1
|
Bazid HAS, Marae AH, Farag B, Abdallah RA. The value of immunohistochemical expression of SOX9 and CD34 in alopecia areata. J Immunoassay Immunochem 2024; 45:452-466. [PMID: 39041618 DOI: 10.1080/15321819.2024.2383676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
BACKGROUND Alopecia areata (AA), an immune-mediated disorder, is marked by temporary, nonscarring hair loss. The bulge area is protected from immune attacks by immune privilege; however, recent studies demonstrated immune cells infiltrating the bulge area. OBJECTIVE This study aims to investigate the immunohistochemical expression of the sex-determining region Y-box 9 (SOX9) and cluster of differentiation 34 (CD34) in AA patients as markers of hair follicle stem cells (HFSCs) and progenitor cells, respectively. METHODS Immunohistochemical staining of SOX9 and CD34 was applied on skin samples of 20 AA patients and 20 healthy controls. RESULTS SOX9 and CD34 were significantly lower in lesional samples of cases compared to perilesional and control skin biopsies. Furthermore, SOX9 level was negatively correlated with the severity of alopecia tool score (SALT score) among the studied AA patients. Moreover, lowered SOX9 expression was present in patients with recurrent attacks. CONCLUSIONS The significant reduction of stem cell markers (SOX9 and CD34) in our studied AA cases signifies the pathological affection of HFSCs and their progeny in AA. This is thought to cause a loss of competence in generating new hair in some AA cases, which needs to be validated in further research. LIMITATIONS OF THE STUDY This study has a small sample size.
Collapse
Affiliation(s)
- Heba A S Bazid
- Dermatology and Andrology Department, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Alaa H Marae
- Dermatology and Andrology Department, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Bassant Farag
- Dermatology and Andrology Department, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | | |
Collapse
|
2
|
Pye D, Scholey R, Ung S, Dawson M, Shahmalak A, Purba TS. Activation of the integrated stress response in human hair follicles. PLoS One 2024; 19:e0303742. [PMID: 38900734 PMCID: PMC11189182 DOI: 10.1371/journal.pone.0303742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/30/2024] [Indexed: 06/22/2024] Open
Abstract
Unravelling how energy metabolism and stress responses are regulated in human scalp hair follicles could reveal novel insights into the controls of hair growth and provide new targets to manage hair loss disorders. The Mitochondrial Pyruvate Carrier (MPC) imports pyruvate, produced via glycolysis, into the mitochondria, fuelling the TCA cycle. Previous work has shown that MPC inhibition promotes lactate generation, which activates murine epithelial hair follicle stem cells (eHFSCs). However, by pharmacologically targeting the MPC in short-term human hair follicle ex vivo organ culture experiments using UK-5099, we induced metabolic stress-responsive proliferative arrest throughout the human hair follicle epithelium, including within Keratin 15+ eHFSCs. Through transcriptomics, MPC inhibition was shown to promote a gene expression signature indicative of disrupted FGF, IGF, TGFβ and WNT signalling, mitochondrial dysfunction, and activation of the integrated stress response (ISR), which can arrest cell cycle progression. The ISR, mediated by the transcription factor ATF4, is activated by stressors including amino acid deprivation and ER stress, consistent with MPC inhibition within our model. Using RNAScope, we confirmed the upregulation of both ATF4 and the highly upregulated ATF4-target gene ADM2 on human hair follicle tissue sections in situ. Moreover, treatment with the ISR inhibitor ISRIB attenuated both the upregulation of ADM2 and the proliferative block imposed via MPC inhibition. Together, this work reveals how the human hair follicle, as a complex and metabolically active human tissue system, can dynamically adapt to metabolic stress.
Collapse
Affiliation(s)
- Derek Pye
- Division Musculoskeletal and Dermatological Sciences, Centre for Dermatology Research, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biosciences, The University of Manchester, Manchester, United Kingdom
| | - Rachel Scholey
- Bioinformatics Core Facility, University of Manchester, Manchester, United Kingdom
| | - Sin Ung
- Division Musculoskeletal and Dermatological Sciences, Centre for Dermatology Research, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biosciences, The University of Manchester, Manchester, United Kingdom
| | - Madoc Dawson
- Division Musculoskeletal and Dermatological Sciences, Centre for Dermatology Research, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biosciences, The University of Manchester, Manchester, United Kingdom
| | | | - Talveen S. Purba
- Division Musculoskeletal and Dermatological Sciences, Centre for Dermatology Research, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biosciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Xing YZ, Guo HY, Xiang F, Li YH. Recent progress in hair follicle stem cell markers and their regulatory roles. World J Stem Cells 2024; 16:126-136. [PMID: 38455104 PMCID: PMC10915958 DOI: 10.4252/wjsc.v16.i2.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 01/16/2024] [Indexed: 02/26/2024] Open
Abstract
Hair follicle stem cells (HFSCs) in the bulge are a multipotent adult stem cell population. They can periodically give rise to new HFs and even regenerate the epidermis and sebaceous glands during wound healing. An increasing number of biomarkers have been used to isolate, label, and trace HFSCs in recent years. Considering more detailed data from single-cell transcriptomics technology, we mainly focus on the important HFSC molecular markers and their regulatory roles in this review.
Collapse
Affiliation(s)
- Yi-Zhan Xing
- Department of Cell Biology, Army Medical University, Chongqing 400038, China
| | - Hai-Ying Guo
- Department of Cell Biology, Army Medical University, Chongqing 400038, China
| | - Fei Xiang
- Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Yu-Hong Li
- Department of Cell Biology, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
4
|
Nishimura Y, Ryo E, Inoue S, Kawazu M, Ueno T, Namikawa K, Takahashi A, Ogata D, Yoshida A, Yamazaki N, Mano H, Yatabe Y, Mori T. Strategic Approach to Heterogeneity Analysis of Cutaneous Adnexal Carcinomas Using Computational Pathology and Genomics. JID INNOVATIONS 2023; 3:100229. [PMID: 37965425 PMCID: PMC10641284 DOI: 10.1016/j.xjidi.2023.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 11/16/2023] Open
Abstract
Cutaneous adnexal tumors are neoplasms that arise from skin appendages. Their morphologic diversity and phenotypic variability with rare progression to malignancy make them difficult to diagnose and classify, and there is currently no established treatment strategy. To overcome these difficulties, this study investigated the transcription factor SOX9 expression, morphology, and genetics of skin adnexal tumors for understanding their biology, especially their histogenesis. We showed that cutaneous adnexal tumors and their nontumor counterparts of skin and appendages exhibit expression patterns similar to that of SOX9. Its expression intensity and pattern, as well as histopathologic evaluation of tumors, were analyzed using digital images of 69 normal skin adnexal 9-type organs and 185 skin adnexal 29-type tumors as references. It was possible to distinguish basal cell carcinoma from squamous cell carcinoma, sebaceous carcinoma, and pilomatrixoma with significant differences, along with porocarcinoma from squamous cell carcinoma. Furthermore, unsupervised machine learning "computational pathology" was used to derive a multiregion whole-exome sequencing fusion method termed "genocomputed pathology." The genocomputed pathology of three representable adnexal carcinomas (porocarcinoma, hidradenocarcinoma, and spiradenocarcinoma) was evaluated for total nine cases. We showed that there was more heterogeneity than expected within the tumors as well as the coexistence of components lacking driver fusion genes. The presence or absence of potential driver genes, such as PIK3CA, YAP1, and PTEN, in each region was identified, highlighting a therapeutic strategy for cutaneous adnexal carcinoma encompassing heterogeneous tumors.
Collapse
Affiliation(s)
- Yuuki Nishimura
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
- Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Eijitsu Ryo
- Division of Molecular Pathology, National Cancer Center Reserch Institute, Tokyo, Japan
| | - Satoshi Inoue
- Division of Cellular Signaling, National Cancer Center Reserch Institute, Tokyo, Japan
| | - Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center Reserch Institute, Tokyo, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Reserch Institute, Tokyo, Japan
| | - Kenjiro Namikawa
- Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Akira Takahashi
- Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Dai Ogata
- Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Naoya Yamazaki
- Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Reserch Institute, Tokyo, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
- Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Division of Molecular Pathology, National Cancer Center Reserch Institute, Tokyo, Japan
| | - Taisuke Mori
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
- Division of Molecular Pathology, National Cancer Center Reserch Institute, Tokyo, Japan
| |
Collapse
|
5
|
Stüfchen I, Beyer F, Staebler S, Fischer S, Kappelmann M, Beckervordersandforth R, Bosserhoff AK. Sox9 regulates melanocytic fate decision of adult hair follicle stem cells. iScience 2023; 26:106919. [PMID: 37283806 PMCID: PMC10239701 DOI: 10.1016/j.isci.2023.106919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/02/2023] [Accepted: 05/14/2023] [Indexed: 06/08/2023] Open
Abstract
The bulge of hair follicles harbors Nestin+ (neural crest like) stem cells, which exhibit the potential to generate various cell types including melanocytes. In this study, we aimed to determine the role of Sox9, an important regulator during neural crest development, in melanocytic differentiation of those adult Nestin+ cells. Immunohistochemical analysis after conditional Sox9 deletion in Nestin+ cells of adult mice revealed that Sox9 is crucial for melanocytic differentiation of these cells and that Sox9 acts as a fate determinant between melanocytic and glial fate. A deeper understanding of factors that regulate fate decision, proliferation and differentiation of these stem cells provides new aspects to melanoma research as melanoma cells share many similarities with neural crest cells. In summary, we here show the important role of Sox9 in melanocytic versus glial fate decision of Nestin+ stem cells in the skin of adult mice.
Collapse
Affiliation(s)
- Isabel Stüfchen
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Felix Beyer
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Staebler
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Fischer
- Faculty of Computer Science, Deggendorf Institute of Technology, Deggendorf, Germany
| | - Melanie Kappelmann
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Faculty of Computer Science, Deggendorf Institute of Technology, Deggendorf, Germany
| | | | - Anja K. Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Ouji Y, Misu M, Kitamura T, Okuzaki D, Yoshikawa M. Impaired differentiation potential of CD34-positive cells derived from mouse hair follicles after long-term culture. Sci Rep 2022; 12:11011. [PMID: 35773408 PMCID: PMC9247072 DOI: 10.1038/s41598-022-15354-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022] Open
Abstract
Hair follicle epithelial stem cells (HFSCs), which exist in the bulge region, have important functions for homeostasis of skin as well as hair follicle morphogenesis. Although several methods for isolation of HFSCs using a variety of stem cell markers have been reported, few investigations regarding culture methods or techniques to yield long-term maintenance of HFSCs in vitro have been conducted. In the present study, we screened different types of commercially available culture medium for culturing HFSCs. Among those tested, one type was shown capable of supporting the expression of stem cell markers in cultured HFSCs. However, both the differentiation potential and in vivo hair follicle-inducing ability of HFSCs serially passaged using that optimal medium were found to be impaired, probably because of altered responsiveness to Wnt signaling. The changes noted in HFSCs subjected to a long-term culture suggested that the Wnt signaling-related environment must be finely controlled for maintenance of the cells.
Collapse
Affiliation(s)
- Yukiteru Ouji
- Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan.
| | - Masayasu Misu
- Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Tomotaka Kitamura
- Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masahide Yoshikawa
- Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| |
Collapse
|
7
|
Wu S, Yu Y, Liu C, Zhang X, Zhu P, Peng Y, Yan X, Li Y, Hua P, Li Q, Wang S, Zhang L. Single-cell transcriptomics reveals lineage trajectory of human scalp hair follicle and informs mechanisms of hair graying. Cell Discov 2022; 8:49. [PMID: 35606346 PMCID: PMC9126928 DOI: 10.1038/s41421-022-00394-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/01/2022] [Indexed: 02/03/2023] Open
Abstract
Hair conditions, such as hair loss and graying, are prevalent human conditions. But they are often poorly controlled due to our insufficient understanding of human scalp hair follicle (hsHF) in health and disease. Here we describe a comprehensive single-cell RNA-seq (scRNA-seq) analysis on highly purified black and early-stage graying hsHFs. Based on these, a concise single-cell atlas for hsHF and its early graying changes is generated and verified using samples from multiple independent individuals. These data reveal the lineage trajectory of hsHF in unprecedented detail and uncover its multiple unexpected features not found in mouse HFs, including the presence of an innerbulge like compartment in the growing phase, lack of a discrete companion layer, and enrichment of EMT features in HF stem cells (HFSCs). Moreover, we demonstrate that besides melanocyte depletion, early-stage human hair graying is also associated with specific depletion of matrix hair progenitors but not HFSCs. The hair progenitors' depletion is accompanied by their P53 pathway activation whose pharmaceutical blockade can ameliorate hair graying in mice, enlightening a promising therapeutic avenue for this prevalent hair condition.
Collapse
Affiliation(s)
- Sijie Wu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, China
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yao Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Caiyue Liu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, China
| | - Xia Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Peiying Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - You Peng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Xinyu Yan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Yin Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Peng Hua
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, China.
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, China.
| |
Collapse
|
8
|
Jiang Y, Zou Q, Liu B, Li S, Wang Y, Liu T, Ding X. Atlas of Prenatal Hair Follicle Morphogenesis Using the Pig as a Model System. Front Cell Dev Biol 2021; 9:721979. [PMID: 34692680 PMCID: PMC8529045 DOI: 10.3389/fcell.2021.721979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/13/2021] [Indexed: 01/15/2023] Open
Abstract
The pig is an increasingly popular biomedical model, but only a few in depth data exist on its studies in hair follicle (HF) morphogenesis and development. Hence, the objective of this study was to identify the suitability of the pig as an animal model for human hair research. We performed a classification of pig HF morphogenesis stages and hair types. All four different hair types sampled from 17 different body parts in pig were similar to those of human. The Guard_2 sub-type was more similar to type II human scalp hair while Guard_1, Awl, Auchene, and Zigzag were similar to type I scalp hair. Based on morphological observation and marker gene expression of HF at 11 different embryonic days and six postnatal days, we classified pig HF morphogenesis development from E41 to P45 into three main periods - induction (E37-E41), organogenesis (E41-E85), and cytodifferentiation (>E85). Furthermore, we demonstrated that human and pig share high similarities in HF morphogenesis occurrence time (early/mid gestational) and marker gene expression patterns. Our findings will facilitate the study of human follicle morphogenesis and research on complex hair diseases and offer researchers a suitable model for human hair research.
Collapse
Affiliation(s)
- Yao Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Quan Zou
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bo Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shujuan Li
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yi Wang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tianlong Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Lee YJ, Park SH, Park HR, Lee Y, Kang H, Kim JE. Mesenchymal Stem Cells Antagonize IFN-Induced Proinflammatory Changes and Growth Inhibition Effects via Wnt/β-Catenin and JAK/STAT Pathway in Human Outer Root Sheath Cells and Hair Follicles. Int J Mol Sci 2021; 22:4581. [PMID: 33925529 PMCID: PMC8123883 DOI: 10.3390/ijms22094581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cell therapy (MSCT) has been shown to be a new therapeutic option for treating alopecia areata (AA). Outer root sheath cells (ORSCs) play key roles in maintaining the hair follicle structure and supporting the bulge area. In human ORSCs (hORSCs), the mechanism for this process has not been extensively studied. In this study, we aimed to examine the influence of human hematopoietic mesenchymal stem cells (hHMSCs) in the hORSCs in vitro model of AA and determine the mechanisms controlling efficacy. Interferon-gamma (IFN-γ) pretreatment was used to induce an in vitro model of AA in hORSCs. The effect of MSCT on the viability and migration of hORSCs was examined using co-cultures, the MTT assay, and migration assays. We investigated the expression of molecules related to the Wnt/β-catenin pathway, JAK/STAT pathway, and growth factors in hHMSC-treated hORSCs by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analyses. hHMSCs increased hORSC viability and migration when they were co-cultured. hHMSCs reverted IFN-γ-induced expression-including NLRP3, ASC, caspase-1, CXCL-9 through 11, IL-1β, and IL-15-and upregulated several growth factors and hair stem cell markers. hHMSCs activated several molecules in the Wnt/β-catenin signaling pathway, such as in the Wnt families, β-catenin, phosphorylated GSK-3β and cyclin D1, and suppressed the expression of DKK1 induced by IFN-γ in hORSCs. hHMSCs suppressed the phosphorylation of JAK1 to 3, STAT1, and STAT3 compared to the controls and IFN-γ-pretreated hORSCs. These results demonstrate that hHMSCs increased hORSC viability and migration in the in vitro AA model. Additionally, MSCT definitely stimulated anagen survival and hair growth in an HF organ culture model. MSCT appeared to be associated with the Wnt/β-catenin and JAK/STAT pathways in hORSCs.
Collapse
Affiliation(s)
- Yu-Jin Lee
- Department of Dermatology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Korea; (Y.-J.L.); (S.-H.P.); (H.-R.P.); (H.K.)
| | - Song-Hee Park
- Department of Dermatology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Korea; (Y.-J.L.); (S.-H.P.); (H.-R.P.); (H.K.)
| | - Hye-Ree Park
- Department of Dermatology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Korea; (Y.-J.L.); (S.-H.P.); (H.-R.P.); (H.K.)
| | - Young Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon 35015, Korea;
| | - Hoon Kang
- Department of Dermatology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Korea; (Y.-J.L.); (S.-H.P.); (H.-R.P.); (H.K.)
| | - Jung-Eun Kim
- Department of Dermatology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Korea; (Y.-J.L.); (S.-H.P.); (H.-R.P.); (H.K.)
| |
Collapse
|
10
|
Purba TS, Berriche L, Paus R. Compartmentalised metabolic programmes in human anagen hair follicles: New targets to modulate epithelial stem cell behaviour, keratinocyte proliferation and hair follicle immune status? Exp Dermatol 2021; 30:645-651. [PMID: 33548088 DOI: 10.1111/exd.14300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/12/2021] [Accepted: 02/02/2021] [Indexed: 01/09/2023]
Abstract
Human scalp hair follicles (HF) preferentially engage in glycolysis followed by lactate production in the presence of oxygen (i.e. the Warburg effect). Through the spatiotemporally controlled expression of key metabolic proteins, we hypothesise that the Warburg effect and other HF metabolic programmes are compartmentalised by region in order to regulate regional cell fate and phenotypes, such as epithelial stem cell quiescence in the bulge or keratinocyte proliferation in the hair matrix. We further propose that metabolic conditions in the HF are organised in accordance with the lactate shuttle, hypothesised to occur in other tissue systems and tumours, but never before described in the HF. Specifically, we argue that lactate is produced and exported by glycolytic GLUT1+ lower outer root sheath (ORS) keratinocytes. We further propose that lactate is then utilised by neighbouring highly proliferative matrix keratinocytes to fuel oxidative metabolism via MCT1-mediated uptake. Furthermore, as lactate has been described to be immunomodulatory, its production and accumulation could enhance immune tolerance in the HF bulb. Here we delineate how to experimentally probe this hypothesis, define major open questions and present preliminary immunohistological evidence in support of metabolic compartmentalisation and lactate shuttling. Overall, we argue that basic and translational hair research needs to rediscover the importance of lactate in human HF biology, well beyond its recognised role in murine HF epithelial stem cells, and should explore how HF metabolism can be therapeutically targeted to modulate hair growth and the immunological HF microenvironment as a novel strategy for managing hair loss disorders.
Collapse
Affiliation(s)
- Talveen S Purba
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Leïla Berriche
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK.,Claude Bernard Lyon 1, Lyon, France
| | - Ralf Paus
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK.,Monasterium Laboratory, Münster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
11
|
Sugawara K, Zákány N, Tiede S, Purba T, Harries M, Tsuruta D, Bíró T, Paus R. Human epithelial stem cell survival within their niche requires "tonic" cannabinoid receptor 1-signalling-Lessons from the hair follicle. Exp Dermatol 2021; 30:479-493. [PMID: 33523535 DOI: 10.1111/exd.14294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/17/2020] [Accepted: 01/06/2021] [Indexed: 12/23/2022]
Abstract
The endocannabinoid system (ECS) regulates multiple aspects of human epithelial physiology, including inhibition/stimulation of keratinocyte proliferation/apoptosis, respectively. Yet, how the ECS impacts on human adult epithelial stem cell (eSC) functions remains unknown. Scalp hair follicles (HFs) offer a clinically relevant, prototypic model system for studying this directly within the native human stem cell niche. Here, we show in organ-cultured human HFs that, unexpectedly, selective activation of cannabinoid receptor-1 (CB1)-mediated signalling via the MAPK (MEK/Erk 1/2) and Akt pathways significantly increases the number and proliferation of cytokeratin CK15+ or CK19+ human HF bulge eSCs in situ, and enhances CK15 promoter activity in situ. In striking contrast, CB1-stimulation promotes apoptosis in the differentiated progeny of these eSCs (CK6+ HF keratinocytes). Instead, intrafollicular CB1 gene knockdown or CB1 antagonist treatment significantly reduces human HF eSCs numbers and stimulates their apoptosis, while CB1 knockout mice exhibit a reduced bulge eSCs pool in vivo. This identifies "tonic" CB1 signalling as a required survival stimulus for adult human HF eSCs within their niche. This novel concept must be taken into account whenever the human ECS is targeted therapeutically.
Collapse
Affiliation(s)
- Koji Sugawara
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | - Stephan Tiede
- Department of Biochemistry, Children's Hospital, University of Hamburg, Hamburg, Germany
| | - Talveen Purba
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester, MAHSC, NIHR Biomedical Research Centre, Manchester, UK
| | - Matthew Harries
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester, MAHSC, NIHR Biomedical Research Centre, Manchester, UK.,The Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester, UK
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tamás Bíró
- Monasterium Laboratory, Münster, Germany
| | - Ralf Paus
- Monasterium Laboratory, Münster, Germany.,Centre for Dermatology Research, School of Biological Sciences, University of Manchester, MAHSC, NIHR Biomedical Research Centre, Manchester, UK.,Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
12
|
Jing J, Xu P, Xu JL, Ding YX, Yang XS, Jin XQ, Zhou LJ, Chen YH, Wu XJ, Lu ZF. Expression and localization of Sox10 during hair follicle morphogenesis and induced hair cycle. Int J Med Sci 2021; 18:3498-3505. [PMID: 34522176 PMCID: PMC8436095 DOI: 10.7150/ijms.60728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
Sox transcription factors play many diverse roles during development, including regulating stem cell states, directing differentiation, and influencing the local chromatin landscape. Sox10 has been implicated in the control of stem/progenitor activity and epithelial-mesenchymal transition, yet it has not been studied in relation to the hair follicle cycle or hair follicle stem cell (HFSC) control. To elucidate the role of Sox10 in hair follicle cycle control, we performed immunohistochemical and immunofluorescence analysis of its expression during hair morphogenesis, the postnatal hair cycle, and the depilation-induced murine hair follicle cycle. During hair follicle morphogenesis, Sox10 was expressed in the hair germ and peg. In telogen, we detected nuclear Sox10 in the hair bulge and germ cell cap, where HFSCs reside, while in anagen and catagen, Sox10 was detected in the epithelial portion, such as the strands of keratinocytes, the outer root sheath (ORS) in anagen, and the regressed epithelial strand of hair follicle in catagen. These results suggest that Sox10 may be involved in early hair follicle morphogenesis and postnatal follicular cycling.
Collapse
Affiliation(s)
- Jing Jing
- Department of Dermatology, the second affiliated hospital of Zhejiang University, Hangzhou 310000, China
| | - Peng Xu
- Department of Neuro intensive Care Unit, the second affiliated hospital of Zhejiang University, Hangzhou 310000, China
| | - Jia-Li Xu
- Department of Dermatology, the second affiliated hospital of Zhejiang University, Hangzhou 310000, China
| | - Yu-Xin Ding
- Department of Dermatology, the second affiliated hospital of Zhejiang University, Hangzhou 310000, China
| | - Xiao-Shuang Yang
- Department of Dermatology, the second affiliated hospital of Zhejiang University, Hangzhou 310000, China
| | - Xiao-Qin Jin
- Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Li-Juan Zhou
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai 200000, China
| | - Yu-Hong Chen
- Department of Dermatology, the second affiliated hospital of Zhejiang University, Hangzhou 310000, China
| | - Xian-Jie Wu
- Department of Dermatology, the second affiliated hospital of Zhejiang University, Hangzhou 310000, China
| | - Zhong-Fa Lu
- Department of Dermatology, the second affiliated hospital of Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
13
|
Ji AL, Rubin AJ, Thrane K, Jiang S, Reynolds DL, Meyers RM, Guo MG, George BM, Mollbrink A, Bergenstråhle J, Larsson L, Bai Y, Zhu B, Bhaduri A, Meyers JM, Rovira-Clavé X, Hollmig ST, Aasi SZ, Nolan GP, Lundeberg J, Khavari PA. Multimodal Analysis of Composition and Spatial Architecture in Human Squamous Cell Carcinoma. Cell 2020; 182:497-514.e22. [PMID: 32579974 PMCID: PMC7391009 DOI: 10.1016/j.cell.2020.05.039] [Citation(s) in RCA: 453] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/09/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
To define the cellular composition and architecture of cutaneous squamous cell carcinoma (cSCC), we combined single-cell RNA sequencing with spatial transcriptomics and multiplexed ion beam imaging from a series of human cSCCs and matched normal skin. cSCC exhibited four tumor subpopulations, three recapitulating normal epidermal states, and a tumor-specific keratinocyte (TSK) population unique to cancer, which localized to a fibrovascular niche. Integration of single-cell and spatial data mapped ligand-receptor networks to specific cell types, revealing TSK cells as a hub for intercellular communication. Multiple features of potential immunosuppression were observed, including T regulatory cell (Treg) co-localization with CD8 T cells in compartmentalized tumor stroma. Finally, single-cell characterization of human tumor xenografts and in vivo CRISPR screens identified essential roles for specific tumor subpopulation-enriched gene networks in tumorigenesis. These data define cSCC tumor and stromal cell subpopulations, the spatial niches where they interact, and the communicating gene networks that they engage in cancer.
Collapse
Affiliation(s)
- Andrew L Ji
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adam J Rubin
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kim Thrane
- Science for Life Laboratory, KTH Royal Institute of Technology, Department of Gene Technology, Tomtebodavägen 23, 171 65 Solna, Sweden
| | - Sizun Jiang
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David L Reynolds
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robin M Meyers
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Margaret G Guo
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Benson M George
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Annelie Mollbrink
- Science for Life Laboratory, KTH Royal Institute of Technology, Department of Gene Technology, Tomtebodavägen 23, 171 65 Solna, Sweden
| | - Joseph Bergenstråhle
- Science for Life Laboratory, KTH Royal Institute of Technology, Department of Gene Technology, Tomtebodavägen 23, 171 65 Solna, Sweden
| | - Ludvig Larsson
- Science for Life Laboratory, KTH Royal Institute of Technology, Department of Gene Technology, Tomtebodavägen 23, 171 65 Solna, Sweden
| | - Yunhao Bai
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bokai Zhu
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aparna Bhaduri
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94122, USA
| | - Jordan M Meyers
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xavier Rovira-Clavé
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - S Tyler Hollmig
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sumaira Z Aasi
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Garry P Nolan
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joakim Lundeberg
- Science for Life Laboratory, KTH Royal Institute of Technology, Department of Gene Technology, Tomtebodavägen 23, 171 65 Solna, Sweden
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
14
|
Sukmawati D, Eryani A, Damayanti L. Silver Sulfadiazine's Effect on Keratin-19 Expression as Stem Cell Marker in Burn Wound Healing. Biomedicine (Taipei) 2020; 10:5-11. [PMID: 33854915 PMCID: PMC7608848 DOI: 10.37796/2211-8039.1014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Burn wounds are one of the causes of cutaneous injury that involve both epidermal and dermal layers of skin. Silver sulfadiazine (SSD) has been widely used to treat burn wounds, however recent studies have found the treatment to have some drawbacks, such as cellular toxicity effects. Cutaneous wound regeneration is known to start from the basal layer of the epidermal epithelial cells, which are enriched with highly proliferative cells. Keratin-19 (K19) is one of the epidermal stem cell biomarkers found in the skin. This study aims to explore the expression of K19 in burn wound tissue and to investigate the effect of SSD on its expression. METHODS We created a burn wound model in Sprague Dawley rats and randomly divided them into control and SSD groups. Wound closure was evaluated (visitrak) overtime series followed by histological evaluation of K19 expression in the wound tissue (immunohistochemistry staining). RESULTS Our model successfully represents full-thickness damage caused by a burn wound. The SSD group showed a faster reduction of wound surface area (wound closure) compared to the control group with the peak at day 18 post wounding (p < 0.05). K19 expression was found in both groups and was distributed on epidermal layers, hair follicles and dermis of granulation tissue showing similar patterns. CONCLUSION Topical application of SSD on burn wounds showed superiority in wound closure and is likely to have no harmful effect on epidermal stem cells. However, further study is required to investigate the effect of silver species on cell viability and toxicity effects during long term treatment.
Collapse
Affiliation(s)
- Dewi Sukmawati
- Department of Histology, Faculty of Medicine Universitas Indonesia, Jln. Salemba Raya No. 6 Jakarta, 10430, Jakarta, Indonesia
| | - Astheria Eryani
- Department of Histology, Faculty of Medicine Tarumanagara University, Jln. Letjen S. Parman No.1, Tomang, Grogol Petamburan, Jakarta, 11440, Indonesia
| | - Lia Damayanti
- Department of Histology, Faculty of Medicine Universitas Indonesia, Jln. Salemba Raya No. 6 Jakarta, 10430, Jakarta, Indonesia
| |
Collapse
|
15
|
Purba TS, Ng'andu K, Brunken L, Smart E, Mitchell E, Hassan N, O'Brien A, Mellor C, Jackson J, Shahmalak A, Paus R. CDK4/6 inhibition mitigates stem cell damage in a novel model for taxane-induced alopecia. EMBO Mol Med 2019; 11:e11031. [PMID: 31512803 PMCID: PMC6783643 DOI: 10.15252/emmm.201911031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 01/29/2023] Open
Abstract
Taxanes are a leading cause of severe and often permanent chemotherapy‐induced alopecia. As the underlying pathobiology of taxane chemotherapy‐induced alopecia remains poorly understood, we investigated how paclitaxel and docetaxel damage human scalp hair follicles in a clinically relevant ex vivo organ culture model. Paclitaxel and docetaxel induced massive mitotic defects and apoptosis in transit amplifying hair matrix keratinocytes and within epithelial stem/progenitor cell‐rich outer root sheath compartments, including within Keratin 15+ cell populations, thus implicating direct damage to stem/progenitor cells as an explanation for the severity and permanence of taxane chemotherapy‐induced alopecia. Moreover, by administering the CDK4/6 inhibitor palbociclib, we show that transit amplifying and stem/progenitor cells can be protected from paclitaxel cytotoxicity through G1 arrest, without premature catagen induction and additional hair follicle damage. Thus, the current study elucidates the pathobiology of taxane chemotherapy‐induced alopecia, highlights the paramount importance of epithelial stem/progenitor cell‐protective therapy in taxane‐based oncotherapy, and provides preclinical proof‐of‐principle in a healthy human (mini‐) organ that G1 arrest therapy can limit taxane‐induced tissue damage.
Collapse
Affiliation(s)
- Talveen S Purba
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Kayumba Ng'andu
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Lars Brunken
- Monasterium Laboratory - Skin & Hair Research Solutions GmbH, Münster, Germany
| | - Eleanor Smart
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Ellen Mitchell
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Nashat Hassan
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Aaron O'Brien
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Charlotte Mellor
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Jennifer Jackson
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | | | - Ralf Paus
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK.,Monasterium Laboratory - Skin & Hair Research Solutions GmbH, Münster, Germany.,Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
16
|
Li S, Zheng X, Nie Y, Chen W, Liu Z, Tao Y, Hu X, Hu Y, Qiao H, Qi Q, Pei Q, Cai D, Yu M, Mou C. Defining Key Genes Regulating Morphogenesis of Apocrine Sweat Gland in Sheepskin. Front Genet 2019; 9:739. [PMID: 30761184 PMCID: PMC6363705 DOI: 10.3389/fgene.2018.00739] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 12/22/2018] [Indexed: 01/04/2023] Open
Abstract
The apocrine sweat gland is a unique skin appendage in humans compared to mouse and chicken models. The absence of apocrine sweat glands in chicken and murine skin largely restrains further understanding of the complexity of human skin biology and skin diseases, like hircismus. Sheep may serve as an additional system for skin appendage investigation owing to the distributions and histological similarities between the apocrine sweat glands of sheep trunk skin and human armpit skin. To understand the molecular mechanisms underlying morphogenesis of apocrine sweat glands in sheepskin, transcriptome analyses were conducted to reveal 1631 differentially expressed genes that were mainly enriched in three functional groups (cellular component, molecular function and biological process), particularly in gland, epithelial, hair follicle and skin development. There were 7 Gene Ontology (GO) terms enriched in epithelial cell migration and morphogenesis of branching epithelium that were potentially correlated with the wool follicle peg elongation. An additional 5 GO terms were enriched in gland morphogenesis (20 genes), gland development (42 genes), salivary gland morphogenesis and development (8 genes), branching involved in salivary gland morphogenesis (6 genes) and mammary gland epithelial cell differentiation (4 genes). The enriched gland-related genes and two Kyoto Encyclopedia of Genes and Genomes pathway genes (WNT and TGF-β) were potentially involved in the induction of apocrine sweat glands. Genes named BMPR1A, BMP7, SMAD4, TGFB3, WIF1, and WNT10B were selected to validate transcript expression by qRT-PCR. Immunohistochemistry was performed to localize markers for hair follicle (SOX2), skin fibroblast (PDGFRB), stem cells (SOX9) and BMP signaling (SMAD5) in sheepskin. SOX2 and PDGFRB were absent in apocrine sweat glands. SOX9 and SMAD5 were both observed in precursor cells of apocrine sweat glands and later in gland ducts. These results combined with the upregulation of BMP signaling genes indicate that apocrine sweat glands were originated from outer root sheath of primary wool follicle and positively regulated by BMP signaling. This report established the primary network regulating early development of apocrine sweat glands in sheepskin and will facilitate the further understanding of histology and pathology of apocrine sweat glands in human and companion animal skin.
Collapse
Affiliation(s)
- Shaomei Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinting Zheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yangfan Nie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenshuo Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhiwei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yingfeng Tao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuewen Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yong Hu
- Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| | - Haisheng Qiao
- Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| | - Quanqing Qi
- Sanjiaocheng Sheep Breeding Farm, Haibei, China
| | | | - Danzhuoma Cai
- Animal Husbandry and Veterinary Station, Haixi, China
| | - Mei Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunyan Mou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Li B, Hu W, Ma K, Zhang C, Fu X. Are hair follicle stem cells promising candidates for wound healing? Expert Opin Biol Ther 2019; 19:119-128. [PMID: 30577700 DOI: 10.1080/14712598.2019.1559290] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION With the continued focus on in-depth investigations of hair follicle stem cells (HFSCs), the role of HFSCs in wound healing has attracted increasing attention from researchers. This review may afford meaningful implications for HFSC treatment of wounds. AREAS COVERED We present the properties of HFSCs, analyze the possibility of HFSCs in wound healing, and sum up the recent studies into wound repair with HFSCs. The details of HFSCs in wound healing have been discussed. The possible mechanisms of wound healing with HFSCs have been elaborated. Additionally, the factors that influence HFSCs in wound healing are also summarized. EXPERT OPINION Hair follicle stem cells are promising sources for wound healing. However, a further understanding of human HFSCs and the safety use of HFSCs in clinical practice still remain in relative infancy.
Collapse
Affiliation(s)
- Bingmin Li
- a Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science , Chinese PLA General Hospital , Beijing , People's Republic of China.,b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| | - Wenzhi Hu
- a Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science , Chinese PLA General Hospital , Beijing , People's Republic of China.,b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| | - Kui Ma
- a Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science , Chinese PLA General Hospital , Beijing , People's Republic of China.,b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| | - Cuiping Zhang
- b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| | - Xiaobing Fu
- a Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science , Chinese PLA General Hospital , Beijing , People's Republic of China.,b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| |
Collapse
|
18
|
Narisawa Y, Inoue T, Nagase K. Evidence of proliferative activity in human Merkel cells: implications in the histogenesis of Merkel cell carcinoma. Arch Dermatol Res 2018; 311:37-43. [PMID: 30460510 DOI: 10.1007/s00403-018-1877-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/25/2018] [Accepted: 11/11/2018] [Indexed: 10/27/2022]
Abstract
The cellular origin of Merkel cell carcinoma (MCC) is controversial. We previously hypothesized that MCC originates from hair follicle stem cells or Merkel cell (MC) progenitors residing within the hair follicle bulge. Examination of three cases of combined MCC led to the unexpected discovery that numerous keratin 20 (CK20)-positive MCs within the squamous cell carcinoma (SCC) component of combined MCC appeared morphologically normal with dendritic and oval shapes. Moreover, one extremely rare case of combined SCC and MCC showed both intra-epidermal and dermal MCCs. These three cases represent the first documentation of MC hyperplasia in MCC, besides various benign follicular neoplasms associated with MC hyperplasia. Therefore, to elucidate the proliferating potential of MCs and their histogenetic relationship with MCCs, we further investigated these cases based on pathological observations. We identified numerous cells co-expressing CK20 and the proliferation marker Ki-67, identical to the morphological and immunohistochemical features of normal MCs. This finding indicated that MCs can no longer be considered as pure post-mitotic cells. Instead, they have proliferative potential under specific conditions in the diseased or wounded skin, or adjacent to various skin tumors, including MCC. Intimate co-existence of two malignant cell components composed of intradermal and intra-epidermal MCCs, with the proliferation of normal-appearing MCs in the same lesion, lends support to the hypothesis that MCs and MCC cells are derived from MC progenitors residing within the hair follicle bulge. Specifically, MCCs are derived from transformed MC progenitors with potential for dual-directional differentiation towards neuroendocrine and epithelial lineages.
Collapse
Affiliation(s)
- Yutaka Narisawa
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, 849-8501, Japan.
| | - Takuya Inoue
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Kotaro Nagase
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| |
Collapse
|
19
|
Nicu C, Pople J, Bonsell L, Bhogal R, Ansell DM, Paus R. A guide to studying human dermal adipocytes in situ. Exp Dermatol 2018; 27:589-602. [DOI: 10.1111/exd.13549] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Carina Nicu
- Centre for Dermatology Research; The University of Manchester; Manchester UK
- NIHR Manchester Biomedical Research Centre; Manchester Academic Health Science Centre; Manchester UK
| | | | - Laura Bonsell
- Centre for Dermatology Research; The University of Manchester; Manchester UK
- NIHR Manchester Biomedical Research Centre; Manchester Academic Health Science Centre; Manchester UK
| | | | - David M. Ansell
- Centre for Dermatology Research; The University of Manchester; Manchester UK
- NIHR Manchester Biomedical Research Centre; Manchester Academic Health Science Centre; Manchester UK
| | - Ralf Paus
- Centre for Dermatology Research; The University of Manchester; Manchester UK
- NIHR Manchester Biomedical Research Centre; Manchester Academic Health Science Centre; Manchester UK
- Department of Dermatology and Cutaneous Surgery; Miller School of Medicine; University of Miami; Miami FL USA
| |
Collapse
|
20
|
Poblet E, Jimenez F, Escario-Travesedo E, Hardman J, Hernández-Hernández I, Agudo-Mena J, Cabrera-Galvan J, Nicu C, Paus R. Eccrine sweat glands associate with the human hair follicle within a defined compartment of dermal white adipose tissue. Br J Dermatol 2018; 178:1163-1172. [DOI: 10.1111/bjd.16436] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2018] [Indexed: 12/20/2022]
Affiliation(s)
- E. Poblet
- Department of Pathology; Reina Sofía University General Hospital and Murcia University; Murcia Spain
| | - F. Jimenez
- Mediteknia Clinic; University Fernando Pessoa Canarias; Medical Pathology Group; ULPGC; Gran Canaria Spain
| | | | - J.A. Hardman
- Centre for Dermatology Research; University of Manchester; Manchester Academic Health Science Centre & NIHR Manchester Biomedical Research Centre; Manchester U.K
| | - I. Hernández-Hernández
- Mediteknia Clinic; University Fernando Pessoa Canarias; Medical Pathology Group; ULPGC; Gran Canaria Spain
| | - J.L. Agudo-Mena
- Dermatology Department; Albacete University General Hospital; Albacete Spain
| | - J.J. Cabrera-Galvan
- Department of Morphology; University of Las Palmas de Gran Canaria; Gran Canaria Spain
| | - C. Nicu
- Centre for Dermatology Research; University of Manchester; Manchester Academic Health Science Centre & NIHR Manchester Biomedical Research Centre; Manchester U.K
| | - R. Paus
- Centre for Dermatology Research; University of Manchester; Manchester Academic Health Science Centre & NIHR Manchester Biomedical Research Centre; Manchester U.K
| |
Collapse
|
21
|
Divergent proliferation patterns of distinct human hair follicle epithelial progenitor niches in situ and their differential responsiveness to prostaglandin D2. Sci Rep 2017; 7:15197. [PMID: 29123134 PMCID: PMC5680340 DOI: 10.1038/s41598-017-15038-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/20/2017] [Indexed: 12/21/2022] Open
Abstract
Human scalp hair follicles (hHF) harbour several epithelial stem (eHFSC) and progenitor cell sub-populations organised into spatially distinct niches. However, the constitutive cell cycle activity of these niches remains to be characterized in situ. Therefore, the current study has studied these characteristics of keratin 15+ (K15), CD200+ or CD34+ cells within anagen VI hHFs by immunohistomorphometry, using Ki-67 and 5-ethynyl-2'-deoxyuridine (EdU). We quantitatively demonstrate in situ the relative cell cycle inactivity of the CD200+/K15+ bulge compared to other non-bulge CD34+ and K15+ progenitor compartments and found that in each recognized eHFSC/progenitor niche, proliferation associates negatively with eHFSC-marker expression. Furthermore, we also show how prostaglandin D2 (PGD2), which is upregulated in balding scalp, differentially impacts on the proliferation of distinct eHFSC populations. Namely, 24 h organ-cultured hHFs treated with PGD2 displayed reduced Ki-67 expression and EdU incorporation in bulge resident K15+ cells, but not in supra/proximal bulb outer root sheath K15+ progenitors. This study emphasises clear differences between the cell cycle behaviour of spatially distinct stem/progenitor cell niches in the hHF, and demonstrates a possible link between PGD2 and perturbed proliferation dynamics in epithelial stem cells.
Collapse
|
22
|
Brunner MAT, Jagannathan V, Waluk DP, Roosje P, Linek M, Panakova L, Leeb T, Wiener DJ, Welle MM. Novel insights into the pathways regulating the canine hair cycle and their deregulation in alopecia X. PLoS One 2017; 12:e0186469. [PMID: 29065140 PMCID: PMC5655477 DOI: 10.1371/journal.pone.0186469] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/02/2017] [Indexed: 01/20/2023] Open
Abstract
Alopecia X is a hair cycle arrest disorder in Pomeranians. Histologically, kenogen and telogen hair follicles predominate, whereas anagen follicles are sparse. The induction of anagen relies on the activation of hair follicle stem cells and their subsequent proliferation and differentiation. Stem cell function depends on finely tuned interactions of signaling molecules and transcription factors, which are not well defined in dogs. We performed transcriptome profiling on skin biopsies to analyze altered molecular pathways in alopecia X. Biopsies from five affected and four non-affected Pomeranians were investigated. Differential gene expression revealed a downregulation of key regulator genes of the Wnt (CTNNB1, LEF1, TCF3, WNT10B) and Shh (SHH, GLI1, SMO, PTCH2) pathways. In mice it has been shown that Wnt and Shh signaling results in stem cell activation and differentiation Thus our findings are in line with the lack of anagen hair follicles in dogs with Alopecia X. We also observed a significant downregulation of the stem cell markers SOX9, LHX2, LGR5, TCF7L1 and GLI1 whereas NFATc1, a quiescence marker, was upregulated in alopecia X. Moreover, genes coding for enzymes directly involved in the sex hormone metabolism (CYP1A1, CYP1B1, HSD17B14) were differentially regulated in alopecia X. These findings are in agreement with the so far proposed but not yet proven deregulation of the sex hormone metabolism in this disease.
Collapse
Affiliation(s)
- Magdalena A. T. Brunner
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, University of Bern, Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Dominik P. Waluk
- DermFocus, University of Bern, Bern, Switzerland
- Department of Clinical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland
| | - Petra Roosje
- DermFocus, University of Bern, Bern, Switzerland
- Division of Clinical Dermatology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Monika Linek
- AniCura Tierärztliche Spezialisten, Hamburg, Germany
| | - Lucia Panakova
- Clinics of Small Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | - Tosso Leeb
- DermFocus, University of Bern, Bern, Switzerland
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Dominique J. Wiener
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, University of Bern, Bern, Switzerland
| | - Monika M. Welle
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
23
|
Kim JE, Woo YJ, Sohn KM, Jeong KH, Kang H. Wnt/β-catenin and ERK pathway activation: A possible mechanism of photobiomodulation therapy with light-emitting diodes that regulate the proliferation of human outer root sheath cells. Lasers Surg Med 2017; 49:940-947. [PMID: 28944964 DOI: 10.1002/lsm.22736] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Outer root sheath cells (ORSCs) play important roles in maintaining hair follicle structure and provide support for the bulge area. The hair growth promoting effects of photobiomodulation therapy (PBMT) have been reported, but the mechanisms for this in human ORCs (hORSCs) have rarely been studied. OBJECTIVE The aim of this study was to investigate the effect of various wavelengths of light-emitting diode (LED) irradiation on human ORSCs (hORSCs). METHODS LED irradiation effects on hORSC proliferation and migration were examined with MTT assay, BrdU incorporation assay and migration assays. hORSCs were irradiated using four LED wavelengths (415, 525, 660, and 830 nm) with different low energy levels. LED irradiation effects on the expression of molecules associated with the Wnt/β-catenin signaling and ERK pathway, hair stem cell markers, and various growth factors and cytokines in hORSCs were examined with real-time PCR and Western blot assay. The effect of the LED-irradiated hORSCs on cell proliferation of human dermal papilla cells (hDPCs) was examined with co-culture and MTT assay. RESULTS PBMT with LED light variably promoted hORSC proliferation and suppressed cell apoptosis depending on energy level. LED irradiation induced Wnt5a, Axin2, and Lef1 mRNA expression and β-catenin protein expression in hORSCs. Phosphorylation of ERK, c-Jun, and p38 in hORSCs was observed after LED light irradiation, and ERK inhibitor treatment before irradiation reduced ERK and c-Jun phosphorylation. Red light-treated hORSCs showed substantial increase in IL-6, IL-8, TNF-a, IGF-1, TGF-β1, and VEGF mRNA. Light irradiation at 660 and 830 nm projected onto hORSCs accelerated in vitro migration. LED-irradiated hORSCs increased hDPCs proliferation when they were co-cultured. The conditioned medium from LED-irradiated hORSCs was sufficient to stimulate hDPCs proliferation. CONCLUSION These results demonstrate that LED light irradiation induced hORSC proliferation and migration and inhibited apoptosis in vitro. The growth-promoting effects of LEDs on hORSCs appear to be associated with direct stimulation of the Wnt5a/β-catenin and ERK signaling pathway. Lasers Surg. Med. 49:940-947, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jung E Kim
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, 180, Wangsan-ro, Dongdaemun-gu, Seoul, Korea
| | - Young J Woo
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, 180, Wangsan-ro, Dongdaemun-gu, Seoul, Korea
| | - Ki M Sohn
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, 180, Wangsan-ro, Dongdaemun-gu, Seoul, Korea
| | - Kwan H Jeong
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, 180, Wangsan-ro, Dongdaemun-gu, Seoul, Korea
| | - Hoon Kang
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, 180, Wangsan-ro, Dongdaemun-gu, Seoul, Korea
| |
Collapse
|
24
|
Characterisation of cell cycle arrest and terminal differentiation in a maximally proliferative human epithelial tissue: Lessons from the human hair follicle matrix. Eur J Cell Biol 2017; 96:632-641. [PMID: 28413121 DOI: 10.1016/j.ejcb.2017.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 12/31/2022] Open
Abstract
Human hair follicle (HF) growth and hair shaft formation require terminal differentiation-associated cell cycle arrest of highly proliferative matrix keratinocytes. However, the regulation of this complex event remains unknown. CIP/KIP family member proteins (p21CIP1, p27KIP1 and p57KIP2) regulate cell cycle progression/arrest, endoreplication, differentiation and apoptosis. Since they have not yet been adequately characterized in the human HF, we asked whether and where CIP/KIP proteins localise in the human hair matrix and pre-cortex in relation to cell cycle activity and HF-specific epithelial cell differentiation that is marked by keratin 85 (K85) protein expression. K85 expression coincided with loss or reduction in cell cycle activity markers, including in situ DNA synthesis (EdU incorporation), Ki-67, phospho-histone H3 and cyclins A and B1, affirming a post-mitotic state of pre-cortical HF keratinocytes. Expression of CIP/KIP proteins was found abundantly within the proliferative hair matrix, concomitant with a role in cell cycle checkpoint control. p21CIP1, p27KIP1 and cyclin E persisted within post-mitotic keratinocytes of the pre-cortex, whereas p57KIP2 protein decreased but became nuclear. These data imply a supportive role for CIP/KIP proteins in maintaining proliferative arrest, differentiation and anti-apoptotic pathways, promoting continuous hair bulb growth and hair shaft formation in anagen VI. Moreover, post-mitotic hair matrix regions contained cells with enlarged nuclei, and DNA in situ hybridisation showed cells that were >2N in the pre-cortex. This suggests that CIP/KIP proteins might counterbalance cyclin E to control further rounds of DNA replication in a cell population that has a propensity to become tetraploid. These data shed new light on the in situ-biography of human hair matrix keratinocytes on their path of active cell cycling, arrest and terminal differentiation, and showcase the human HF as an excellent, clinically relevant model system for cell cycle physiology research of human epithelial cells within their natural tissue habitat.
Collapse
|
25
|
Purba TS, Brunken L, Hawkshaw NJ, Peake M, Hardman J, Paus R. A primer for studying cell cycle dynamics of the human hair follicle. Exp Dermatol 2016; 25:663-8. [PMID: 27094702 DOI: 10.1111/exd.13046] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2016] [Indexed: 12/28/2022]
Abstract
The cell cycle is of major importance to human hair follicle (HF) biology. Not only is continuously active cell cycling required to facilitate healthy hair growth in anagen VI HFs, but perturbations in the cell cycle are likely to be of significance in HF pathology (i.e. in scarring, non-scarring, chemotherapy-induced and androgenic alopecias). However, cell cycle dynamics of the human hair follicle (HF) are poorly understood in contrast to what is known in mouse. The current Methods Review aims at helping to close this gap by presenting a primer that introduces immunohistological/immunofluorescent techniques to study the cell cycle in the human HF. Moreover, this primer encourages the exploitation of the human HF as a powerful and clinically relevant tool to investigate mammalian cell cycle biology in situ. To achieve this, we describe methods to study markers of general 'proliferation' (nuclei count, Ki-67 expression), apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end labelling, cleaved caspase 3), mitosis (phospho-histone H3, 'pS780'), DNA synthesis (5-ethynyl-2'-deoxyuridine) and cell cycle regulation (cyclins) in the human HF. In addition, we provide specific examples of dual immunolabelling for instructive cell cycle analyses and for investigating the cell cycle behaviour of specific HF keratinocyte subpopulations, such as keratin 15+ stem/progenitor cells.
Collapse
Affiliation(s)
- Talveen S Purba
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Lars Brunken
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.,Department of Dermatology, Venerology and Allergy, Charité University Medicine Berlin, Berlin, Germany
| | - Nathan J Hawkshaw
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Michael Peake
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.,BSc Programme Biological Sciences, University of Huddersfield, Huddersfield, UK
| | - Jonathan Hardman
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Ralf Paus
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.,Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
26
|
Oh JW, Kloepper J, Langan EA, Kim Y, Yeo J, Kim MJ, Hsi TC, Rose C, Yoon GS, Lee SJ, Seykora J, Kim JC, Sung YK, Kim M, Paus R, Plikus MV. A Guide to Studying Human Hair Follicle Cycling In Vivo. J Invest Dermatol 2016; 136:34-44. [PMID: 26763421 PMCID: PMC4785090 DOI: 10.1038/jid.2015.354] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 08/19/2015] [Accepted: 08/24/2015] [Indexed: 12/17/2022]
Abstract
Hair follicles (HFs) undergo lifelong cyclical transformations, progressing through stages of rapid growth (anagen), regression (catagen), and relative "quiescence" (telogen). Given that HF cycling abnormalities underlie many human hair growth disorders, the accurate classification of individual cycle stages within skin biopsies is clinically important and essential for hair research. For preclinical human hair research purposes, human scalp skin can be xenografted onto immunocompromised mice to study human HF cycling and manipulate long-lasting anagen in vivo. Although available for mice, a comprehensive guide on how to recognize different human hair cycle stages in vivo is lacking. In this article, we present such a guide, which uses objective, well-defined, and reproducible criteria, and integrates simple morphological indicators with advanced, (immuno)-histochemical markers. This guide also characterizes human HF cycling in xenografts and highlights the utility of this model for in vivo hair research. Detailed schematic drawings and representative micrographs provide examples of how best to identify human HF stages, even in suboptimally sectioned tissue, and practical recommendations are given for designing human-on-mouse hair cycle experiments. Thus, this guide seeks to offer a benchmark for human hair cycle stage classification, for both hair research experts and newcomers to the field.
Collapse
Affiliation(s)
- Ji Won Oh
- Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea; Department of Immunology, Kyungpook National University School of Medicine, Daegu, Korea; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, California, USA
| | | | - Ewan A Langan
- Department of Dermatology, University of Lübeck, Lübeck, Germany; Comprehensive Centre for Inflammation Research, University of Lübeck, Germany
| | - Yongsoo Kim
- Division of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Joongyeub Yeo
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, California, USA
| | - Min Ji Kim
- Department of Dermatology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Tsai-Ching Hsi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, California, USA
| | - Christian Rose
- Dermatohistologisches Labor Rose/Bartsch, Lübeck, Germany
| | - Ghil Suk Yoon
- Department of Pathology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Seok-Jong Lee
- Department of Dermatology, Kyungpook National University School of Medicine, Daegu, Korea
| | - John Seykora
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jung Chul Kim
- Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea; Department of Immunology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Young Kwan Sung
- Department of Immunology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Moonkyu Kim
- Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea; Department of Immunology, Kyungpook National University School of Medicine, Daegu, Korea.
| | - Ralf Paus
- Dermatology Research Centre, Institute of Inflammation and Repair, University of Manchester, Manchester, UK; Department of Dermatology, University of Münster, Münster, Germany.
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, California, USA.
| |
Collapse
|
27
|
Langan EA, Philpott MP, Kloepper JE, Paus R. Human hair follicle organ culture: theory, application and perspectives. Exp Dermatol 2015; 24:903-11. [DOI: 10.1111/exd.12836] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Ewan A. Langan
- Department of Dermatology; University of Luebeck; Luebeck Germany
- Centre for Cutaneous Research; Blizard Institute; Queen Mary University; London UK
| | - Michael P. Philpott
- Centre for Cutaneous Research; Blizard Institute; Queen Mary University; London UK
| | | | - Ralf Paus
- Dermatology Research Centre; Institute of Inflammation and Repair; University of Manchester; Manchester UK
- Department of Dermatology; University of Muenster; Muenster Germany
| |
Collapse
|
28
|
Brenig B, Duan Y, Xing Y, Ding N, Huang L, Schütz E. Porcine SOX9 Gene Expression Is Influenced by an 18 bp Indel in the 5'-Untranslated Region. PLoS One 2015; 10:e0139583. [PMID: 26430891 PMCID: PMC4592210 DOI: 10.1371/journal.pone.0139583] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/15/2015] [Indexed: 12/03/2022] Open
Abstract
Sex determining region Y-box 9 (SOX9) is an important regulator of sex and skeletal development and is expressed in a variety of embryonal and adult tissues. Loss or gain of function resulting from mutations within the coding region or chromosomal aberrations of the SOX9 locus lead to a plethora of detrimental phenotypes in humans and animals. One of these phenotypes is the so-called male-to-female or female-to-male sex-reversal which has been observed in several mammals including pig, dog, cat, goat, horse, and deer. In 38,XX sex-reversal French Large White pigs, a genome-wide association study suggested SOX9 as the causal gene, although no functional mutations were identified in affected animals. However, besides others an 18bp indel had been detected in the 5′-untranslated region of the SOX9 gene by comparing affected animals and controls. We have identified the same indel (Δ18) between position +247bp and +266bp downstream the transcription start site of the porcine SOX9 gene in four other pig breeds; i.e., German Large White, Laiwu Black, Bamei, and Erhualian. These animals have been genotyped in an attempt to identify candidate genes for porcine inguinal and/or scrotal hernia. Because the 18bp segment in the wild type 5′-UTR harbours a highly conserved cAMP-response element (CRE) half-site, we analysed its role in SOX9 expression in vitro. Competition and immunodepletion electromobility shift assays demonstrate that the CRE half-site is specifically recognized by CREB. Both binding of CREB to the wild type as well as the absence of the CRE half-site in Δ18 reduced expression efficiency in HEK293T, PK–15, and ATDC5 cells significantly. Transfection experiments of wild type and Δ18 SOX9 promoter luciferase constructs show a significant reduction of RNA and protein levels depending on the presence or absence of the 18bp segment. Hence, the data presented here demonstrate that the 18bp indel in the porcine SOX9 5′-UTR is of functional importance and may therefore indeed be a causative variation in SOX9 associated traits.
Collapse
Affiliation(s)
- Bertram Brenig
- Institute of Veterinary Medicine, Georg-August-University, Burckhardtweg 2, D-37077, Göttingen, Germany
- * E-mail:
| | - Yanyu Duan
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045, Nanchang, China
| | - Yuyun Xing
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045, Nanchang, China
| | - Nengshui Ding
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045, Nanchang, China
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045, Nanchang, China
| | - Ekkehard Schütz
- Institute of Veterinary Medicine, Georg-August-University, Burckhardtweg 2, D-37077, Göttingen, Germany
| |
Collapse
|
29
|
N1-methylspermidine, a stable spermidine analog, prolongs anagen and regulates epithelial stem cell functions in human hair follicles. Arch Dermatol Res 2015. [DOI: 10.1007/s00403-015-1592-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|