1
|
Nicklin EF, Cohen KE, Cooper RL, Mitchell G, Fraser GJ. Evolution, development, and regeneration of tooth-like epithelial appendages in sharks. Dev Biol 2024; 516:221-236. [PMID: 39154741 DOI: 10.1016/j.ydbio.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Sharks and their relatives are typically covered in highly specialized epithelial appendages embedded in the skin called dermal denticles; ancient tooth-like units (odontodes) composed of dentine and enamel-like tissues. These 'skin teeth' are remarkably similar to oral teeth of vertebrates and share comparable morphological and genetic signatures. Here we review the histological and morphological data from embryonic sharks to uncover characters that unite all tooth-like elements (odontodes), including teeth and skin denticles in sharks. In addition, we review the differences between the skin and oral odontodes that reflect their varied capacity for renewal. Our observations have begun to decipher the developmental and genetic shifts that separate these seemingly similar dental units, including elements of the regenerative nature in both oral teeth and the emerging skin denticles from the small-spotted catshark (Scyliorhinus canicula) and other chondrichthyan models. Ultimately, we ask what defines a tooth at both the molecular and morphological level. These insights aim to help us understand how nature makes, replaces and evolves a vast array of odontodes.
Collapse
Affiliation(s)
- Ella F Nicklin
- Department of Biology, University of Florida, Gainesville, USA
| | - Karly E Cohen
- Department of Biology, University of Florida, Gainesville, USA; Department of Biology, California State University Fullerton, Fullerton, USA
| | - Rory L Cooper
- Department of Genetics and Evolution, University of Geneva, Switzerland
| | - Gianna Mitchell
- Department of Biology, University of Florida, Gainesville, USA
| | - Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, USA.
| |
Collapse
|
2
|
Park JM, Jun MS, Kim JA, Mali NM, Hsi TC, Cho A, Kim JC, Kim JY, Seo I, Kim J, Kim M, Oh JW. Restoration of Immune Privilege in Human Dermal Papillae Controlling Epithelial-Mesenchymal Interactions in Hair Formation. Tissue Eng Regen Med 2021; 19:105-116. [PMID: 34626334 DOI: 10.1007/s13770-021-00392-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/02/2021] [Accepted: 08/22/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Hair follicles are among a handful of organs that exhibit immune privilege. Dysfunction of the hair follicle immune system underlies the development of inflammatory diseases, such as alopecia areata. METHODS Quantitative reverse transcription PCR and immunostaining was used to confirm the expression of major histocompatibility complex class I in human dermal papilla cells. Through transcriptomic analyses of human keratinocyte stem cells, major histocompatibility complex class I was identified as differentially expressed genes. Organ culture and patch assay were performed to assess the ability of WNT3a conditioned media to rescue immune privilege. Lastly, CD8+ T cells were detected near the hair bulb in alopecia areata patients through immunohistochemistry. RESULTS Inflammatory factors such as tumor necrosis factor alpha and interferon gamma were verified to induce the expression of major histocompatibility complex class I proteins in dermal papilla cells. Additionally, loss of immune privilege of hair follicles was rescued following treatment with conditioned media from outer root sheath cells. Transcriptomic analyses found 58 up-regulated genes and 183 down-regulated genes related in MHC class I+ cells. Using newborn hair patch assay, we demonstrated that WNT3a conditioned media with epidermal growth factor can restore hair growth. In alopecia areata patients, CD8+ T cells were increased during the transition from mid-anagen to late catagen. CONCLUSION Identification of mechanisms governing epithelial and mesenchymal interactions of the hair follicle facilitates an improved understanding of the regulation of hair follicle immune privilege.
Collapse
Affiliation(s)
- Jung Min Park
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Korea.,Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Korea.,Department of Microbiology, Kyungpook National University School of Medicine, Daegu, Korea.,Immune Square Inc., Daegu, Korea
| | - Mee Sook Jun
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Korea.,Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Korea
| | - Jung-A Kim
- Department of Immunology, Kyungpook National University School of Medicine, Daegu, Korea.,Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - Nanda Maya Mali
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Korea.,Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Korea
| | - Tsai-Ching Hsi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Areum Cho
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jung Chul Kim
- Department of Immunology, Kyungpook National University School of Medicine, Daegu, Korea.,Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - Jun Young Kim
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Incheol Seo
- Department of Microbiology, Dongguk University College of Medicine, Gyeongju, Korea
| | - Jungmin Kim
- Department of Microbiology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Moonkyu Kim
- Department of Immunology, Kyungpook National University School of Medicine, Daegu, Korea. .,Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea.
| | - Ji Won Oh
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Korea. .,Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Korea. .,Immune Square Inc., Daegu, Korea. .,Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea.
| |
Collapse
|
4
|
Plikus MV, Chuong CM. Understanding skin morphogenesis across developmental, regenerative and evolutionary levels. Exp Dermatol 2019; 28:327-331. [PMID: 30951234 DOI: 10.1111/exd.13932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California.,Center for Complex Biological Systems, University of California, Irvine, Irvine, California.,NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California.,Integrative Stem Cell Center, China Medical University, Taichung, Taiwan.,International Wound Repair and Regenerative Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
5
|
Gao Q, Zhou G, Lin SJ, Paus R, Yue Z. How chemotherapy and radiotherapy damage the tissue: Comparative biology lessons from feather and hair models. Exp Dermatol 2018; 28:413-418. [PMID: 30457678 DOI: 10.1111/exd.13846] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/11/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
Abstract
Chemotherapy and radiotherapy are common modalities for cancer treatment. While targeting rapidly growing cancer cells, they also damage normal tissues and cause adverse effects. From the initial insult such as DNA double-strand break, production of reactive oxygen species (ROS) and a general stress response, there are complex regulatory mechanisms that control the actual tissue damage process. Besides apoptosis, a range of outcomes for the damaged cells are possible including cell cycle arrest, senescence, mitotic catastrophe, and inflammatory responses and fibrosis at the tissue level. Feather and hair are among the most actively proliferating (mini-)organs and are highly susceptible to both chemotherapy and radiotherapy damage, thus provide excellent, experimentally tractable model systems for dissecting how normal tissues respond to such injuries. Taking a comparative biology approach to investigate this has turned out to be particularly productive. Started in chicken feather and then extended to murine hair follicles, it was revealed that in addition to p53-mediated apoptosis, several other previously overlooked mechanisms are involved. Specifically, Shh, Wnt, mTOR, cytokine signalling and ROS-mediated degradation of adherens junctions have been implicated in the damage and/or reparative regeneration process. Moreover, we show here that inflammatory responses, which can be prominent upon histological examination of chemo- or radiotherapy-damaged hair follicle, may not be essential for the hair loss phenotype. These studies point to fundamental, evolutionarily conserved mechanisms in controlling tissue responses in vivo, and suggest novel strategies for the prevention and management of adverse effects that arise from chemo- or radiotherapy.
Collapse
Affiliation(s)
- QingXiang Gao
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - GuiXuan Zhou
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - Sung-Jan Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.,Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Ralf Paus
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Centre for Dermatology Research, University of Manchester, Manchester, UK
| | - ZhiCao Yue
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
6
|
Poblet E, Jimenez F, Escario-Travesedo E, Hardman J, Hernández-Hernández I, Agudo-Mena J, Cabrera-Galvan J, Nicu C, Paus R. Eccrine sweat glands associate with the human hair follicle within a defined compartment of dermal white adipose tissue. Br J Dermatol 2018; 178:1163-1172. [DOI: 10.1111/bjd.16436] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2018] [Indexed: 12/20/2022]
Affiliation(s)
- E. Poblet
- Department of Pathology; Reina Sofía University General Hospital and Murcia University; Murcia Spain
| | - F. Jimenez
- Mediteknia Clinic; University Fernando Pessoa Canarias; Medical Pathology Group; ULPGC; Gran Canaria Spain
| | | | - J.A. Hardman
- Centre for Dermatology Research; University of Manchester; Manchester Academic Health Science Centre & NIHR Manchester Biomedical Research Centre; Manchester U.K
| | - I. Hernández-Hernández
- Mediteknia Clinic; University Fernando Pessoa Canarias; Medical Pathology Group; ULPGC; Gran Canaria Spain
| | - J.L. Agudo-Mena
- Dermatology Department; Albacete University General Hospital; Albacete Spain
| | - J.J. Cabrera-Galvan
- Department of Morphology; University of Las Palmas de Gran Canaria; Gran Canaria Spain
| | - C. Nicu
- Centre for Dermatology Research; University of Manchester; Manchester Academic Health Science Centre & NIHR Manchester Biomedical Research Centre; Manchester U.K
| | - R. Paus
- Centre for Dermatology Research; University of Manchester; Manchester Academic Health Science Centre & NIHR Manchester Biomedical Research Centre; Manchester U.K
| |
Collapse
|
7
|
Langan EA, Philpott MP, Kloepper JE, Paus R. Human hair follicle organ culture: theory, application and perspectives. Exp Dermatol 2015; 24:903-11. [DOI: 10.1111/exd.12836] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Ewan A. Langan
- Department of Dermatology; University of Luebeck; Luebeck Germany
- Centre for Cutaneous Research; Blizard Institute; Queen Mary University; London UK
| | - Michael P. Philpott
- Centre for Cutaneous Research; Blizard Institute; Queen Mary University; London UK
| | | | - Ralf Paus
- Dermatology Research Centre; Institute of Inflammation and Repair; University of Manchester; Manchester UK
- Department of Dermatology; University of Muenster; Muenster Germany
| |
Collapse
|