1
|
Morin L, Zimmermann F, Lelong M, Ferrant J, Hemon P, Patry S, Le Tallec E, Uwambayinema F, Yakoub Y, Dumontet E, Huaux F, Lescoat A, Lecureur V. Pulmonary and systemic effects of inhaled crystalline silica in the HOCl-induced mouse model of systemic sclerosis: An experimental model of Erasmus syndrome. Clin Immunol 2024; 271:110423. [PMID: 39732270 DOI: 10.1016/j.clim.2024.110423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/22/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
Occupational exposure to crystalline silica is etiologically linked to an increased incidence of systemic sclerosis (SSc), also called Erasmus syndrome. The underlying mechanisms of silica-related SSc are still poorly understood. We demonstrated that early and repeated silica exposure contribute to the severity of SSc symptoms in the hypochloric acid (HOCl)-induced SSc mouse model. Analyses of lung samples from silica-exposed HOCl mice revealed a slightly aggravation of fibrosis and an exacerbation of inflammation, notably an additionally overexpression of NLRP3 inflammasome genes and a recruitment of classical monocytes, macrophages, dendritic cells and neutrophils. Silica exposure showed systemic effects in SSc mouse model with an elevated circulating classical monocyte counts and an overexpression of inflammatory genes in the skin. Silica-exposed SSc patients also had more severe skin disease than unexposed patients. Overall, we provide new insights on immune cell populations and related pathways in early pathogenic mechanisms contributing to HOCl-induced and silica-related SSc.
Collapse
Affiliation(s)
- Laura Morin
- Univ Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - François Zimmermann
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000 Rennes, France
| | - Marie Lelong
- Univ Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Juliette Ferrant
- Centre Hospitalier Universitaire de Rennes, Pôle Biologie, Rennes, France; Unité Mixte de Recherche (UMR)1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
| | - Patrice Hemon
- LBAI, UMR1227, University of Brest, INSERM, Brest, France
| | - Salomé Patry
- Univ Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Erwan Le Tallec
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000 Rennes, France
| | - Francine Uwambayinema
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institute de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Yousof Yakoub
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institute de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Erwan Dumontet
- Centre Hospitalier Universitaire de Rennes, Pôle Biologie, Rennes, France; Unité Mixte de Recherche (UMR)1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
| | - François Huaux
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institute de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Alain Lescoat
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000 Rennes, France
| | - Valérie Lecureur
- Univ Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
2
|
Le Maître M, Guerrier T, Collet A, Derhourhi M, Meneboo JP, Toussaint B, Bonnefond A, Villenet C, Sebda S, Bongiovanni A, Tardivel M, Simon M, Jendoubi M, Daunou B, Largy A, Figeac M, Dubucquoi S, Launay D. Characteristics and impact of infiltration of B-cells from systemic sclerosis patients in a 3D healthy skin model. Front Immunol 2024; 15:1373464. [PMID: 39185406 PMCID: PMC11341436 DOI: 10.3389/fimmu.2024.1373464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction In systemic sclerosis (SSc), B-cells are activated and present in the skin and lung of patients where they can interact with fibroblasts. The precise impact and mechanisms of the interaction of B-cells and fibroblasts at the tissular level are poorly studied. Objective We investigated the impact and mechanisms of B-cell/fibroblast interactions in cocultures between B-cells from patients with SSc and 3-dimensional reconstituted healthy skin model including fibroblasts, keratinocytes and extracellular matrix. Methods The quantification and description of the B-cell infiltration in 3D cocultures were performed using cells imagery strategy and cytometry. The effect of coculture on the transcriptome of B-cells and fibroblasts was studied with bulk and single-cell RNA sequencing approaches. The mechanisms of this interaction were studied by blocking key cytokines like IL-6 and TNF. Results We showed a significant infiltration of B-cells in the 3D healthy skin model. The amount but not the depth of infiltration was higher with B-cells from SSc patients and with activated B-cells. B-cell infiltrates were mainly composed of naïve and memory cells, whose frequencies differed depending on B-cells origin and activation state: infiltrated B-cells from patients with SSc showed an activated profile and an overexpression of immunoglobulin genes compared to circulating B-cells before infiltration. Our study has shown for the first time that activated B-cells modified the transcriptomic profile of both healthy and SSc fibroblasts, toward a pro-inflammatory (TNF and IL-17 signaling) and interferon profile, with a key role of the TNF pathway. Conclusion B-cells and 3D skin cocultures allowed the modelization of B-cells infiltration in tissues observed in SSc, uncovering an influence of the underlying disease and the activation state of B-cells. We showed a pro-inflammatory effect on skin fibroblasts and pro-activation effect on infiltrating B-cells during coculture. This reinforces the role of B-cells in SSc and provide potential targets for future therapeutic approach in this disease.
Collapse
Affiliation(s)
- Mathilde Le Maître
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Thomas Guerrier
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Aurore Collet
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
- CHU Lille, Institut d’Immunologie, Pôle de Biologie Pathologie Génétique, Lille, France
| | - Mehdi Derhourhi
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- Université de Lille, Lille, France
| | - Jean-Pascal Meneboo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, Lille, France
| | - Bénédicte Toussaint
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- Université de Lille, Lille, France
| | - Amélie Bonnefond
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- Université de Lille, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Céline Villenet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, Lille, France
| | - Shéhérazade Sebda
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, Lille, France
| | - Antonino Bongiovanni
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, Lille, France
| | - Meryem Tardivel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, Lille, France
| | - Myriam Simon
- Service de Médecine Interne et d’Immunologie Clinique, Centre de Référence Des Maladies Auto-Immunes et Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), CHU Lille, Lille, France
| | - Manel Jendoubi
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Blanche Daunou
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Alexis Largy
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Martin Figeac
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, Lille, France
| | - Sylvain Dubucquoi
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
- CHU Lille, Institut d’Immunologie, Pôle de Biologie Pathologie Génétique, Lille, France
| | - David Launay
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
- Service de Médecine Interne et d’Immunologie Clinique, Centre de Référence Des Maladies Auto-Immunes et Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), CHU Lille, Lille, France
| |
Collapse
|
3
|
Muecklich S, Shehzad K, Tiemann J, Li L, Leson S, Nelson PJ, Jennemann R, Klein M, Becker C, Sandhoff R, Steinbrink K, Raker VK. DKK3 Promotes Oxidative Stress‒Induced Fibroblast Activity. J Invest Dermatol 2022; 143:1088-1090.e2. [PMID: 36539030 DOI: 10.1016/j.jid.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Sabrina Muecklich
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| | - Khuram Shehzad
- Medical Clinic IV, Clinical Biochemistry Group, Nephrology Center, Ludwig Maximilian University, Munich, Germany
| | - Jessica Tiemann
- Department of Dermatology, University Hospital Muenster, Muenster, Germany
| | - Li Li
- Division of Molecular Radio-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sonja Leson
- Department of Dermatology, University Hospital Muenster, Muenster, Germany
| | - Peter J Nelson
- Medical Clinic IV, Clinical Biochemistry Group, Nephrology Center, Ludwig Maximilian University, Munich, Germany
| | - Richard Jennemann
- Research Group Lipid Pathobiochemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center Mainz, Mainz, Germany
| | - Christian Becker
- Department of Dermatology, University Hospital Muenster, Muenster, Germany; Cells in Motion Interfaculty Center, University of Muenster, Muenster, Germany
| | - Roger Sandhoff
- Division of Molecular Radio-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kerstin Steinbrink
- Department of Dermatology, University Hospital Muenster, Muenster, Germany; Cells in Motion Interfaculty Center, University of Muenster, Muenster, Germany
| | - Verena K Raker
- Department of Dermatology, University Hospital Muenster, Muenster, Germany.
| |
Collapse
|
4
|
Mohammadi M, Kohan L, Saeidi M, Saghaeian Jazi M, Mohammadi S. The antifibrotic effects of naringin in a hypochlorous acid (HOCl)-induced mouse model of skin fibrosis. Immunopharmacol Immunotoxicol 2022; 44:704-711. [PMID: 35583493 DOI: 10.1080/08923973.2022.2077217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/07/2022] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Fibrosis is a chronic inflammation caused by the loss of innate compensational mechanisms. Naringin (NR) is a flavonoid with antineoplastic and anti-inflammatory effects. Here, we aimed to investigate the antifibrotic effects of NR and underlying mechanisms in a Hypochlorous acid (HOCl)-induced mouse model of skin fibrosis. MATERIALS AND METHODS A total of 24 six-week-old female BALB/c mice were randomly allocated into five groups: HOCl, Sham, PBS, HOCl + NR and DMSO and selected skin regions were treated for 6 weeks, until sacrifice. The histopathologic and collagenesis of skin resections were analyzed using H&E and PR staining. The mRNA levels of COL1, COL3 and αSMA genes were quantified. Serum samples were also used to evaluate TGF-β levels and LDH activity. RESULTS HOCl could increase the relative collagen content, while NR administration on HOCl-treated biopsies decreased collagenesis. COL1, COL3 and αSMA mRNA levels were significantly increased among HOCl-treated skin samples, while NR treatment could decrease these mRNA levels of genes to the extent equal to the levels in the Sham group. Similarly, Naringin-treated samples could decrease TGF-β levels. CONCLUSIONS We demonstrated that Naringin could exert protective effects against fibrotic complications of HOCL in skin tissue in vivo, by reducing the collagenesis and decreasing the levels of fibrosis-associated genes.
Collapse
Affiliation(s)
- Mahmoud Mohammadi
- Department of Biology, Islamic Azad University, Arsanjan Branch, Arsanjan, Iran
| | - Leila Kohan
- Department of Biology, Islamic Azad University, Arsanjan Branch, Arsanjan, Iran
| | - Mohsen Saeidi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Medical Immunology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Marie Saghaeian Jazi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Saeed Mohammadi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
5
|
Asano Y. Insights Into the Preclinical Models of SSc. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2021. [DOI: 10.1007/s40674-021-00187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Higashioka K, Kikushige Y, Ayano M, Kimoto Y, Mitoma H, Kikukawa M, Akahoshi M, Arinobu Y, Horiuchi T, Akashi K, Niiro H. Generation of a novel CD30 + B cell subset producing GM-CSF and its possible link to the pathogenesis of systemic sclerosis. Clin Exp Immunol 2020; 201:233-243. [PMID: 32538493 PMCID: PMC7419935 DOI: 10.1111/cei.13477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/26/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022] Open
Abstract
Systemic sclerosis (SSc) is a T helper type 2 (Th2)-associated autoimmune disease characterized by vasculopathy and fibrosis. Efficacy of B cell depletion therapy underscores antibody-independent functions of B cells in SSc. A recent study showed that the Th2 cytokine interleukin (IL)-4 induces granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing effector B cells (GM-Beffs ) in humans. In this study, we sought to elucidate the generation mechanism of GM-Beffs and also determine a role of this subset in SSc. Among Th-associated cytokines, IL-4 most significantly facilitated the generation of GM-Beffs within memory B cells in healthy controls (HCs). In addition, the profibrotic cytokine transforming growth factor (TGF)-β further potentiated IL-4- and IL-13-induced GM-Beffs . Of note, tofacitinib, a Janus kinase (JAK) inhibitor, inhibited the expression of GM-CSF mRNA and protein in memory B cells induced by IL-4, but not by TGF-β. GM-Beffs were enriched within CD20+ CD30+ CD38-/low cells, a distinct population from plasmablasts, suggesting that GM-Beffs exert antibody-independent functions. GM-Beffs were also enriched in a CD30+ fraction of freshly isolated B cells. GM-Beffs generated under Th2 conditions facilitated the differentiation from CD14+ monocytes to DC-SIGN+ CD1a+ CD14- CD86+ cells, which significantly promoted the proliferation of naive T cells. CD30+ GM-Beffs were more pronounced in patients with SSc than in HCs. A subpopulation of SSc patients with the diffuse type and concomitant interstitial lung disease exhibited high numbers of GM-Beffs . Together, these findings suggest that human GM-Beffs are enriched in a CD30+ B cell subset and play a role in the pathogenesis of SSc.
Collapse
Affiliation(s)
- K. Higashioka
- Department of Medicine and Biosystemic ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Y. Kikushige
- Department of Medicine and Biosystemic ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - M. Ayano
- Department of Medicine and Biosystemic ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Y. Kimoto
- Department of Internal MedicineKyushu University Beppu HospitalTsurumiharaBeppuOitaJapan
| | - H. Mitoma
- Department of Medicine and Biosystemic ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - M. Kikukawa
- Department of Medical EducationFaculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - M. Akahoshi
- Department of Medicine and Biosystemic ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Y. Arinobu
- Department of Medicine and Biosystemic ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - T. Horiuchi
- Department of Internal MedicineKyushu University Beppu HospitalTsurumiharaBeppuOitaJapan
| | - K. Akashi
- Department of Medicine and Biosystemic ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - H. Niiro
- Department of Medical EducationFaculty of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
7
|
Intervention of Inflammatory Monocyte Activity Limits Dermal Fibrosis. J Invest Dermatol 2019; 139:2144-2153. [PMID: 31039360 DOI: 10.1016/j.jid.2019.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 11/20/2022]
Abstract
Monocytes and monocyte-derived cells are important players in the initiation, progression, and resolution of inflammatory skin reactions. As inflammation is a prerequisite for fibrosis development, we focused on the role of monocytes in cutaneous fibrosis, the clinical hallmark of patients suffering from systemic sclerosis. Investigating the function of monocytes in reactive oxygen species-induced dermal fibrosis, we observed that early monocyte depletion partially reduced disease severity. Low numbers of inflammatory Ly6Chigh monocytes, as well as inhibition of CCR2 and CCL2 in wild type animals by a specific L-RNA aptamer, mitigated disease parameters, indicating a pivotal role for CCR2+ inflammatory monocytes and the CCR2/CCL2 axis in fibrosis development. Of note, mice lacking splenic reservoirs failed to recruit monocytes to the skin and developed less fibrosis. Furthermore, enforced monocyte conversion into noninflammatory, patrolling Ly6Clow monocytes by a nuclear receptor Nur77-agonist also resulted in significantly impaired cutaneous inflammation and dermal fibrosis. Most evident, pronounced monocyte conversion in interferon stimulated gene 12-deficient mice with pronounced nuclear Nur77 signaling completely protected from dermal fibrosis. Our study shows that inflammatory monocytes that are recruited from splenic reservoirs play a key role in the development of skin fibrosis and can be therapeutically challenged by forced conversion via the Nur77/interferon stimulated gene 12 axis.
Collapse
|
8
|
Pemmari A, Leppänen T, Paukkeri EL, Scotece M, Hämäläinen M, Moilanen E. Attenuating Effects of Nortrachelogenin on IL-4 and IL-13 Induced Alternative Macrophage Activation and on Bleomycin-Induced Dermal Fibrosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13405-13413. [PMID: 30458613 DOI: 10.1021/acs.jafc.8b03023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Excessive alternative macrophage activation contributes to fibrosis. We studied the effects of nortrachelogenin, the major lignan component of Pinus sylvestris knot extract, on alternative (M2) macrophage activation. J774 murine and THP-1 human macrophages were cultured with IL-4+IL-13 to induce alternative activation, together with the extract and its components. Effects of nortrachelogenin were also studied in bleomycin-induced murine dermal fibrosis model. Knot extract significantly decreased the expression of alternative activation markers-arginase 1 in murine macrophages (97.4 ± 1.3% inhibition at 30 μg/mL) and CCL13 and PDGF in human macrophages-as did nortrachelogenin (94.9 ± 2.4% inhibition of arginase 1 at 10 μM). Nortrachelogenin also decreased PPARγ expression but had no effect on STAT6 phosphorylation. In vivo, nortrachelogenin reduced bleomycin-induced increase in skin thickness as well as the expression of collagens COL1A1, COL1A2, and COL3A1 (all by >50%). In conclusion, nortrachelogenin suppressed IL-4+IL-13-induced alternative macrophage activation and ameliorated bleomycin-induced fibrosis, indicating therapeutic potential in fibrosing conditions.
Collapse
Affiliation(s)
- Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology , Tampere University and Tampere University Hospital , Tampere , Finland
| | - Tiina Leppänen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology , Tampere University and Tampere University Hospital , Tampere , Finland
| | - Erja-Leena Paukkeri
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology , Tampere University and Tampere University Hospital , Tampere , Finland
| | - Morena Scotece
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology , Tampere University and Tampere University Hospital , Tampere , Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology , Tampere University and Tampere University Hospital , Tampere , Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology , Tampere University and Tampere University Hospital , Tampere , Finland
| |
Collapse
|
9
|
Eckes B, Eming SA. Tissue fibrosis: a pathomechanistically unresolved challenge and scary clinical problem. Exp Dermatol 2018; 26:135-136. [PMID: 27513440 DOI: 10.1111/exd.13165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Beate Eckes
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Sabine A Eming
- Department of Dermatology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Haeberle S, Raker V, Haub J, Kim YO, Weng SY, Yilmaz OK, Enk A, Steinbrink K, Schuppan D, Hadaschik EN. Regulatory T cell deficient scurfy mice exhibit a Th2/M2-like inflammatory response in the skin. J Dermatol Sci 2017; 87:285-291. [PMID: 28811075 DOI: 10.1016/j.jdermsci.2017.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/03/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Scurfy mice have a functional defect in regulatory T cells (Treg), which leads to lethal multi-organ inflammation. The missing Treg function results in uncontrolled autoimmune cellular and humoral inflammatory responses. We and others have previously shown that during the course of disease scurfy mice develop severe skin inflammation and autoantibodies including anti-nuclear autoantibodies (ANA). OBJECTIVE Autoimmune skin inflammation and ANA are hallmarks for the diagnosis of autoimmune connective tissue diseases; therefore we analyzed scurfy mice for typical signs of these diseases. METHODS Indirect immunofluorescence was used to specify the ANA pattern in scurfy mice. Skin fibrosis was assessed by cutaneous collagen accumulation (Goldeners trichrome staining), collagen crosslinking/disorganization (Sirus red polarimetry) and quantitative PCR for fibrosis-related transcripts. The cellular components of the inflammatory infiltrates in scurfy skin were analyzed by flow cytometry and intracellular cytokine staining. RESULTS The majority of scurfy mice developed ANA with a predominant AC-5 pattern typical for mixed connective tissue disease, especially scleroderma. Scurfy mice showed higher skin collagen content compared to WT controls with a significant tendency in upregulation of TIMP-1. CD3+CD4+ T cells in scurfy skin exhibited a strong Th2 deviation with a significant increase of IL-4, IL-5 and IL-13, and M2-polarized CD11b+MHCII+ macrophages compared to WT mice. CONCLUSION We show that Scurfy mice show a predominant AC-5 ANA pattern typical for mixed connective tissue disease as in scleroderma. The autoimmune inflammation in scurfy skin mainly consists of CD4+ T cells with Th2 differentiation and alternatively-activated (M2) macrophages as it is found in scleroderma with advanced fibrosis.
Collapse
Affiliation(s)
- Stefanie Haeberle
- Department of Dermatology, University of Heidelberg, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - Verena Raker
- Department of Dermatology, University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; Research Center for Immune Therapy, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Jessica Haub
- Department of Dermatology, University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; Research Center for Immune Therapy, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Yong O Kim
- Institute of Translational Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Shih-Yen Weng
- Institute of Translational Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Osman K Yilmaz
- Department of Dermatology, University of Heidelberg, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - Alexander Enk
- Department of Dermatology, University of Heidelberg, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - Kerstin Steinbrink
- Department of Dermatology, University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; Research Center for Immune Therapy, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; Research Center for Immune Therapy, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Eva N Hadaschik
- Department of Dermatology, University of Heidelberg, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany.
| |
Collapse
|
11
|
Sanges S, Jendoubi M, Kavian N, Hauspie C, Speca S, Crave JC, Guerrier T, Lefèvre G, Sobanski V, Savina A, Hachulla E, Hatron PY, Labalette M, Batteux F, Dubucquoi S, Launay D. B Cell Homeostasis and Functional Properties Are Altered in an Hypochlorous Acid-Induced Murine Model of Systemic Sclerosis. Front Immunol 2017; 8:53. [PMID: 28223983 PMCID: PMC5293837 DOI: 10.3389/fimmu.2017.00053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/12/2017] [Indexed: 12/16/2022] Open
Abstract
Introduction During systemic sclerosis (SSc), peripheral B cells display alterations in subset homeostasis and functional properties and are a promising therapeutic target. However, there is only few data regarding whether these anomalies are accurately reproduced in animal models of SSc. Objective In this work, we assessed the B cell homeostasis modifications in an experimental model of SSc [hypochlorous acid (HOCl)-induced mouse], both at a phenotypic and functional level, during the course of the disease. Methods Balb/c mice underwent daily intradermal injections of HOCl (or phosphate-buffered saline) and were then sacrificed at day 21 (early inflammatory stage) or day 42 (late fibrotic stage). For phenotypic studies, the distribution of the main spleen cell subsets (B cells, T CD4 and CD8 cells, NK cells, macrophages) and splenic B cell subsets (immature, mature naïve, germinal center, antibody-secreting, memory, B1) was assessed by flow cytometry. For functional studies, splenic B cells were immediately MACS-sorted. Production of interleukin (IL)-6, CCL3, IL-10, and transforming growth factor (TGF)-β was assessed ex vivo by RT-PCR and after 48 h of culture by ELISA. Regulatory B cell (Breg) counts were quantified by flow cytometry. Results Phenotypic analyses showed an early expansion of transitional B cells, followed by a late expansion of the mature naive subset and decrease in plasmablasts and memory B cells. These anomalies are similar to those encountered in SSc patients. Functional analyses revealed a B-cell overproduction of pro-inflammatory cytokines (IL-6 and CCL3) and an impairment of their anti-inflammatory capacities (decreased production of IL-10 and TGF-β, reduced levels of Bregs) at the early inflammatory stage; and an overproduction of pro-fibrotic cytokines (TGF-β and IL-6) at the late fibrotic stage. These results approximate the anomalies observed in human SSc. Conclusion This work reports the existence of anomalies in B cell homeostasis and functional properties in an animal model of SSc that approximate those displayed by SSc patients. These anomalies vary over the course of the disease, which pleads for their participation in inflammatory and fibrotic events. This makes the HOCl mouse a relevant experimental model for the study of B cells, and therefore, B-cell-targeted therapies in SSc.
Collapse
Affiliation(s)
- Sébastien Sanges
- U995, LIRIC - Lille Inflammation Research International Center, Université de Lille, Lille, France; INSERM, U995, Lille, France; Département de Médecine Interne et Immunologie Clinique, CHU Lille, Lille, France; Centre National de Référence Maladies Systémiques et Auto-immunes Rares (Sclérodermie Systémique), Lille, France
| | - Manel Jendoubi
- U995, LIRIC - Lille Inflammation Research International Center, Université de Lille, Lille, France; INSERM, U995, Lille, France
| | - Niloufar Kavian
- Faculté de Médecine, Institut Cochin INSERM U1016 et Laboratoire d'immunologie biologique, AP-HP Hôpital Cochin, Université Paris Descartes, Sorbonne Paris-Cité , Paris , France
| | - Carine Hauspie
- U995, LIRIC - Lille Inflammation Research International Center, Université de Lille, Lille, France; INSERM, U995, Lille, France; Institut d'Immunologie, CHU Lille, Lille, France
| | - Silvia Speca
- U995, LIRIC - Lille Inflammation Research International Center, Université de Lille, Lille, France; INSERM, U995, Lille, France
| | - Jean-Charles Crave
- Octapharma France SAS, Medical Department , Boulogne-Billancourt , France
| | - Thomas Guerrier
- U995, LIRIC - Lille Inflammation Research International Center, Université de Lille, Lille, France; INSERM, U995, Lille, France
| | - Guillaume Lefèvre
- U995, LIRIC - Lille Inflammation Research International Center, Université de Lille, Lille, France; INSERM, U995, Lille, France; Département de Médecine Interne et Immunologie Clinique, CHU Lille, Lille, France; Centre National de Référence Maladies Systémiques et Auto-immunes Rares (Sclérodermie Systémique), Lille, France; Institut d'Immunologie, CHU Lille, Lille, France
| | - Vincent Sobanski
- U995, LIRIC - Lille Inflammation Research International Center, Université de Lille, Lille, France; INSERM, U995, Lille, France; Département de Médecine Interne et Immunologie Clinique, CHU Lille, Lille, France; Centre National de Référence Maladies Systémiques et Auto-immunes Rares (Sclérodermie Systémique), Lille, France
| | | | - Eric Hachulla
- U995, LIRIC - Lille Inflammation Research International Center, Université de Lille, Lille, France; INSERM, U995, Lille, France; Département de Médecine Interne et Immunologie Clinique, CHU Lille, Lille, France; Centre National de Référence Maladies Systémiques et Auto-immunes Rares (Sclérodermie Systémique), Lille, France
| | - Pierre-Yves Hatron
- U995, LIRIC - Lille Inflammation Research International Center, Université de Lille, Lille, France; INSERM, U995, Lille, France; Département de Médecine Interne et Immunologie Clinique, CHU Lille, Lille, France; Centre National de Référence Maladies Systémiques et Auto-immunes Rares (Sclérodermie Systémique), Lille, France
| | - Myriam Labalette
- U995, LIRIC - Lille Inflammation Research International Center, Université de Lille, Lille, France; INSERM, U995, Lille, France; Institut d'Immunologie, CHU Lille, Lille, France
| | - Frédéric Batteux
- Faculté de Médecine, Institut Cochin INSERM U1016 et Laboratoire d'immunologie biologique, AP-HP Hôpital Cochin, Université Paris Descartes, Sorbonne Paris-Cité , Paris , France
| | - Sylvain Dubucquoi
- U995, LIRIC - Lille Inflammation Research International Center, Université de Lille, Lille, France; INSERM, U995, Lille, France; Institut d'Immunologie, CHU Lille, Lille, France
| | - David Launay
- U995, LIRIC - Lille Inflammation Research International Center, Université de Lille, Lille, France; INSERM, U995, Lille, France; Département de Médecine Interne et Immunologie Clinique, CHU Lille, Lille, France; Centre National de Référence Maladies Systémiques et Auto-immunes Rares (Sclérodermie Systémique), Lille, France
| |
Collapse
|
12
|
Waisman A, Hövelmeyer N, Diefenbach A, Schuppan D, Reddehase MJ, Kleinert H, Kaina B, Grabbe S, Galle PR, Theobald M, Zipp F, Sahin U, Türeci Ö, Kreiter S, Langguth P, Decker H, van Zandbergen G, Schild H. Past, present and future of immunology in Mainz. Cell Immunol 2016; 308:1-6. [PMID: 27719802 DOI: 10.1016/j.cellimm.2016.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Ari Waisman
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Institute of Molecular Medicine (IMM), University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Nadine Hövelmeyer
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Institute of Molecular Medicine (IMM), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Andreas Diefenbach
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Detlef Schuppan
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Institute of Translational Immunology (TIM), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Mathhias J Reddehase
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Institute for Virology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hartmut Kleinert
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Institute of Pharmacology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Bernd Kaina
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Institute of Toxicology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Stephan Grabbe
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Peter R Galle
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Matthias Theobald
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Department of Medicine III - Hematology, Medical Oncology & Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Universitäres Centrum für Tumorerkrankungen (UCT), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Frauke Zipp
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Ugur Sahin
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany; TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Mainz, Germany
| | - Öslem Türeci
- Cluster for Individualized Immune Intervention (Ci3), Mainz, Germany
| | - Sebastian Kreiter
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany; TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Mainz, Germany; Association for Cancer Immunotherapy (CIMT), Mainz, Germany
| | - Peter Langguth
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Department of Pharmaceutical Technology and Biopharmaceutics at the Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Heinz Decker
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Institute for Molecular Biophysics, Johannes Gutenberg University, Mainz, Germany
| | - Ger van Zandbergen
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Paul-Ehrlich-Institut (PEI), Langen, Germany
| | - Hansjörg Schild
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Institute for Immunology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
13
|
Chia JJ, Zhu T, Chyou S, Dasoveanu DC, Carballo C, Tian S, Magro CM, Rodeo S, Spiera RF, Ruddle NH, McGraw TE, Browning JL, Lafyatis R, Gordon JK, Lu TT. Dendritic cells maintain dermal adipose-derived stromal cells in skin fibrosis. J Clin Invest 2016; 126:4331-4345. [PMID: 27721238 DOI: 10.1172/jci85740] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 08/30/2016] [Indexed: 12/14/2022] Open
Abstract
Scleroderma is a group of skin-fibrosing diseases for which there are no effective treatments. A feature of the skin fibrosis typical of scleroderma is atrophy of the dermal white adipose tissue (DWAT). Adipose tissue contains adipose-derived mesenchymal stromal cells (ADSCs) that have regenerative and reparative functions; however, whether DWAT atrophy in fibrosis is accompanied by ADSC loss is poorly understood, as are the mechanisms that might maintain ADSC survival in fibrotic skin. Here, we have shown that DWAT ADSC numbers were reduced, likely because of cell death, in 2 murine models of scleroderma skin fibrosis. The remaining ADSCs showed a partial dependence on dendritic cells (DCs) for survival. Lymphotoxin β (LTβ) expression in DCs maintained ADSC survival in fibrotic skin by activating an LTβ receptor/β1 integrin (LTβR/β1 integrin) pathway on ADSCs. Stimulation of LTβR augmented the engraftment of therapeutically injected ADSCs, which was associated with reductions in skin fibrosis and improved skin function. These findings provide insight into the effects of skin fibrosis on DWAT ADSCs, identify a DC-ADSC survival axis in fibrotic skin, and suggest an approach for improving mesenchymal stromal cell therapy in scleroderma and other diseases.
Collapse
|