1
|
Joseph-Mullol B, Royo M, Preat V, Moliné T, Ferrer B, Aparicio G, Cortés-Hernández J, Solé C. Topical miRNA Delivery via Elastic Liposomal Formulation: A Promising Genetic Therapy for Cutaneous Lupus Erythematosus (CLE). Int J Mol Sci 2025; 26:2641. [PMID: 40141283 PMCID: PMC11942213 DOI: 10.3390/ijms26062641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Cutaneous lupus erythematosus (CLE) is a chronic autoimmune skin disorder with limited therapeutic options, particularly for refractory discoid lupus (DLE), which often results in scarring and atrophy. Recent studies have identified miR-31, miR-485-3p, and miR-885-5p as key regulators of inflammation, apoptosis, and fibrosis in CLE skin lesions. This research investigates a novel topical miRNA therapy using DDC642 elastic liposomes to target these pathways in CLE. DDC642 liposomes were complexed with miRNAs (anti-miR-31, anti-miR-485-3p, pre-miR-885-5p) and characterized through dynamic light scattering and Cryo-TEM. Cytotoxicity, cellular penetration, and therapeutic efficacy were evaluated in primary keratinocytes, PBMCs, and immune 3D-skin organoids. miRNA lipoplexes were successfully synthesized with optimized particle size, surface charge, and encapsulation efficiency. These lipoplexes exhibited effective cellular penetration and low cytotoxicity. Anti-miR-31 lipoplexes reduced miR-31 and NF-κB levels while increasing STK40 and PPP6C expression. Pre-miR-885-5p lipoplexes elevated miR-885-5p levels and downregulated PSMB5 and NF-κB in keratinocytes. While anti-miR-485-3p lipoplexes reduced T-cell activation markers. Anti-miR-31 and pre-miR-885-5p lipoplexes successfully modulated inflammatory pathways in 3D-skin CLE models. miRNA lipoplexes represent promising candidates for pioneering topical genetic therapies for CLE. Further studies, including animal models, are necessary to validate and optimize these findings.
Collapse
Affiliation(s)
- Blanca Joseph-Mullol
- Rheumatology Research Group, Lupus Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (B.J.-M.); (M.R.)
| | - Maria Royo
- Rheumatology Research Group, Lupus Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (B.J.-M.); (M.R.)
| | - Veronique Preat
- Louvain Drug Research Institute—Advanced Drug Delivery and Biomaterial, Universite Catholique de Louvain, 1200 Brussels, Belgium;
| | - Teresa Moliné
- Department of Pathology, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (T.M.); (B.F.)
| | - Berta Ferrer
- Department of Pathology, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (T.M.); (B.F.)
| | - Gloria Aparicio
- Department of Dermatology, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| | - Josefina Cortés-Hernández
- Rheumatology Research Group, Lupus Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (B.J.-M.); (M.R.)
| | - Cristina Solé
- Rheumatology Research Group, Lupus Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (B.J.-M.); (M.R.)
| |
Collapse
|
2
|
Xu L, Shao Z, Fang X, Xin Z, Zhao S, Zhang H, Zhang Y, Zheng W, Yu X, Zhang Z, Sun L. Exploring precision treatments in immune-mediated inflammatory diseases: Harnessing the infinite potential of nucleic acid delivery. EXPLORATION (BEIJING, CHINA) 2025; 5:20230165. [PMID: 40040830 PMCID: PMC11875455 DOI: 10.1002/exp.20230165] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/22/2024] [Indexed: 03/06/2025]
Abstract
Immune-mediated inflammatory diseases (IMIDs) impose an immeasurable burden on individuals and society. While the conventional use of immunosuppressants and disease-modifying drugs has provided partial relief and control, their inevitable side effects and limited efficacy cast a shadow over finding a cure. Promising nucleic acid drugs have shown the potential to exert precise effects at the molecular level, with different classes of nucleic acids having regulatory functions through varying mechanisms. For the better delivery of nucleic acids, safe and effective viral vectors and non-viral delivery systems (including liposomes, polymers, etc.) have been intensively explored. Herein, after describing a range of nucleic acid categories and vectors, we focus on the application of therapeutic nucleic acid delivery in various IMIDs, including rheumatoid arthritis, inflammatory bowel disease, psoriasis, multiple sclerosis, asthma, ankylosing spondylitis, systemic lupus erythematosus, and uveitis. Molecules implicated in inflammation and immune dysregulation are abnormally expressed in a series of IMIDs, and their meticulous modulation through nucleic acid therapy results in varying degrees of remission and improvement of these diseases. By synthesizing findings centered on specific molecular targets, this review delivers a systematic elucidation and perspective towards advancing and utilization of nucleic acid therapeutics for managing IMIDs.
Collapse
Affiliation(s)
- Lingxiao Xu
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Zhenxuan Shao
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Xia Fang
- Department of Plastic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zengfeng Xin
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Shenzhi Zhao
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryAbo Akademi UniversityTurkuFinland
| | - Yu Zhang
- Pharmaceutical Sciences LaboratoryAbo Akademi UniversityTurkuFinland
| | - Wenbiao Zheng
- Department of OrthopedicsTaizhou Municipal HospitalTaizhouChina
| | - Xiaohua Yu
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Zengjie Zhang
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Lingling Sun
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
3
|
Ubago-Rodríguez A, Quiñones-Vico MI, Sánchez-Díaz M, Sanabria-de la Torre R, Sierra-Sánchez Á, Montero-Vílchez T, Fernández-González A, Arias-Santiago S. Challenges in Psoriasis Research: A Systematic Review of Preclinical Models. Dermatology 2024; 240:620-652. [PMID: 38857576 DOI: 10.1159/000538993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/15/2024] [Indexed: 06/12/2024] Open
Abstract
INTRODUCTION Psoriasis is a chronic inflammatory skin disease with variable clinical presentation, multifactorial etiology and an immunogenetic basis. Several studies demonstrate that it results from a dysregulated interaction between skin keratinocytes, immune cells, and the environment that leads to a persistent inflammatory process modulated by cytokines and T cells. The development of new treatment options requires increased understanding of pathogenesis. However, the successful implementation of effective drugs requires well-characterized and highly available preclinical models that allow researchers to quickly and reproducibly determine their safety and efficacy. METHODS A systematic search on PubMed and Scopus databases was performed and assessed to find appropriate articles about psoriasis models applying the key words previously defined. The PRISMA guidelines were employed. RESULTS A total of 45 original articles were selected that met the selection criteria. Among these, there are articles on in vivo, in vitro, and ex vivo models, with the in vitro model being the majority due to its ease of use. Within animal models, the most widely used in recent years are chemically induced models using a compound known as imiquimod. However, the rest of the animal models used throughout the disease's research were also discussed. On the other hand, in vitro models were divided into two and three dimensions. The latter were the most used due to their similarity to human skin. Lastly, the ex vivo models were discussed, although they were the least used due to their difficulty in obtaining them. CONCLUSIONS Therefore, this review summarizes the current preclinical models (in vivo, in vitro, and ex vivo), discussing how to develop them, their advantages, limitations, and applications. There are many challenges to improve the development of the different models. However, research in these in vitro model studies could reduce the use of animals. This is favored with the use of future technologies such as 3D bioprinting or organ-on-a-chip technologies.
Collapse
Affiliation(s)
- Ana Ubago-Rodríguez
- Cell Production and Tissue Engineering Unit, Virgen de Las Nieves University Hospital, Granada, Spain,
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain,
- Andalusian Network of Design and Translation of Advanced Therapies, Seville, Spain,
- Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain,
| | - María I Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Virgen de Las Nieves University Hospital, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Seville, Spain
- Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Manuel Sánchez-Díaz
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Dermatology, Virgen de Las Nieves University Hospital, Granada, Spain
| | - Raquel Sanabria-de la Torre
- Cell Production and Tissue Engineering Unit, Virgen de Las Nieves University Hospital, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Seville, Spain
| | - Álvaro Sierra-Sánchez
- Cell Production and Tissue Engineering Unit, Virgen de Las Nieves University Hospital, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Seville, Spain
| | - Trinidad Montero-Vílchez
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Dermatology, Virgen de Las Nieves University Hospital, Granada, Spain
| | - Ana Fernández-González
- Cell Production and Tissue Engineering Unit, Virgen de Las Nieves University Hospital, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Seville, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de Las Nieves University Hospital, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Seville, Spain
- Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
- Department of Dermatology, Virgen de Las Nieves University Hospital, Granada, Spain
| |
Collapse
|
4
|
Zhao F, Zhao J, Wei K, Jiang P, Shi Y, Chang C, Zheng Y, Shan Y, Li Y, He B, Zhou M, Liu J, Li L, Guo S, He D. Targeted siRNA Therapy for Psoriasis: Translating Preclinical Potential into Clinical Treatments. Immunotargets Ther 2024; 13:259-271. [PMID: 38770264 PMCID: PMC11104385 DOI: 10.2147/itt.s458800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by the excessive proliferation of keratinocytes and heightened immune activation. Targeting pathogenic genes through small interfering RNA (siRNA) therapy represents a promising strategy for the treatment of psoriasis. This mini-review provides a comprehensive summary of siRNA research targeting the pathogenesis of psoriasis, covering aspects such as keratinocyte function, inflammatory cell roles, preclinical animal studies, and siRNA delivery mechanisms. It details recent advancements in RNA interference that modulate key factors including keratinocyte proliferation (Fibroblast Growth Factor Receptor 2, FGFR2), apoptosis (Interferon Alpha Inducible Protein 6, G1P3), differentiation (Grainyhead Like Transcription Factor 2, GRHL2), and angiogenesis (Vascular Endothelial Growth Factor, VEGF); immune cell infiltration and inflammation (Tumor Necrosis Factor-Alpha, TNF-α; Interleukin-17, IL-17); and signaling pathways (JAK-STAT, Nuclear Factor Kappa B, NF-κB) that govern immunopathology. Despite significant advances in siRNA-targeted treatments for psoriasis, several challenges persist. Continued scientific developments promise the creation of more effective and safer siRNA medications, potentially enhancing the quality of life for psoriasis patients and revolutionizing treatments for other diseases. This article focuses on the most recent research advancements in targeting the pathogenesis of psoriasis with siRNA and explores its future therapeutic prospects.
Collapse
Affiliation(s)
- Fuyu Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Kai Wei
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Ping Jiang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yiming Shi
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Cen Chang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yixin Zheng
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yunshen Li
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Bingheng He
- Department of Rehabilitation, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Mi Zhou
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jia Liu
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Li Li
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Shicheng Guo
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Lin ZC, Hung CF, Aljuffali IA, Lin MH, Fang JY. RNA-Based Antipsoriatic Gene Therapy: An Updated Review Focusing on Evidence from Animal Models. Drug Des Devel Ther 2024; 18:1277-1296. [PMID: 38681207 PMCID: PMC11055533 DOI: 10.2147/dddt.s447780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/07/2024] [Indexed: 05/01/2024] Open
Abstract
Psoriasis presents as a complex genetic skin disorder, characterized by the interaction between infiltrated immune cells and keratinocytes. Substantial progress has been made in understanding the molecular mechanisms of both coding and non-coding genes, which has positively impacted clinical treatment approaches. Despite extensive research into the genetic aspects of psoriasis pathogenesis, fully grasping its epigenetic component remains a challenging endeavor. In response to the pressing demand for innovative treatments to alleviate inflammatory skin disorders, various novel strategies are under consideration. These include gene therapy employing antisense nucleotides, silencing RNA complexes, stem cell therapy, and antibody-based therapy. There is a pressing requirement for a psoriasis-like animal model that replicates human psoriasis to facilitate early preclinical evaluations of these novel treatments. The authors conduct a comprehensive review of various gene therapy in different psoriasis-like animal models utilized in psoriasis research. The animals included in the list underwent skin treatments such as imiquimod application, as well as genetic and biologic injections, and the results of these interventions are detailed. Animal models play a crucial role in translating drug discoveries from the laboratory to clinical practice, and these models aid in improving the reproducibility and clinical applicability of preclinical data. Numerous animal models with characteristics similar to those of human psoriasis have proven to be useful in understanding the development of psoriasis. In this review, the article focuses on RNA-based gene therapy exploration in different types of psoriasis-like animal models to improve the treatment of psoriasis.
Collapse
Affiliation(s)
- Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ibrahim A Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ming-Hsien Lin
- Department of Dermatology, Chi Mei Medical Center, Tainan, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
6
|
Okruszko MA, Szabłowski M, Zarzecki M, Michnowska-Kobylińska M, Lisowski Ł, Łapińska M, Stachurska Z, Szpakowicz A, Kamiński KA, Konopińska J. Inflammation and Neurodegeneration in Glaucoma: Isolated Eye Disease or a Part of a Systemic Disorder? - Serum Proteomic Analysis. J Inflamm Res 2024; 17:1021-1037. [PMID: 38370463 PMCID: PMC10874189 DOI: 10.2147/jir.s434989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction Glaucoma is the most common optic neuropathy and the leading cause of irreversible blindness worldwide, which affects 3.54% of the population aged 40-80 years. Despite numerous published studies, some aspects of glaucoma pathogenesis, serum biomarkers, and their potential link with other diseases remain unclear. Recent articles have proposed that autoimmune, oxidative stress and inflammation may be involved in the pathogenesis of glaucoma. Methods We investigated the serum expression of 92 inflammatory and neurotrophic factors in glaucoma patients. The study group consisted of 26 glaucoma patients and 192 healthy subjects based on digital fundography. Results Patients with glaucoma had significantly lower serum expression of IL-2Rβ, TWEAK, CX3CL1, CD6, CD5, LAP TGF-beta1, LIF-R, TRAIL, NT-3, and CCL23 and significantly higher expression of IL-22Rα1. Conclusion Our results indicate that patients with glaucoma tend to have lower levels of neuroprotective proteins and higher levels of neuroinflammatory proteins, similar to those observed in psychiatric, neurodegenerative and autoimmune diseases, indicating a potential link between these conditions and glaucoma pathogenesis.
Collapse
Affiliation(s)
| | - Maciej Szabłowski
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| | - Mateusz Zarzecki
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| | | | - Łukasz Lisowski
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| | - Magda Łapińska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Zofia Stachurska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Anna Szpakowicz
- Department of Cardiology, Medical University of Bialystok, Białystok, Poland
| | - Karol Adam Kamiński
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Joanna Konopińska
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| |
Collapse
|
7
|
Jiang X, Shi R, Ma R, Tang X, Gong Y, Yu Z, Shi Y. The role of microRNA in psoriasis: A review. Exp Dermatol 2023; 32:1598-1612. [PMID: 37382420 DOI: 10.1111/exd.14871] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Psoriasis is a chronic immune-mediated inflammatory skin disease that involves a complex interplay between infiltrated immune cells and keratinocytes. Great progress has been made in the research on the molecular mechanism of coding and non-coding genes, which has helped in clinical treatment. However, our understanding of this complex disease is far from clear. MicroRNAs (miRNAs) are small non-coding RNA molecules that are involved in post-transcriptional regulation, characterised by their role in mediating gene silencing. Recent studies on miRNAs have revealed their important role in the pathogenesis of psoriasis. We reviewed the current advances in the study of miRNAs in psoriasis; the existing research has found that dysregulated miRNAs in psoriasis notably affect keratinocyte proliferation and/or differentiation processes, as well as inflammation progress. In addition, miRNAs also influence the function of immune cells in psoriasis, including CD4+ T cells, dendritic cells, Langerhans cells and so on. In addition, we discuss possible miRNA-based therapy for psoriasis, such as the topical delivery of exogenous miRNAs, miRNA antagonists and miRNA mimics. Our review highlights the potential role of miRNAs in the pathogenesis of psoriasis, and we expect more research progress with miRNAs in the future, which will help us understand this complex skin disease more accurately.
Collapse
Affiliation(s)
- Xingyu Jiang
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Rongcan Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Rui Ma
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Xinyi Tang
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Yu Gong
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Zengyang Yu
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Lin J, Fang Y, Cao Y, Ma L, Tao M, Wang X, Li Y, Qing L. Zerumbone attenuates the excessive proliferation of keratinocytes in psoriasis mice through regulating NLRP3/NF-κB pathway. Toxicol Res (Camb) 2023; 12:658-664. [PMID: 37663812 PMCID: PMC10470342 DOI: 10.1093/toxres/tfad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 09/05/2023] Open
Abstract
Psoriasis is a common chronic disease, and existing treatment regimens often exhibit certain toxicities and side effects. Zerumbone (Zer) may possess therapeutic effect, and the objective of this study is to investigate the effect of Zer on psoriasis. A mouse model of psoriasis was established using imiquimod cream, and the role of Zer on the pathological alterations in psoriatic mouse skin was evaluated by psoriasis area and severity index (PASI) score; the effect of Zer on keratinocyte proliferation was evaluated via hematoxylin and eosin staining, Zen image analysis, and immunofluorescence; Immunohistochemistry and enzyme-linked immunoassay were used to evaluate the effect of Zer on tissue inflammatory responses, while malondialdehyde (MDA) and glutathione (GSH) levels were measured to elucidate the role of Zer in modulating oxidative stress; the signaling pathway regulated by Zer was evaluated by western blotting. The results demonstrated that Zer could alleviate the pathological manifestations of psoriasis, reduce PASI score, reduce skin pathological damage and epidermal hyperplasia, diminish the number of CD8+ T cells and cytokine expression levels, decrease the level of MDA and GSH and increase the expression of Nrf and HO-1. Zer was found to regulate the NLRP3/nuclear factor-kappa B (NF-κB) signaling pathway. In conclusion, Zer ameliorated the symptoms of psoriasis in mice, suppressed the keratinocyte hyperproliferation, and mitigates inflammation and oxidative stress in psoriatic skin tissue by regulating the NLRP3/NF-κB pathway.
Collapse
Affiliation(s)
- Jin Lin
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China
| | - Yimiao Fang
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China
| | - Yi Cao
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China
| | - Lili Ma
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China
| | - Maocan Tao
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China
| | - Xiao Wang
- Department of Geriatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China
| | - Yuanyuan Li
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China
| | - Lijun Qing
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China
| |
Collapse
|
9
|
Yadav K, Singh D, Singh MR, Minz S, Sahu KK, Kaurav M, Pradhan M. Dermal nanomedicine: Uncovering the ability of nucleic acid to alleviate autoimmune and other related skin disorders. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Bioengineered Efficacy Models of Skin Disease: Advances in the Last 10 Years. Pharmaceutics 2022; 14:pharmaceutics14020319. [PMID: 35214050 PMCID: PMC8877988 DOI: 10.3390/pharmaceutics14020319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
Models of skin diseases, such as psoriasis and scleroderma, must accurately recapitulate the complex microenvironment of human skin to provide an efficacious platform for investigation of skin diseases. Skin disease research has been shifting from less complex and less relevant 2D (two-dimensional) models to significantly more relevant 3D (three-dimensional) models. Three-dimensional modeling systems are better able to recapitulate the complex cell–cell and cell–matrix interactions that occur in vivo within skin. Three-dimensional human skin equivalents (HSEs) have emerged as an advantageous tool for the study of skin disease in vitro. These 3D HSEs can be highly complex, containing both epidermal and dermal compartments with integrated adnexal structures. The addition of adnexal structures to 3D HSEs has allowed researchers to gain more insight into the complex pathology of various hereditary and acquired skin diseases. One method of constructing 3D HSEs, 3D bioprinting, has emerged as a versatile and useful tool for generating highly complex HSEs. The development of commercially available 3D bioprinters has allowed researchers to create highly reproducible 3D HSEs with precise integration of multiple adnexal structures. While the field of bioengineered models for study of skin disease has made tremendous progress in the last decade, there are still significant efforts necessary to create truly biomimetic skin disease models. In future studies utilizing 3D HSEs, emphasis must be placed on integrating all adnexal structures relevant to the skin disease under investigation. Thorough investigation of the intricate pathology of skin diseases and the development of effective treatments requires use of highly efficacious models of skin diseases.
Collapse
|
11
|
Role of Epithelium-Derived Cytokines in Atopic Dermatitis and Psoriasis: Evidence and Therapeutic Perspectives. Biomolecules 2021; 11:biom11121843. [PMID: 34944487 PMCID: PMC8699296 DOI: 10.3390/biom11121843] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Atopic dermatitis and psoriasis are two of the most common chronic skin conditions. Current target therapies represent viable and safe solutions for the most severe cases of these two dermatoses but, presently, several limitations exist in terms of efficacy and side effects. A new class of products, epithelium-derived cytokines (TSLP, IL-25, IL-33), show an increasing potential for use in target therapy for these patients, and demonstrate a direct link between a generalized inflammatory and oxidative stress status and the human skin. A review was conducted to better understand their role in the aforementioned conditions. Of these three molecules, TSLP led has been most often considered in studies regarding target therapies, and most of the results in the literature are related to this cytokine. These three cytokines share common stimuli and are linked to each other in both acute and chronic phases of these diseases, and have been challenged as target therapies or biomarkers of disease activity. The results lead to the conclusion that epithelium-derived cytokines could represent a therapeutic opportunity for these patients, especially in itch control. Furthermore, they might work better when paired together with currently available therapies or in combination with in-development treatments. Further studies are needed in order to verify the efficacy and safety of the biologic treatments currently under development.
Collapse
|
12
|
Suzuki IL, de Araujo MM, Bagnato VS, Bentley MVLB. TNFα siRNA delivery by nanoparticles and photochemical internalization for psoriasis topical therapy. J Control Release 2021; 338:316-329. [PMID: 34437914 DOI: 10.1016/j.jconrel.2021.08.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 07/29/2021] [Accepted: 08/21/2021] [Indexed: 12/26/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease that presents increased expression of tumor necrosis factor α (TNFα), a proinflammatory cytokine. The discovery of RNA interference (RNAi), mediated by short interfering RNA (siRNA), made it possible for the expression of some genes to be eliminated. However, for its application, it is necessary to use carriers that can protect siRNA and release it in the target cells. Herein, we developed a delivery system for siRNA based on hybrid polymer-lipid nanoparticles (PLNs) and combined this system with photochemical internalization (PCI), photoactivating the photosensitizer TPPS2a, to optimize the endosomal escape of TNFα siRNA in the cytoplasm, aiming to use the system as a topical formulation to treat psoriasis. The PLNs composed of 2.0% of Compritol® 888 ATO (lipid), 1.5% of poloxamer 188 and 0.1% of the cationic polymer poly(allylamine hydrochloride) showed an average nanoparticle size of 142 nm, a zeta potential of +25 mV, and the ability to efficiently coencapsulate TPPS2a and complexed siRNA. In addition, these materials did not present cellular toxicity and showed high cellular uptake. In vitro delivery studies using porcine skin model revealed that the PLNs delivered siRNA and TPPS2a into the skin. The efficacy was verified using an in vivo psoriasis animal (hairless mouse) model induced by imiquimod (IMQ) cream. The results revealed that PLN-TPPS2a-TNFα siRNA combined with PCI resulted in a decrease in the levels of TNFα, showing the efficiency of the treatment to silence this cytokine in psoriatic lesions, which was accompanied by a reduction in the redness and scaling of the mouse skin. The results showed the potential of the developed PLNs in combined silencing gene therapy and PCI for topical treatment of psoriasis.
Collapse
Affiliation(s)
- Isabella Luiz Suzuki
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Margarete Moreno de Araujo
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Vanderlei Salvador Bagnato
- Physics Institute of São Carlos, University of São Paulo, Brazil; Hagler Institute for Advanced Studies, Texas A&M University, College Station, USA
| | - Maria Vitoria Lopes Badra Bentley
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
13
|
Yadav K, Singh D, Singh MR, Pradhan M. Multifaceted targeting of cationic liposomes via co-delivery of anti-IL-17 siRNA and corticosteroid for topical treatment of psoriasis. Med Hypotheses 2020; 145:110322. [DOI: 10.1016/j.mehy.2020.110322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/19/2020] [Accepted: 09/26/2020] [Indexed: 01/05/2023]
|
14
|
Tariq H, Bokhari SAI. Surface-functionalised hybrid nanoparticles for targeted treatment of cancer. IET Nanobiotechnol 2020; 14:537-547. [PMID: 33010128 PMCID: PMC8676046 DOI: 10.1049/iet-nbt.2020.0073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/11/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Despite the great advancement in understanding the pharmacology and biology of cancer, it still signifies one of the most serious human-health related problems. The current treatments for cancer may include surgery, radiotherapy, and chemotherapy, but these procedures have several limitations. Current studies have shown that nanoparticles (NPs) can be used as a novel strategy for cancer treatment. Developing nanosystems that allow lower doses of therapeutic agents, as well as their selective release in tumour cells, may resolve the challenges of targeted cancer therapy. In this review, the authors discuss the role of the size, shape, and surface modifications of NPs in cancer treatment. They also address the challenges associated with cancer therapies based on NPs. The overall purpose of this review is to summarise the recent developments in designing different hybrid NPs with promising therapeutic properties for different types of cancer.
Collapse
Affiliation(s)
- Hasnat Tariq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Syed Ali Imran Bokhari
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| |
Collapse
|
15
|
Viegas JSR, Praça FG, Caron AL, Suzuki I, Silvestrini AVP, Medina WSG, Del Ciampo JO, Kravicz M, Bentley MVLB. Nanostructured lipid carrier co-delivering tacrolimus and TNF-α siRNA as an innovate approach to psoriasis. Drug Deliv Transl Res 2020; 10:646-660. [DOI: 10.1007/s13346-020-00723-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Bray ER, Chéret J, Yosipovitch G, Paus R. Schwann cells as underestimated, major players in human skin physiology and pathology. Exp Dermatol 2019; 29:93-101. [DOI: 10.1111/exd.14060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Eric R. Bray
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| | - Jérémy Chéret
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| | - Gil Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
- Miami Itch Center University of Miami Miller School of Medicine Miami FL USA
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
- Centre for Dermatology Research University of Manchester Manchester UK
| |
Collapse
|
17
|
Lee WR, Lin YK, Alalaiwe A, Wang PW, Liu PY, Fang JY. Fractional Laser-Mediated siRNA Delivery for Mitigating Psoriasis-like Lesions via IL-6 Silencing. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:240-251. [PMID: 31855833 PMCID: PMC6923496 DOI: 10.1016/j.omtn.2019.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 11/08/2019] [Indexed: 02/02/2023]
Abstract
The poor permeability of topically applied macromolecules such as small interfering RNA (siRNA) has inhibited the translation to clinical application. In this study, the fractional CO2 laser-assisted approach was developed to describe siRNA permeation enhancement mediated by the created microchannels for silencing the gene to treat psoriasiform lesions. In vitro permeation using Franz cell and in vivo interleukin (IL)-6 silencing using psoriasis-like plaque in mice were evaluated to verify the impact of the laser irradiation. Low-fluence laser exposure enabled a significant increase in skin transport of siRNA, peptide, and 5-fluorouracil (5-FU). The laser treatment resulted in the enhancement of siRNA flux by 33- and 14-fold as compared to the control in nude mouse and pig skin, respectively. The laser exposure also promoted siRNA penetration across psoriatic and photoaging skins with the deficient barrier, although the enhancement level was minor compared to that of intact skin. The 3D images of confocal microscopy revealed a diffusion of macromolecules into the laser-created microchannels; the radial and vertical distribution to the surrounding and deep tissues followed this. A single laser treatment and the following topical siRNA administration were able to reduce IL-6 expression by 64% in the psoriatic skin model. Laser assistance led to the marked improvement in the plaque and the reduction of specific cytokine expression, keratinocyte proliferation, and neutrophil infiltration. Our data support the use of the fractional laser for delivery of functional nucleic acid into the skin and the target cells.
Collapse
Affiliation(s)
- Woan-Ruoh Lee
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; Department of Dermatology, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| | - Yin-Ku Lin
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Pei-Yin Liu
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|