinocytes and melanotic phenotype of melanocytes from the outer root sheath of hair follicles. J Biomed Mater Res A 2019; 107:1640-1653. [DOI: 10.1002/jbm.a.36680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/18/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Marie Schneider
- Saxon Incubator for Clinical TranslationLeipzig University TRR 67, Leipzig Germany
| | - Sandra Rother
- Max Bergmann Center of BiomaterialsInstitute of Materials Science, TU Dresden TRR 67, Dresden Germany
| | | | | | - Dieter Scharnweber
- Max Bergmann Center of BiomaterialsInstitute of Materials Science, TU Dresden TRR 67, Dresden Germany
| | - Jan‐Christoph Simon
- Clinic for Dermatology, Venerology and AllergologyFaculty of Medicine, Leipzig University Clinic TRR 67, Leipzig Germany
| | - Vera Hintze
- Max Bergmann Center of BiomaterialsInstitute of Materials Science, TU Dresden TRR 67, Dresden Germany
| | - Vuk Savkovic
- Saxon Incubator for Clinical TranslationLeipzig University TRR 67, Leipzig Germany
| |
Collapse
|
9
|
Zhou X, Ma Y, Liu F, Gu C, Wang X, Xia H, Zhou G, Huang J, Luo X, Yang J. Melanocyte Chitosan/Gelatin Composite Fabrication with Human Outer Root Sheath-Derived Cells to Produce Pigment. Sci Rep 2019; 9:5198. [PMID: 30914712 PMCID: PMC6435804 DOI: 10.1038/s41598-019-41611-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/11/2019] [Indexed: 12/26/2022] Open
Abstract
The hair follicle serves as a melanocyte reservoir for both hair and skin pigmentation. Melanocyte stem cells (MelSCs) and melanocyte progenitors reside in the bulge/sub-bulge region of the lower permanent portion of the hair follicle and play a vital role for repigmentation in vitiligo. It would be beneficial to isolate MelSCs in order to further study their function in pigmentary disorders; however, due to the lack of specific molecular surface markers, this has not yet been successfully accomplished in human hair follicles (HuHF). One potential method for MelSCs isolation is the “side population” technique, which is frequently used to isolate hematopoietic and tumor stem cells. In the present study, we decided to isolate HuHF MelSCs using “side population” to investigate their melanotic function. By analyzing mRNA expression of TYR, SOX10, and MITF, melanosome structure, and immunofluorescence with melanocyte-specific markers, we revealed that the SP-fraction contained MelSCs with an admixture of differentiated melanocytes. Furthermore, our in vivo studies indicated that differentiated SP-fraction cells, when fabricated into a cell-chitosan/gelatin composite, could transiently repopulate immunologically compromised mice skin to regain pigmentation. In summary, the SP technique is capable of isolating HuHF MelSCs that can potentially be used to repopulate skin for pigmentation.
Collapse
Affiliation(s)
- Xianyu Zhou
- Department of Plastic and Reconstructive Surgery, the Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Yan Ma
- Division of Plastic Surgery, Xinjiang Korla Bazhou People's Hospital, Xinjiang, People's Republic of China
| | - Fei Liu
- Department of Plastic and Reconstructive Surgery, the Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Chuan Gu
- Department of Plastic and Reconstructive Surgery, the Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Xiuxia Wang
- Department of Plastic and Reconstructive Surgery, the Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Huitang Xia
- Department of Plastic and Reconstructive Surgery, the Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, the Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Jinny Huang
- Department of Transplantation, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xusong Luo
- Department of Plastic and Reconstructive Surgery, the Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| | - Jun Yang
- Department of Plastic and Reconstructive Surgery, the Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
10
|
Schneider M, Lohrenz A, Cross M, Hacker MC, Simon JC, Savkovic V. A human serum-enriched medium formulation supports high viability and marker expression in primary melanocyte cultures from the outer root sheath and epidermis. Exp Dermatol 2017; 27:87-90. [DOI: 10.1111/exd.13435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Marie Schneider
- Leipzig University, Saxon Incubator for Clinical Translation; Leipzig Germany
| | - Andrea Lohrenz
- Translational Centre for Regenerative Medicine, Cell Therapy; Leipzig Germany
| | - Michael Cross
- Department for Haematology; University Clinic Leipzig; Leipzig Germany
| | | | - Jan C. Simon
- Dermatology; University of Leipzig; Leipzig Germany
| | - Vuk Savkovic
- Leipzig University, Saxon Incubator for Clinical Translation; Leipzig Germany
| |
Collapse
|
11
|
Dermal Fibroblasts Promote Alternative Macrophage Activation Improving Impaired Wound Healing. J Invest Dermatol 2017; 137:941-950. [DOI: 10.1016/j.jid.2016.11.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/28/2016] [Accepted: 11/27/2016] [Indexed: 02/06/2023]
|
12
|
Sülflow K, Schneider M, Loth T, Kascholke C, Schulz-Siegmund M, Hacker MC, Simon JC, Savkovic V. Melanocytes from the outer root sheath of human hair and epidermal melanocytes display improved melanotic features in the niche provided by cGEL, oligomer-cross-linked gelatin-based hydrogel. J Biomed Mater Res A 2016; 104:3115-3126. [PMID: 27409726 DOI: 10.1002/jbm.a.35832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 12/15/2022]
Abstract
Non-invasively based cell treatments of depigmented skin disorders are largely limited by means of cell sampling as much as by their routes of application. Human melanocytes cultivated from the outer root sheath of hair follicle (HUMORS) are among the cell types that fit the non-invasive concept by being cultivated out of a minimal sample: hair root. Eventual implementation of HUMORS as a graft essentially depends on a choice of suitable biocompatible, biodegradable carrier that would mechanically and biologically support the cells as transient niche and facilitate their engraftment. Hence, the melanotic features of follicle-derived HUMORS and normal human epidermal melanocytes (NHEM) in engineered scaffolds based on collagen, the usual leading candidate for graft material for a variety of skin transplantation procedures were tested. Hydrogel named cGEL, an enzymatically degraded bovine gelatin chemically cross-linked with an oligomeric copolymer synthesized from pentaerythritol diacrylate monostearate (PEDAS), maleic anhydride (MA), and N-isopropylacrylamide (NiPAAm) or diacetone acrylamide (DAAm), was used. The cGEL provided a friendly three-dimensional (3D) cultivation environment for human melanocytes with increased melanin content of the 3D cultures in comparison to Collagen Cell Carrier® (CCC), a commercially available bovine decellularized collagen membrane, and electrospun polycaprolactone (PCL) matrices. One of the cGEL variants fostered not only a dramatic increase in melanin production but also a significant enhancement of melanotic gene PAX3, PMEL, TYR, and MITF expression in comparison to that of both CCC full-length collagen and PCL scaffolds, providing a clearly superior melanocyte niche that may be a suitable candidate for grafting carriers. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3115-3126, 2016.
Collapse
Affiliation(s)
- Katharina Sülflow
- Saxon Incubator for Clinical Translation/Translational Centre for Regenerative Medicine, Leipzig University, Phillip-Rosenthal-Str.55, Leipzig, 04103, Germany
| | - Marie Schneider
- Saxon Incubator for Clinical Translation/Translational Centre for Regenerative Medicine, Leipzig University, Phillip-Rosenthal-Str.55, Leipzig, 04103, Germany
| | - Tina Loth
- Leipzig University, Faculty of Biosciences Pharmacy and Psychology, Institute of Pharmacy Dept of Pharmaceutical Technology, Eilenburger Straße 15 a, 04317, Leipzig, Germany
| | - Christian Kascholke
- Leipzig University, Faculty of Biosciences Pharmacy and Psychology, Institute of Pharmacy Dept of Pharmaceutical Technology, Eilenburger Straße 15 a, 04317, Leipzig, Germany
| | - Michaela Schulz-Siegmund
- Leipzig University, Faculty of Biosciences Pharmacy and Psychology, Institute of Pharmacy Dept of Pharmaceutical Technology, Eilenburger Straße 15 a, 04317, Leipzig, Germany
| | - Michael C Hacker
- Leipzig University, Faculty of Biosciences Pharmacy and Psychology, Institute of Pharmacy Dept of Pharmaceutical Technology, Eilenburger Straße 15 a, 04317, Leipzig, Germany
| | - Jan-Christoph Simon
- Clinic and Policlinic for Dermatology, Venereology, and Allergology, Leipzig University Clinic, Faculty of Medicine, Leipzig, Germany
| | - Vuk Savkovic
- Saxon Incubator for Clinical Translation/Translational Centre for Regenerative Medicine, Leipzig University, Phillip-Rosenthal-Str.55, Leipzig, 04103, Germany.
| |
Collapse
|
13
|
Savkovic V, Flämig F, Schneider M, Sülflow K, Loth T, Lohrenz A, Hacker MC, Schulz-Siegmund M, Simon JC. Polycaprolactone fiber meshes provide a 3D environment suitable for cultivation and differentiation of melanocytes from the outer root sheath of hair follicle. J Biomed Mater Res A 2015; 104:26-36. [DOI: 10.1002/jbm.a.35536] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/12/2015] [Accepted: 06/25/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Vuk Savkovic
- Translational Centre for Regenerative Medicine, Leipzig University; Leipzig Germany
| | - Franziska Flämig
- Department of Pharmaceutical Technology; Faculty of Biology, Pharmacy, and Psychology, Leipzig University; Leipzig Germany
| | - Marie Schneider
- Translational Centre for Regenerative Medicine, Leipzig University; Leipzig Germany
| | - Katharina Sülflow
- Translational Centre for Regenerative Medicine, Leipzig University; Leipzig Germany
| | - Tina Loth
- Department of Pharmaceutical Technology; Faculty of Biology, Pharmacy, and Psychology, Leipzig University; Leipzig Germany
| | - Andrea Lohrenz
- Translational Centre for Regenerative Medicine, Leipzig University; Leipzig Germany
| | - Michael Christian Hacker
- Department of Pharmaceutical Technology; Faculty of Biology, Pharmacy, and Psychology, Leipzig University; Leipzig Germany
| | - Michaela Schulz-Siegmund
- Department of Pharmaceutical Technology; Faculty of Biology, Pharmacy, and Psychology, Leipzig University; Leipzig Germany
| | - Jan-Christoph Simon
- Clinic and Policlinic for Dermatology, Venereology, and Allergology, Leipzig University Clinic; Leipzig Germany
| |
Collapse
|
14
|
Abstract
INTRODUCTION Melanocytes produce pigment granules that color both skin and hair. In the hair follicles melanocytes are derived from stem cells (MelSCs) that are present in hair bulges or sub-bulge regions and function as melanocyte reservoirs. Quiescence, maintenance, activation and proliferation of MelSCs are controlled by specific activities in the microenvironment that can influence the differentiation and regeneration of melanocytes. Therefore, understanding MelSCs and their niche may lead to use of MelSCs in new treatments for various pigmentation disorders. AREAS COVERED We describe here pathophysiological mechanisms by which melanocyte defects lead to skin pigmentation disorders such as vitiligo and hair graying. The development, migration and proliferation of melanocytes and factors involved in the survival, maintenance and regeneration of MelSCs are reviewed with regard to the biological roles and potential therapeutic applications in skin pigmentation diseases. EXPERT OPINION MelSC biology and niche factors have been studied mainly in murine experimental models. Human MelSC markers or methods to isolate them are much less well understood. Identification, isolation and culturing of human MelSCs would represent a major step toward new biological therapeutic options for patients with recalcitrant pigmentary disorders or hair graying. By modulating the niche factors for MelSCs, it may one day be possible to control skin pigmentary disorders and prevent or reverse hair graying.
Collapse
Affiliation(s)
- Ju Hee Lee
- Massachusetts General Hospital, Harvard Medical School, Department of Dermatology and Cutaneous Biology Research Center , Boston, MA 02129 , USA +1 617 643 5428 ; +1 617 643 6588 ;
| | | |
Collapse
|
15
|
Schneider M, Dieckmann C, Rabe K, Simon JC, Savkovic V. Differentiating the stem cell pool of human hair follicle outer root sheath into functional melanocytes. Methods Mol Biol 2014; 1210:203-227. [PMID: 25173171 DOI: 10.1007/978-1-4939-1435-7_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bench-to-Bedside concepts for regenerative therapy place significant weight on noninvasive approaches, with harvesting of the starting material as a header. This is particularly important in autologous treatments, which use one's bodily constituents for therapy. Precisely the stretch between obtaining therapeutic elements invasively and noninvasively places non-intrusive "sampling" rather than "biopsy" in the center of the road map of developing an autologous regenerative therapy. We focus on such a noninvasively available source of adult stem cells that we carry with us throughout our life, available at our fingertips-or shall we say hair roots, by a simple plucking of hair: the human hair follicle. This chapter describes an explant procedure for cultivating melanocytes differentiated from the stem cell pool of the hair follicle Outer Root Sheath (ORS). In vivo, the most abundant derivatives of the heterogeneous ORS stem cell pool are epidermal cells-melanocytes and keratinocytes which complete their differentiation-either spontaneously or upon picking up regenerative cues from damaged skin-and migrate from the ORS towards the adjacent regenerating area of the epidermis. We have taken advantage of the ORS developmental potential by optimizing explant primary culture, expansion and melanogenic differentiation of resident ORS stem cells towards end-stage melanocytes in order to obtain functional melanocytes noninvasively for the purposes of transplantation and use them for the treatment of depigmentation disorders. Our protocol specifies sampling of hair with their ORS, follicle medium-air interface primary culture, stimulation of cell outgrowth, adherent culture and differentiation of ORS stem cells and precursors towards fully functional melanocytes. Along with cultivation, we describe selection techniques for establishing and maintaining a pure melanocyte population and methods suitable for determining melanocyte identity.
Collapse
Affiliation(s)
- Marie Schneider
- Translationszentrum für Regenerative Medizin, Universität Leipzig, Phillip-Rosenthal-Str. 55, 04103, Leipzig, BR, Germany
| | | | | | | | | |
Collapse
|
16
|
Printed composite electrodes for in-situ wound pH monitoring. Biosens Bioelectron 2013; 50:399-405. [PMID: 23893062 DOI: 10.1016/j.bios.2013.06.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 01/16/2023]
Abstract
New technologies are essential for intelligent wound management and to provide tools that facilitate a greater understanding of wounds and healing physiology. pH is an important marker for many processes in the wound environment; it cannot be fully utilised due to the inherent lack of suitable technologies currently available. The development and proof-of-concept testing for an electrochemical system that exploits pad-printed carbon-uric acid composite electrodes is detailed. Uric acid is incorporated to act as a biologically-safe pH probe within in the sensor assembly that can be manipulated to offer a simple voltammetric response. The development of the composite sensors, the activation of the basal carbon, and the surface deposition of 1,2-diaminobenzene to prevent biofouling are detailed. The prototype sensing assembly is shown to enable the interference-free measurement of pH (and linear quantification of endogenous uric acid) even in the presence of high ascorbic acid concentrations. The experimental developments culminate in a standard deviation of 0.164 for 20 replicates performed in simulated wound fluid, and sensitive monitoring of pH across a wide analytical range (pH 4-10) in simulated wound fluid. These findings suggest that printed carbon-uric acid composites may offer a novel, cheap and reliable mechanism for simple pH measurements at wound surfaces, a potentially powerful tool with clinical utility for wound management and one that may enable a greater understanding of pH implications on wound physiology, and the effects of dressings and treatments.
Collapse
|