1
|
Zorina-Lichtenwalter K, Ase AR, Verma V, Parra AIM, Komarova S, Khadra A, Séguéla P, Diatchenko L. Characterization of Common Genetic Variants in P2RX7 and Their Contribution to Chronic Pain Conditions. THE JOURNAL OF PAIN 2024; 25:545-556. [PMID: 37742908 DOI: 10.1016/j.jpain.2023.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
The adenosine triphosphate (ATP)-gated channel P2X7 is encoded by a gene enriched for common nonsynonymous variants. Many of these variants have functional cellular effects, and some have been implicated in chronic pain. In this study, we first systematically characterized all 17 common nonsynonymous variants using whole-cell patch clamp electrophysiology. Then, we analyzed these variants for statistical association with chronic pain phenotypes using both individual P2RX7 variants as predictors and cumulative allele counts of same-direction cellular effect in univariate models. Association and validation analyses were conducted in the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) cohort (N = 3260) and in the Complex Persistent Pain Conditions (CPPC) cohort (N = 900), respectively. Our results showed an association between allele A of rs7958311 and an increased risk of chronic pelvic pain, with convergent evidence for contribution to fibromyalgia and irritable bowel syndrome, confirmed in a meta-analysis. This allelic variant produced a unique cellular phenotype: a gain-of-function in channel opening, and a loss-of-function in pore opening. A computational study using a 12-state Markov model of ATP binding to the P2X7 receptor suggested that this cellular phenotype arises from an increased ATP binding affinity and an increased open channel conductance combined with a loss of sensitization. Cumulative allele count analysis did not provide additional insights. In conclusion, our results go beyond reproducing association for rs7958311 with chronic pain and suggest that its unique combination of gain-of-function in channel and loss-of-function in pore activity may explain why it is likely the only common P2RX7 variant with contribution to chronic pain. PERSPECTIVE: This study characterizes all common P2RX7 variants using cellular assays and statistical association analyses with chronic pain, with Markov state modeling of the most robustly associated variant.
Collapse
Affiliation(s)
- Katerina Zorina-Lichtenwalter
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Ariel R Ase
- Department of Neurology & Neurosurgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Montreal Neurological Institute/Hospital, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Vivek Verma
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Arturo I M Parra
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Svetlana Komarova
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Anmar Khadra
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Philippe Séguéla
- Department of Neurology & Neurosurgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Montreal Neurological Institute/Hospital, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Luda Diatchenko
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Kaur J, Dora S. Purinergic signaling: Diverse effects and therapeutic potential in cancer. Front Oncol 2023; 13:1058371. [PMID: 36741002 PMCID: PMC9889871 DOI: 10.3389/fonc.2023.1058371] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Regardless of improved biological insights and therapeutic advances, cancer is consuming multiple lives worldwide. Cancer is a complex disease with diverse cellular, metabolic, and physiological parameters as its hallmarks. This instigates a need to uncover the latest therapeutic targets to advance the treatment of cancer patients. Purines are building blocks of nucleic acids but also function as metabolic intermediates and messengers, as part of a signaling pathway known as purinergic signaling. Purinergic signaling comprises primarily adenosine triphosphate (ATP) and adenosine (ADO), their analogous membrane receptors, and a set of ectonucleotidases, and has both short- and long-term (trophic) effects. Cells release ATP and ADO to modulate cellular function in an autocrine or paracrine manner by activating membrane-localized purinergic receptors (purinoceptors, P1 and P2). P1 receptors are selective for ADO and have four recognized subtypes-A1, A2A, A2B, and A3. Purines and pyrimidines activate P2 receptors, and the P2X subtype is ligand-gated ion channel receptors. P2X has seven subtypes (P2X1-7) and forms homo- and heterotrimers. The P2Y subtype is a G protein-coupled receptor with eight subtypes (P2Y1/2/4/6/11/12/13/14). ATP, its derivatives, and purinoceptors are widely distributed in all cell types for cellular communication, and any imbalance compromises the homeostasis of the cell. Neurotransmission, neuromodulation, and secretion employ fast purinergic signaling, while trophic purinergic signaling regulates cell metabolism, proliferation, differentiation, survival, migration, invasion, and immune response during tumor progression. Thus, purinergic signaling is a prospective therapeutic target in cancer and therapy resistance.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sanchit Dora
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
3
|
Böhme I, Schönherr R, Eberle J, Bosserhoff AK. Membrane Transporters and Channels in Melanoma. Rev Physiol Biochem Pharmacol 2020; 181:269-374. [PMID: 32737752 DOI: 10.1007/112_2020_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent research has revealed that ion channels and transporters can be important players in tumor development, progression, and therapy resistance in melanoma. For example, members of the ABC family were shown to support cancer stemness-like features in melanoma cells, while several members of the TRP channel family were reported to act as tumor suppressors.Also, many transporter proteins support tumor cell viability and thus suppress apoptosis induction by anticancer therapy. Due to the high number of ion channels and transporters and the resulting high complexity of the field, progress in understanding is often focused on single molecules and is in total rather slow. In this review, we aim at giving an overview about a broad subset of ion transporters, also illustrating some aspects of the field, which have not been addressed in detail in melanoma. In context with the other chapters in this special issue on "Transportome Malfunctions in the Cancer Spectrum," a comparison between melanoma and these tumors will be possible.
Collapse
Affiliation(s)
- Ines Böhme
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Schönherr
- Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Jürgen Eberle
- Department of Dermatology, Venerology and Allergology, Skin Cancer Center Charité, University Medical Center Charité, Berlin, Germany
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany. .,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
4
|
Purinergic Signaling in the Hallmarks of Cancer. Cells 2020; 9:cells9071612. [PMID: 32635260 PMCID: PMC7407645 DOI: 10.3390/cells9071612] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is a complex expression of an altered state of cellular differentiation associated with severe clinical repercussions. The effort to characterize this pathological entity to understand its underlying mechanisms and visualize potential therapeutic strategies has been constant. In this context, some cellular (enhanced duplication, immunological evasion), metabolic (aerobic glycolysis, failure in DNA repair mechanisms) and physiological (circadian disruption) parameters have been considered as cancer hallmarks. The list of these hallmarks has been growing in recent years, since it has been demonstrated that various physiological systems misfunction in well-characterized ways upon the onset and establishment of the carcinogenic process. This is the case with the purinergic system, a signaling pathway formed by nucleotides/nucleosides (mainly adenosine triphosphate (ATP), adenosine (ADO) and uridine triphosphate (UTP)) with their corresponding membrane receptors and defined transduction mechanisms. The dynamic equilibrium between ATP and ADO, which is accomplished by the presence and regulation of a set of ectonucleotidases, defines the pro-carcinogenic or anti-cancerous final outline in tumors and cancer cell lines. So far, the purinergic system has been recognized as a potential therapeutic target in cancerous and tumoral ailments.
Collapse
|
5
|
Lee EJ, Kim JY, Ahn Y, Lee BM, Heo Y, Hwang S, Lee SH, Lee J, Chung G, Oh SH. Critical Role of ATP-P2X7 Axis in UV-Induced Melanogenesis. J Invest Dermatol 2019; 139:1554-1563.e6. [PMID: 30926287 DOI: 10.1016/j.jid.2019.02.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 12/20/2022]
Abstract
Purinergic signaling participates in skin physiology and pathology, such as hair growth, wound healing, inflammation, pain, and skin cancer. However, few studies have investigated the involvement of purinergic signaling in skin pigmentation. This study demonstrated that extracellular adenosine 5'-triphosphate (ATP) released from keratinocytes by UVB radiation promotes melanin production in primary human epidermal melanocytes and ex vivo skin cultures. Intracellular calcium ion and protein kinase C/CREB signaling contributed to ATP-mediated melanogenesis. Also, P2X7 receptor was proven to play a pivotal role in ATP-mediated melanogenesis because P2X7 receptor blockade abrogated ATP-induced melanin production. In addition, MNT1 cells with P2X7 receptor knockout using CRISPR/Cas9 system did not show any increase in MITF expression when co-cultured with UV-irradiated keratinocytes compared to MNT1 cells with intact P2X7 receptor, which showed increased expression of MITF. In conclusion, our results indicate that the extracellular ATP-P2X7 signaling axis is an adjunctive mechanism in UV-induced melanogenesis. Furthermore, ATP-induced purinergic signaling in melanocytes may alter skin pigmentation.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Young Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yuri Ahn
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Byeong-Min Lee
- Department of Oral Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Yunkyung Heo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - Shinwon Hwang
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Si-Hyung Lee
- Department of Dermatology, Seoul National University Hospital, Seoul, Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - Gehoon Chung
- Department of Oral Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Sang Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
6
|
Martin S, Dudek-Peric AM, Garg AD, Roose H, Demirsoy S, Van Eygen S, Mertens F, Vangheluwe P, Vankelecom H, Agostinis P. An autophagy-driven pathway of ATP secretion supports the aggressive phenotype of BRAF V600E inhibitor-resistant metastatic melanoma cells. Autophagy 2017; 13:1512-1527. [PMID: 28722539 DOI: 10.1080/15548627.2017.1332550] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The ingrained capacity of melanoma cells to rapidly evolve toward an aggressive phenotype is manifested by their increased ability to develop drug-resistance, evident in the case of vemurafenib, a therapeutic-agent targeting BRAFV600E. Previous studies indicated a tight correlation between heightened melanoma-associated macroautophagy/autophagy and acquired Vemurafenib resistance. However, how this vesicular trafficking pathway supports Vemurafenib resistance remains unclear. Here, using isogenic human and murine melanoma cell lines of Vemurafenib-resistant and patient-derived melanoma cells with primary resistance to the BRAFV600E inhibitor, we found that the enhanced migration and invasion of the resistant melanoma cells correlated with an enhanced autophagic capacity and autophagosome-mediated secretion of ATP. Extracellular ATP (eATP) was instrumental for the invasive phenotype and the expansion of a subset of Vemurafenib-resistant melanoma cells. Compromising the heightened autophagy in these BRAFV600E inhibitor-resistant melanoma cells through the knockdown of different autophagy genes (ATG5, ATG7, ULK1), reduced their invasive and eATP-secreting capacity. Furthermore, eATP promoted the aggressive nature of the BRAFV600E inhibitor-resistant melanoma cells by signaling through the purinergic receptor P2RX7. This autophagy-propelled eATP-dependent autocrine-paracrine pathway supported the maintenance and expansion of a drug-resistant melanoma phenotype. In conclusion, we have identified an autophagy-driven response that relies on the secretion of ATP to drive P2RX7-based migration and expansion of the Vemurafenib-resistant phenotype. This emphasizes the potential of targeting autophagy in the treatment and management of metastatic melanoma.
Collapse
Affiliation(s)
- Shaun Martin
- a Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine , University of Leuven (KU Leuven) , Campus Gasthuisberg , Leuven , Belgium.,b Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine , University of Leuven (KU Leuven) , Campus Gasthuisberg, Leuven , Belgium
| | - Aleksandra M Dudek-Peric
- a Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine , University of Leuven (KU Leuven) , Campus Gasthuisberg , Leuven , Belgium
| | - Abhishek D Garg
- a Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine , University of Leuven (KU Leuven) , Campus Gasthuisberg , Leuven , Belgium
| | - Heleen Roose
- c Department of Development and Regeneration, Cluster Stem Cell Biology and Embryology , University of Leuven (KU Leuven) , Campus Gasthuisberg, Leuven , Belgium
| | - Seyma Demirsoy
- a Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine , University of Leuven (KU Leuven) , Campus Gasthuisberg , Leuven , Belgium
| | - Sofie Van Eygen
- a Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine , University of Leuven (KU Leuven) , Campus Gasthuisberg , Leuven , Belgium
| | - Freya Mertens
- c Department of Development and Regeneration, Cluster Stem Cell Biology and Embryology , University of Leuven (KU Leuven) , Campus Gasthuisberg, Leuven , Belgium
| | - Peter Vangheluwe
- b Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine , University of Leuven (KU Leuven) , Campus Gasthuisberg, Leuven , Belgium
| | - Hugo Vankelecom
- c Department of Development and Regeneration, Cluster Stem Cell Biology and Embryology , University of Leuven (KU Leuven) , Campus Gasthuisberg, Leuven , Belgium
| | - Patrizia Agostinis
- a Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine , University of Leuven (KU Leuven) , Campus Gasthuisberg , Leuven , Belgium
| |
Collapse
|
7
|
Abstract
Communication among cells via direct cell-cell contact by connexin gap junctions, or between cell and extracellular environment via pannexin channels or connexin hemichannels, is a key factor in cell function and tissue homeostasis. Upon malignant transformation in different cancer types, the dysregulation of these connexin and pannexin channels and their effect in cellular communication, can either enhance or suppress tumorigenesis and metastasis. In this review, we will highlight the latest reports on the role of the well characterized connexin family and its ability to form gap junctions and hemichannels in cancer. We will also introduce the more recently discovered family of pannexin channels and our current knowledge about their involvement in cancer progression.
Collapse
Affiliation(s)
- Jean X Jiang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, N6A5C1, Canada.
| |
Collapse
|