1
|
Zhang S, Guo Y, Hu Y, Gao X, Bai F, Ding Q, Hou K, Wang Z, Sun X, Zhao H, Qu Z, Xu Q. The role of APOBEC3C in modulating the tumor microenvironment and stemness properties of glioma: evidence from pancancer analysis. Front Immunol 2023; 14:1242972. [PMID: 37809064 PMCID: PMC10551170 DOI: 10.3389/fimmu.2023.1242972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Background It is now understood that APOBEC3 family proteins (A3s) are essential in tumor progression, yet their involvement in tumor immunity and stemness across diverse cancer types remains poorly understood. Methods In the present study, comprehensive genome-wide statistical and bioinformatic analyses were conducted to elucidate A3 family expression patterns, establishing clinically relevant correlations with prognosis, the tumor microenvironment(TME), immune infiltration, checkpoint blockade, and stemness across cancers. Different experimental techniques were applied, including RT-qPCR, immunohistochemistry, sphere formation assays, Transwell migration assays, and wound-healing assays, to investigate the impact of A3C on low-grade glioma (LGG) and glioblastoma multiforme (GBM), as well as its function in glioma stem cells(GSCs). Results Dysregulated expression of A3s was observed in various human cancer tissues. The prognostic value of A3 expression differed across cancer types, with a link to particularly unfavorable outcomes in gliomas. A3s are associated with the the TME and stemness in multiple cancers. Additionally, we developed an independent prognostic model based on A3s expression, which may be an independent prognostic factor for OS in patients with glioma. Subsequent validation underscored a strong association between elevated A3C expression and adverse prognostic outcomes, higher tumor grades, and unfavorable histology in glioma. A potential connection between A3C and glioma progression was established. Notably, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses implicated A3C in immune system-related diseases, with heightened A3C levels contributing to an immunosuppressive tumor microenvironment (TME) in glioma. Furthermore, in vitro experiments substantiated the role of A3C in sustaining and renewing glioma stem cells, as A3C deletion led to diminished proliferation, invasion, and migration of glioma cells. Conclusion The A3 family exhibits heterogeneous expression across various cancer types, with its expression profile serving as a predictive marker for overall survival in glioma patients. A3C emerges as a regulator of glioma progression, exerting its influence through modulation of the tumor microenvironment and regulation of stemness.
Collapse
Affiliation(s)
- Shoudu Zhang
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, Henan, China
| | - Yugang Guo
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, Henan, China
| | - Yuanzheng Hu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, Henan, China
| | - Xiaofang Gao
- The Department of Science and Technology, Zhengzhou Revogene Ltd, Zhengzhou, Henan, China
| | - Fanghui Bai
- Department of Oncology, Nanyang central Hospital, Nanyang, Henan, China
| | - Qian Ding
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, Henan, China
| | - Kaiqi Hou
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, Henan, China
| | - Zongqing Wang
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, Henan, China
| | - Xing Sun
- Department of Oncology, Nanyang central Hospital, Nanyang, Henan, China
| | - Hui Zhao
- The Department of Science and Technology, Zhengzhou Revogene Ltd, Zhengzhou, Henan, China
| | - Zhongyu Qu
- Department of Oncology, Nanyang central Hospital, Nanyang, Henan, China
| | - Qian Xu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, Henan, China
| |
Collapse
|
2
|
Jiao J, Lv Z, Wang Y, Fan L, Yang A. The off-target effects of AID in carcinogenesis. Front Immunol 2023; 14:1221528. [PMID: 37600817 PMCID: PMC10436223 DOI: 10.3389/fimmu.2023.1221528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) plays a crucial role in promoting B cell diversification through somatic hypermutation (SHM) and class switch recombination (CSR). While AID is primarily associated with the physiological function of humoral immune response, it has also been linked to the initiation and progression of lymphomas. Abnormalities in AID have been shown to disrupt gene networks and signaling pathways in both B-cell and T-cell lineage lymphoblastic leukemia, although the full extent of its role in carcinogenesis remains unclear. This review proposes an alternative role for AID and explores its off-target effects in regulating tumorigenesis. In this review, we first provide an overview of the physiological function of AID and its regulation. AID plays a crucial role in promoting B cell diversification through SHM and CSR. We then discuss the off-target effects of AID, which includes inducing mutations of non-Igs, epigenetic modification, and the alternative role as a cofactor. We also explore the networks that keep AID in line. Furthermore, we summarize the off-target effects of AID in autoimmune diseases and hematological neoplasms. Finally, we assess the off-target effects of AID in solid tumors. The primary focus of this review is to understand how and when AID targets specific gene loci and how this affects carcinogenesis. Overall, this review aims to provide a comprehensive understanding of the physiological and off-target effects of AID, which will contribute to the development of novel therapeutic strategies for autoimmune diseases, hematological neoplasms, and solid tumors.
Collapse
Affiliation(s)
- Junna Jiao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhuangwei Lv
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yurong Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Liye Fan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Angang Yang
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
3
|
Research on the influence of APOBEC family on the occurrence, diagnosis, and treatment of various tumors. J Cancer Res Clin Oncol 2023; 149:357-366. [PMID: 36222899 DOI: 10.1007/s00432-022-04395-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/05/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Apolipoprotein B mRNA-editing catalytic polypeptide (APOBEC) is a family of highly efficient cytidine deaminase enzymes. APOBECs have been proven to deaminate cytidine on single-stranded DNA or RNA. Inducing the deamination of cytosine on the target gene into uracil, which exerts a variety of physiological functions, plays an important role in innate immunity, adaptive immunity, and antiviral. As the research progresses, APOBECs have been confirmed to be highly expressed in a variety of tumors, causing abnormal mutations in host genes, leading to inactivation of tumor suppressor genes or activation of proto-oncogenes, and their role in tumor development and as diagnostic and treatment markers gradually be found. CONCLUSION This article will review the mechanism of APOBECs and their impact on tumor occurrence, development, diagnosis, and treatment, and provide a theoretical basis for future tumor treatment.
Collapse
|
4
|
Soikkeli AI, Kyläniemi MK, Sihto H, Alinikula J. Oncogenic Merkel Cell Polyomavirus T Antigen Truncating Mutations are Mediated by APOBEC3 Activity in Merkel Cell Carcinoma. CANCER RESEARCH COMMUNICATIONS 2022; 2:1344-1354. [PMID: 36970060 PMCID: PMC10035372 DOI: 10.1158/2767-9764.crc-22-0211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/17/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Merkel cell carcinoma (MCC) is an aggressive skin cancer, which is frequently caused by Merkel cell polyomavirus (MCPyV). Mutations of MCPyV tumor (T) antigens are major pathologic events of virus-positive (MCPyV+) MCCs, but their source is unclear. Activation-induced cytidine deaminase (AID)/APOBEC family cytidine deaminases contribute to antiviral immunity by mutating viral genomes and are potential carcinogenic mutators. We studied the contribution of AID/APOBEC cytidine deaminases to MCPyV large T (LT) truncation events. The MCPyV LT area in MCCs was enriched with cytosine-targeting mutations, and a strong APOBEC3 mutation signature was observed in MCC sequences. AICDA and APOBEC3 expression were detected in the Finnish MCC sample cohort, and LT expression correlated with APOBEC3H and APOBEC3G. Marginal but statistically significant somatic hypermutation targeting activity was detected in the MCPyV regulatory region. Our results suggest that APOBEC3 cytidine deaminases are a plausible cause of the LT truncating mutations in MCPyV+ MCC, while the role of AID in MCC carcinogenesis is unlikely.
Significance:
We uncover APOBEC3 mutation signature in MCPyV LT that reveals the likely cause of mutations underlying MCPyV+ MCC. We further reveal an expression pattern of APOBECs in a large Finnish MCC sample cohort. Thus, the findings presented here suggest a molecular mechanism underlying an aggressive carcinoma with poor prognosis.
Collapse
Affiliation(s)
- Anni I. Soikkeli
- 1Unit of Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
- 2Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
| | - Minna K. Kyläniemi
- 3Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Harri Sihto
- 4Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Jukka Alinikula
- 1Unit of Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
5
|
Yamauchi T, Shangraw S, Zhai Z, Ravindran Menon D, Batta N, Dellavalle RP, Fujita M. Alcohol as a Non-UV Social-Environmental Risk Factor for Melanoma. Cancers (Basel) 2022; 14:5010. [PMID: 36291794 PMCID: PMC9599745 DOI: 10.3390/cancers14205010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
Although cancer mortality has declined among the general population, the incidence of melanoma continues to rise. While identifying high-risk cohorts with genetic risk factors improves public health initiatives and clinical care management, recognizing modifiable risk factors such as social-environmental risk factors would also affect the methods of patient outreach and education. One major modifiable social-environmental risk factor associated with melanoma is ultraviolet (UV) radiation. However, not all forms of melanoma are correlated with sun exposure or occur in sun-exposed areas. Additionally, UV exposure is rarely associated with tumor progression. Another social-environmental factor, pregnancy, does not explain the sharply increased incidence of melanoma. Recent studies have demonstrated that alcohol consumption is positively linked with an increased risk of cancers, including melanoma. This perspective review paper summarizes epidemiological data correlating melanoma incidence with alcohol consumption, describes the biochemical mechanisms of ethanol metabolism, and discusses how ethanol and ethanol metabolites contribute to human cancer, including melanoma.
Collapse
Affiliation(s)
- Takeshi Yamauchi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah Shangraw
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zili Zhai
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dinoop Ravindran Menon
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nisha Batta
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert P Dellavalle
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Kinoshita K, Uemura M, Shimizu T, Kinoshita S, Marusawa H. Stepwise generation of AID knock-in and conditional knockout mice from a single gene-targeting event. Int Immunol 2021; 33:387-398. [PMID: 33903914 DOI: 10.1093/intimm/dxab019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/22/2021] [Indexed: 11/12/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) encoded by the Aicda gene initiates class-switch recombination and somatic hypermutation of immunoglobulin genes. In addition to this function, AID is also implicated in the epigenetic regulation in pluripotent stem cells and in the oncogenesis of lymphoid and non-lymphoid origins. To examine AID's role in specific cell types, we developed mouse strains of conditional knockout (Aicda-FL) and knock-in with a red fluorescent protein gene (RFP) inserted into the Aicda locus (Aicda-RFP). These two strains were obtained from a single targeting event in embryonic stem cells by a three-loxP or tri-lox strategy. Partial and complete recombination among the three loxP sites in the Aicda-RFP locus gave rise to Aicda-FL and AID-deficient loci (Aicda-KO), respectively, after mating Aicda-RFP mice with Cre-expressing mice driven by tissue-non-specific alkaline phosphate promoter. We confirmed RFP expression in B cells of germinal centers of intestine-associated lymphoid tissue. Mice homozygous for each allele were obtained and were checked for AID activity by class-switch and hypermutation assays. AID activity was normal for Aicda-FL but partially and completely absent for Aicda-RFP and Aicda-KO, respectively. Aicda-FL and Aicda-RFP mice would be useful for studying AID function in subpopulations of B cells and in non-lymphoid cells.
Collapse
Affiliation(s)
- Kazuo Kinoshita
- Evolutionary Medicine, Shizuoka Graduate University of Public Health, 4-27-2 Kita-ando, Aoi-ku, Shizuoka 420-0881, Japan.,Shiga Medical Center Research Institute, Moriyama 524-0022, Japan
| | - Munehiro Uemura
- Shiga Medical Center Research Institute, Moriyama 524-0022, Japan
| | - Takahiro Shimizu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Shun Kinoshita
- Kyoto University Graduate School of Medicine Faculty of Medicine, Kyoto 606-8501, Japan
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
7
|
Yang T, Sui X, Yu B, Shen Y, Cong H. Recent Advances in the Rational Drug Design Based on Multi-target Ligands. Curr Med Chem 2020; 27:4720-4740. [DOI: 10.2174/0929867327666200102120652] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 12/31/2022]
Abstract
Multi-target drugs have gained considerable attention in the last decade owing to their
advantages in the treatment of complex diseases and health conditions linked to drug resistance.
Single-target drugs, although highly selective, may not necessarily have better efficacy or fewer
side effects. Therefore, more attention is being paid to developing drugs that work on multiple
targets at the same time, but developing such drugs is a huge challenge for medicinal chemists.
Each target must have sufficient activity and have sufficiently characterized pharmacokinetic parameters.
Multi-target drugs, which have long been known and effectively used in clinical practice,
are briefly discussed in the present article. In addition, in this review, we will discuss the
possible applications of multi-target ligands to guide the repositioning of prospective drugs.
Collapse
Affiliation(s)
- Ting Yang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xin Sui
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
8
|
Dorasamy MS, Ab A, Nellore K, Wong PF. Synergistic inhibition of melanoma xenografts by Brequinar sodium and Doxorubicin. Biomed Pharmacother 2018; 110:29-36. [PMID: 30458345 DOI: 10.1016/j.biopha.2018.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 10/27/2022] Open
Abstract
Malignant melanoma continues to be a fatal disease for which novel and long-term curative breakthroughs are desired. One such innovative idea would be to assess combination therapeutic treatments - by way of combining two potentially effective and very different therapy. Previously, we have shown that DHODH inhibitors, A771726 and Brequinar sodium (BQR) induced cell growth impairment in melanoma cells. Similar results were seen with DHODH RNA interference (shRNA). In the present study, we showed that combination of BQR with doxorubicin resulted in synergistic and additive cell growth inhibition in these cells. In addition, in vivo studies with this combination of drugs demonstrated an almost 90% tumor regression in nude mice bearing melanoma tumors. Cell cycle regulatory proteins, cyclin B1 and its binding partner pcdc-2 and p21 were significantly downregulated and upregulated respectively following the combined treatment. Given that we have observed synergistic effects with BQR and doxorubicin, both in vitro and in vivo, these drugs potentially represent a new combination in the targeted therapy of melanoma.
Collapse
Affiliation(s)
- Mathura Subangari Dorasamy
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia; Aurigene Discovery Technologies, IPPP, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Aravind Ab
- Aurigene Discovery Technologies Limited, Electronic City, Bangalore, 560100, Karnataka, India
| | - Kavitha Nellore
- Aurigene Discovery Technologies Limited, Electronic City, Bangalore, 560100, Karnataka, India
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| |
Collapse
|
9
|
Menshawy A, Eltonob AA, Barkat SA, Ghanem A, Mniesy MM, Mohamed I, Abdel-Maboud M, Mattar OM, Elfil M, Bahbah EI, Elgebaly A. Nivolumab monotherapy or in combination with ipilimumab for metastatic melanoma: systematic review and meta-analysis of randomized-controlled trials. Melanoma Res 2018; 28:371-379. [PMID: 29957656 DOI: 10.1097/cmr.0000000000000467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nivolumab, a completely human programmed death-1 inhibitor antibody, was first approved by the Food and Drug Administration for patients with advanced malignant melanoma resistant to other modalities of treatment. In 2015, it received approval as the first line of treatment for malignant melanoma. We aimed to synthesize evidence from published randomized-controlled trials on the safety and efficacy of nivolumab, either alone or in combination with ipilimumab, in the management of advanced unresectable melanoma. We searched the following electronic databases: PubMed, Scopus, Web of Science, and Cochrane Central. The records retrieved were screened for eligibility. Time-to-event data were pooled as Hazard ratio using the generic inverse variance method and dichotomous data were pooled as relative risk (RR) in a random-effects model. We used Review Manager 5.3 software for windows. Four unique randomized-controlled trials (five reports) with a total of 1910 patients (nivolumab group, n=1207 and control group, n=703) were included. The overall effect estimate favored nivolumab plus ipilimumab versus ipilimumab alone in terms of the objective response rate [RR: 3.58, 95% confidence interval (CI): 2.08-6.14], the complete response rate (RR: 5.93, 95% CI: 2.45-14.37), the partial response rate (RR: 2.80, 95% CI: 2.16-3.64), the stable disease rate (RR: 0.56, 95% CI: 0.41-0.76), and progression-free survival (hazard ratio: 0.67, 95% CI: 0.60-0.74). The pooled studies were homogenous. Similar results were obtained for nivolumab monotherapy versus chemotherapy comparison. Nivolumab alone or combined with ipilimumab significantly improved the overall and complete response rates compared with ipilimumab alone. In addition, nivolumab resulted in longer progression-free survival with a comparable safety profile.
Collapse
Affiliation(s)
- Amr Menshawy
- Medical Research Education and Practice Association
- Al-Azhar Medical Students' Association
- Faculty of Medicine
- Kasr Al Ainy School of Medicine, Cairo University, Cairo
| | - Abdelrahman A Eltonob
- Medical Research Education and Practice Association
- Al-Azhar Medical Students' Association
- Faculty of Medicine
- Kasr Al Ainy School of Medicine, Cairo University, Cairo
| | - Sarah A Barkat
- Medical Research Education and Practice Association
- Al-Azhar Medical Students' Association
- Faculty of Medicine
- Kasr Al Ainy School of Medicine, Cairo University, Cairo
| | - Ahmed Ghanem
- Medical Research Education and Practice Association
- Al-Azhar Medical Students' Association
- Faculty of Medicine
- Kasr Al Ainy School of Medicine, Cairo University, Cairo
| | - Mahmoud M Mniesy
- Medical Research Education and Practice Association
- Al-Azhar Medical Students' Association
- Faculty of Medicine
- Kasr Al Ainy School of Medicine, Cairo University, Cairo
| | - Ishak Mohamed
- Medical Research Education and Practice Association
- Al-Azhar Medical Students' Association
- Faculty of Medicine
- Kasr Al Ainy School of Medicine, Cairo University, Cairo
| | - Mohamed Abdel-Maboud
- Medical Research Education and Practice Association
- Al-Azhar Medical Students' Association
- Faculty of Medicine
- Kasr Al Ainy School of Medicine, Cairo University, Cairo
| | - Omar M Mattar
- Medical Research Education and Practice Association
- Al-Azhar Medical Students' Association
- Kasr Al Ainy School of Medicine, Cairo University, Cairo
| | - Mohamed Elfil
- Medical Research Education and Practice Association
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eshak I Bahbah
- Medical Research Education and Practice Association
- Damietta Faculty of Medicine, Al-Azhar University
| | - Ahmed Elgebaly
- Medical Research Education and Practice Association
- Al-Azhar Medical Students' Association
- Faculty of Medicine
- Kasr Al Ainy School of Medicine, Cairo University, Cairo
| |
Collapse
|
10
|
Sapoznik S, Bahar-Shany K, Brand H, Pinto Y, Gabay O, Glick-Saar E, Dor C, Zadok O, Barshack I, Zundelevich A, Gal-Yam EN, Yung Y, Hourvitz A, Korach J, Beiner M, Jacob J, Levanon EY, Barak M, Aviel-Ronen S, Levanon K. Activation-Induced Cytidine Deaminase Links Ovulation-Induced Inflammation and Serous Carcinogenesis. Neoplasia 2016; 18:90-9. [PMID: 26936395 PMCID: PMC5005261 DOI: 10.1016/j.neo.2015.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 12/10/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022] Open
Abstract
In recent years, the notion that ovarian carcinoma results from ovulation-induced inflammation of the fallopian tube epithelial cells (FTECs) has gained evidence. However, the mechanistic pathway for this process has not been revealed yet. In the current study, we propose the mutator protein activation-induced cytidine deaminase (AID) as a link between ovulation-induced inflammation in FTECs and genotoxic damage leading to ovarian carcinogenesis. We show that AID, previously shown to be functional only in B lymphocytes, is expressed in FTECs under physiological conditions, and is induced in vitro upon ovulatory-like stimulation and in vivo in carcinoma-associated FTECs. We also report that AID activity results in epigenetic, genetic and genomic damage in FTECs. Overall, our data provides new insights into the etiology of ovarian carcinogenesis and may set the ground for innovative approaches aimed at prevention and early detection.
Collapse
Affiliation(s)
- Stav Sapoznik
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Keren Bahar-Shany
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Hadar Brand
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Israel
| | - Yishay Pinto
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat-Gan, 52900, Israel
| | - Orshay Gabay
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat-Gan, 52900, Israel
| | - Efrat Glick-Saar
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Chen Dor
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Oranit Zadok
- Department of Pathology, Chaim Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Iris Barshack
- Department of Pathology, Chaim Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Adi Zundelevich
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Einav Nili Gal-Yam
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel; The Talpiot Medical Leadership Program, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Yuval Yung
- IVF Unit and Reproduction Lab, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Ariel Hourvitz
- IVF Unit and Reproduction Lab, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Jacob Korach
- Department of Gynecologic Oncology, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Mario Beiner
- Department of Gynecologic Oncology, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Jasmine Jacob
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat-Gan, 52900, Israel
| | - Michal Barak
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat-Gan, 52900, Israel
| | - Sarit Aviel-Ronen
- Department of Pathology, Chaim Sheba Medical Center, Ramat-Gan 52621, Israel; The Talpiot Medical Leadership Program, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Keren Levanon
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Israel; The Talpiot Medical Leadership Program, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel.
| |
Collapse
|
11
|
Mashima E, Inoue A, Sakuragi Y, Yamaguchi T, Sasaki N, Hara Y, Omoto D, Ohmori S, Haruyama S, Sawada Y, Yoshioka M, Nishio D, Nakamura M. Nivolumab in the treatment of malignant melanoma: review of the literature. Onco Targets Ther 2015; 8:2045-51. [PMID: 26273207 PMCID: PMC4532168 DOI: 10.2147/ott.s62102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nivolumab was developed as a monoclonal antibody against programmed death receptor-1, an immune checkpoint inhibitor which negatively regulates T-cell proliferation and activation. Intravenous administration of nivolumab was approved for the treatment of unresectable malignant melanoma in 2014 in Japan. When advanced melanoma patients were treated with nivolumab, median overall survival became longer. Overall survival rate was significantly better in nivolumab-treated melanoma patients than dacarbazine-treated melanoma patients. Nivolumab had an acceptable long-term tolerability profile, with 22% of patients experiencing grade 3 or 4 adverse events related to the drug. Therefore, nivolumab can become an alternative therapy for advanced malignant melanoma.
Collapse
Affiliation(s)
- Emi Mashima
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akiha Inoue
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yumiko Sakuragi
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takashi Yamaguchi
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Natsuko Sasaki
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoko Hara
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Daisuke Omoto
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shun Ohmori
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Sanehito Haruyama
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yu Sawada
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Manabu Yoshioka
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Daisuke Nishio
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Motonobu Nakamura
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
12
|
Sanchez MI, Grichnik JM. Melanoma's high C>T mutation rate: is deamination playing a role? Exp Dermatol 2014; 23:551-2. [PMID: 24815223 DOI: 10.1111/exd.12436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2014] [Indexed: 11/28/2022]
Abstract
The majority of melanoma mutations are C>T transitions, and most bear UV signatures. However, other process may contribute to the high C>T mutation rate. Okura et al., have demonstrated immunohistochemical evidence of deaminating enzymes, activation-induced cytidine deaminase (AID) and apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3B (APOBEC3B) in melanoma. Both have been implicated in cancer. While further validation is necessary, these findings warrant consideration of a role for deamination in melanomagenesis. Deamination primarily drives C>T transitions. Compared with trunk/extremity melanomas, acral melanomas display a significantly higher percentage of 'spontaneous' and 'AID' mutation signature events suggesting deamination may be particularly important in this subgroup.
Collapse
Affiliation(s)
- Margaret I Sanchez
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | | |
Collapse
|