1
|
Notari L, Pieri L, Cialdai F, Fusco I, Risaliti C, Madeddu F, Bacci S, Zingoni T, Monici M. Laser Emission at 675 nm: Molecular Counteraction of the Aging Process. Biomedicines 2024; 12:2713. [PMID: 39767620 PMCID: PMC11673938 DOI: 10.3390/biomedicines12122713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Many lasers applied in skin rejuvenation protocols show emissions with wavelengths falling in the red or near-infrared (NIR) bands. To obtain further in vitro data on the potential therapeutic benefits regarding rejuvenation, we employed a 675 nm laser wavelength on cultured human dermal fibroblasts to understand the mechanisms involved in the skin rejuvenation process's signaling pathways by analyzing cytoskeletal proteins, extracellular matrix (ECM) components, and membrane integrins. METHODS Normal human dermal fibroblasts (NHDFs) were irradiated with a 675 nm laser 24 h after seeding, and immunofluorescence microscopy and Western blotting were applied. RESULTS The results demonstrate that the laser treatment induces significant changes in human dermal fibroblasts, affecting cytoskeleton organization and the production and reorganization of ECM molecules. The cell response to the treatment appears to predominantly involve paxillin-mediated signaling pathways. CONCLUSIONS These changes suggest that laser treatment can potentially improve the structure and function of skin tissue, with interesting implications for treating skin aging.
Collapse
Affiliation(s)
- Lorenzo Notari
- ASA Campus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.N.); (F.C.); (C.R.); (M.M.)
| | - Laura Pieri
- El.En. Group, 50041 Calenzano, Italy; (L.P.); (F.M.); (T.Z.)
| | - Francesca Cialdai
- ASA Campus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.N.); (F.C.); (C.R.); (M.M.)
| | - Irene Fusco
- El.En. Group, 50041 Calenzano, Italy; (L.P.); (F.M.); (T.Z.)
| | - Chiara Risaliti
- ASA Campus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.N.); (F.C.); (C.R.); (M.M.)
| | | | - Stefano Bacci
- Research Unit of Histology and Embryology, Department of Biology, University of Florence, 50121 Florence, Italy;
| | - Tiziano Zingoni
- El.En. Group, 50041 Calenzano, Italy; (L.P.); (F.M.); (T.Z.)
| | - Monica Monici
- ASA Campus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.N.); (F.C.); (C.R.); (M.M.)
| |
Collapse
|
2
|
Jang HY, Kim GB, Kim JM, Kang SY, Youn HJ, Park J, Ro SY, Chung EY, Park KH, Kim JS. Fisetin Inhibits UVA-Induced Expression of MMP-1 and MMP-3 through the NOX/ROS/MAPK Pathway in Human Dermal Fibroblasts and Human Epidermal Keratinocytes. Int J Mol Sci 2023; 24:17358. [PMID: 38139186 PMCID: PMC10743569 DOI: 10.3390/ijms242417358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Fisetin is a flavonoid found in plants and has been reported to be effective in various human diseases. However, the effective mechanisms of ultraviolet-A (UVA)-mediated skin damage are not yet clear. In this study, we investigated the protective mechanisms of fisetin regarding UVA-induced human dermal fibroblasts (HDFs) and human epidermal keratinocytes (HEKs) damages. Fisetin showed a cytoprotective effect against UVA irradiation and suppressed matrix metalloproteinases (MMPs), MMP-1, and MMP-3 expression. In addition, fisetin was rescued, which decreased mRNA levels of pro-inflammatory cytokines, reactive oxygen species production, and the downregulation of MAPK/AP-1 related protein and NADPH oxidase (NOX) mRNA levels. Furthermore, UVA-induced MMP-1 and MMP-3 were effectively inhibited by siRNAs to NOX 1 to 5 in HDFs and HEKs. These results indicate that fisetin suppresses UVA-induced damage through the NOX/ROS/MAPK pathway in HDFs and HEKs.
Collapse
Affiliation(s)
- Hye-Yeon Jang
- Department of Biochemistry and Molecular Biology, Institute for Medical Sciences, BK21FOUR 21st Century Medical Science Creative Human Resource Development Center, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (H.-Y.J.); (G.-B.K.); (J.-M.K.)
- Infectious Diseases Therapeutic Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Gi-Beum Kim
- Department of Biochemistry and Molecular Biology, Institute for Medical Sciences, BK21FOUR 21st Century Medical Science Creative Human Resource Development Center, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (H.-Y.J.); (G.-B.K.); (J.-M.K.)
| | - Jeong-Mi Kim
- Department of Biochemistry and Molecular Biology, Institute for Medical Sciences, BK21FOUR 21st Century Medical Science Creative Human Resource Development Center, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (H.-Y.J.); (G.-B.K.); (J.-M.K.)
| | - Sang Yull Kang
- Department of Surgery, Research Institute of Clinical Medicine, Jeonbuk National University Hospital, Biomedical Research Institute, Jeonbuk National University, Jeonju 54907, Republic of Korea; (S.Y.K.); (H.-J.Y.)
| | - Hyun-Jo Youn
- Department of Surgery, Research Institute of Clinical Medicine, Jeonbuk National University Hospital, Biomedical Research Institute, Jeonbuk National University, Jeonju 54907, Republic of Korea; (S.Y.K.); (H.-J.Y.)
| | - Jinny Park
- Department of Medical Oncology and Hematology, Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea;
| | - Su Yeon Ro
- Department of Anesthesiology and Pain Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon 14647, Republic of Korea; (S.Y.R.); (E.-Y.C.)
| | - Eun-Yong Chung
- Department of Anesthesiology and Pain Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon 14647, Republic of Korea; (S.Y.R.); (E.-Y.C.)
| | - Kwang-Hyun Park
- Department of Emergency Medical Rescue, Nambu University, Gwangju 62271, Republic of Korea
- BioMedical Science Graduate Program (BMSGP), Department of Emergency Medicine, Chonnam National University, Hwasun 58128, Republic of Korea
| | - Jong-Suk Kim
- Department of Biochemistry and Molecular Biology, Institute for Medical Sciences, BK21FOUR 21st Century Medical Science Creative Human Resource Development Center, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (H.-Y.J.); (G.-B.K.); (J.-M.K.)
| |
Collapse
|
3
|
Xiong J, Grace MH, Kobayashi H, Lila MA. Evaluation of saffron extract bioactivities relevant to skin resilience. J Herb Med 2023. [DOI: 10.1016/j.hermed.2023.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
4
|
Ma L, Huang M, Sun G, Lin Y, Lu D, Wu B. Puerariae lobatae radix protects against UVB-induced skin aging via antagonism of REV-ERBα in mice. Front Pharmacol 2022; 13:1088294. [PMID: 36618934 PMCID: PMC9813444 DOI: 10.3389/fphar.2022.1088294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Puerariae lobatae radix (PLR) is a wildly used herbal medicine. Here we aimed to assess the PLR efficacy against UVB (ultraviolet-B)-induced skin aging and to determine the mechanisms thereof. We found a significant protective effect of PLR (topical application) on UVB-induced skin aging in mice, as evidenced by reduced skin wrinkles, epidermal thickness, and MDA (malondialdehyde) content as well as increased levels of HYP (hydroxyproline) and SOD (superoxide dismutase) in the skin. In the meantime, Mmp-1, p21 and p53 levels were decreased in the skin of PLR-treated mice. Anti-aging effects of PLR were also confirmed in L929 cells. Furthermore, PLR up-regulated skin expression of BMAL1, which is a known regulator of aging by promoting Nrf2 and antioxidant enzymes. Consistently, Nrf2 and several genes (i.e., Prdx6, Sod1, and Sod2) encoding antioxidant enzymes in the skin were increased in PLR-treated mice. Moreover, based on Gal4 chimeric assay, Bmal1 reporter gene and expression assays, we identified PLR as an antagonist of REV-ERBα that can increase Bmal1 expression. Intriguingly, loss of Rev-erbα protected mice against UVB-induced skin aging and abrogated the protective effect of PLR. In conclusion, PLR acts as an antagonist of REV-ERBα and promotes the expression of BMAL1 to protect against skin aging in mice.
Collapse
Affiliation(s)
- Luyao Ma
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meiping Huang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanghui Sun
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yanke Lin
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Danyi Lu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Kim JM, Chung KS, Yoon YS, Jang SY, Heo SW, Park G, Jang YP, Ahn HS, Shin YK, Lee SH, Lee KT. Dieckol Isolated from Eisenia bicyclis Ameliorates Wrinkling and Improves Skin Hydration via MAPK/AP-1 and TGF-β/Smad Signaling Pathways in UVB-Irradiated Hairless Mice. Mar Drugs 2022; 20:md20120779. [PMID: 36547926 PMCID: PMC9785544 DOI: 10.3390/md20120779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Repetitive exposure to ultraviolet B (UVB) is one of the main causes of skin photoaging. We previously reported that dieckol isolated from Eisenia bicyclis extract has potential anti-photoaging effects in UVB-irradiated Hs68 cells. Here, we aimed to evaluate the anti-photoaging activity of dieckol in a UVB-irradiated hairless mouse model. In this study, hairless mice were exposed to UVB for eight weeks. At the same time, dieckol at two doses (5 or 10 mg/kg) was administered orally three times a week. We found that dieckol suppressed UVB-induced collagen degradation and matrix metalloproteinases (MMPs)-1, -3, and -9 expression by regulating transforming growth factor beta (TGF-β)/Smad2/3 and mitogen-activated protein kinases (MAPKs)/activator protein-1 (AP-1) signaling. In addition, dieckol rescued the production of hyaluronic acid (HA) and effectively restored the mRNA expression of hyaluronan synthase (HAS)-1/-2 and hyaluronidase (HYAL)-1/-2 in UVB-irradiated hairless mice. We observed a significant reduction in transepidermal water loss (TEWL), epidermal/dermal thickness, and wrinkle formation in hairless mice administered dieckol. Based on these results, we suggest that dieckol, due to its anti-photoaging role, may be used as a nutricosmetic ingredient for improving skin health.
Collapse
Affiliation(s)
- Jae-Min Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Young-Seo Yoon
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Seo-Yun Jang
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - So-Won Heo
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Geonha Park
- Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Young-Pyo Jang
- Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Hye-Shin Ahn
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Republic of Korea
| | - Yu-Kyong Shin
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Republic of Korea
| | - Sun-Hee Lee
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Republic of Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
- Correspondence: ; Tel.: +82-2-9610860
| |
Collapse
|
6
|
Ma J, Teng Y, Huang Y, Tao X, Fan Y. Autophagy plays an essential role in ultraviolet radiation-driven skin photoaging. Front Pharmacol 2022; 13:864331. [PMID: 36278173 PMCID: PMC9582953 DOI: 10.3389/fphar.2022.864331] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Photoaging is characterized by a chronic inflammatory response to UV light. One of the most prominent features of cutaneous photoaging is wrinkling, which is due primarily to a loss of collagen fibers and deposits of abnormal degenerative elastotic material within the dermis (actinic elastosis). These changes are thought to be mediated by inflammation, with subsequent upregulation of extracellular matrix-degrading proteases and down-regulation of collagen synthesis. Autophagy is a vital homeostatic cellular process of either clearing surplus or damaged cell components notably lipids and proteins or recycling the content of the cells’ cytoplasm to promote cell survival and adaptive responses during starvation and other oxidative and/or genotoxic stress conditions. Autophagy may also become a means of supplying nutrients to maintain a high cellular proliferation rate when needed. It has been suggested that loss of autophagy leads to both photodamage and the initiation of photoaging in UV exposed skin. Moreover, UV radiation of sunlight is capable of regulating a number of autophagy-linked genes. This review will focus on the protective effect of autophagy in the skin cells damaged by UV radiation. We hope to draw attention to the significance of autophagy regulation in the prevention and treatment of skin photoaging.
Collapse
|
7
|
Modulation of autophagy, apoptosis and oxidative stress: a clue for repurposing metformin in photoaging. Inflammopharmacology 2022; 30:2521-2535. [PMID: 35913649 DOI: 10.1007/s10787-022-01041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/15/2022] [Indexed: 11/05/2022]
Abstract
Long-term sun exposure is the commonest cause of photoaging, where mutual interplay between autophagy, oxidative stress, and apoptosis is incriminated. In combating photoaging, pharmacological approaches targeted to modulate autophagy are currently gaining more ground. This study aimed to examine repurposing metformin use in such context with or without the antioxidant coenzyme Q10 (coQ10) in ultraviolet A (UVA) irradiation-induced skin damage. The study was conducted on 70 female CD1 mice that were randomly assigned into seven groups (10/group): normal control, vehicle-treated-UVA-exposed mice, three metformin UVA-exposed groups (Topical 1 and 10%, and oral 300 mg/kg), topical coQ10 (1%)-treated mice, and combined oral metformin with topical coQ10-treated UVA-exposed mice. After UVA-exposure for 10 weeks (3 times/week), macroscopic signs of photoaging were evaluated. Mice were then euthanized, and the skin was harvested for biochemical estimation of markers for oxidative stress, inflammation, matrix breakdown, and lysosomal function. Histopathological signs of photoaging were also evaluated with immunohistochemical detection of associated changes in autophagic and apoptotic markers. Metformin, mainly by topical application, improved clinical and histologic signs of photoaging. This was associated with suppression of the elevated oxidative stress, IL-6, matrix metalloproteinase 1, and caspase, with induction of cathepsin D and subsequent change in anti-LC3 and P62 staining in skin tissue. In addition to metformin antioxidant, anti-inflammatory, and antiapoptotic activities, its anti-photoaging effect is mainly attributed to enhancing autophagic flux by inducing cathepsin D. Its protective effect is boosted by coQ10, which supports their potential use in photoaging.
Collapse
|
8
|
Zhang T, Wang C, Wang K, Liang Y, Liu T, Feng L, Yang X. RacGAP1 promotes the malignant progression of cervical cancer by regulating AP-1 via miR-192 and p-JNK. Cell Death Dis 2022; 13:604. [PMID: 35831303 PMCID: PMC9279451 DOI: 10.1038/s41419-022-05036-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 01/21/2023]
Abstract
Cervical cancer (CC) is the most frequently diagnosed genital tract cancer in females worldwide. Rac GTPase-activating protein 1 (RacGAP1) is one of the specific GTPase-activating proteins. As a novel tumor protooncogene, overexpression of RacGAP1 was related to the occurrence of various tumors, but its function in CC is still unclear. In this study, bioinformatics analyses showed that RacGAP1 might be a key candidate gene in the progression of CC. RacGAP1 was significantly overexpressed in CC tissues. High RacGAP1 expression was positively associated with poor prognosis. Downregulating RacGAP1 significantly inhibited the proliferation, migration, and invasion of CC cells, while overexpressing RacGAP1 had the opposite effects. Further research showed that miR-192, which plays as a tumor suppressor in CC, was identified as a downstream target of RacGAP1 in CC cells. miR-192 inhibition could partially rescue the decrease in cell proliferation, migration, and invasion caused by RacGAP1 downregulation. In opposite, miR-192 overexpression could decrease the promotion of malignant progression caused by RacGAP1 upregulation. Mechanism studies revealed that RacGAP1 could regulate the expression and phosphorylation of c-Jun, which was the component of AP-1, via miR-192 and p-JNK separately. These findings suggested that RacGAP1 promoted tumorigenicity, migration, and invasion of CC. Therefore, it represented a potential novel prognostic marker in CC and may probably be a therapeutic target.
Collapse
Affiliation(s)
- Tianli Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Key Laboratory of Gynecologic Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Chunyan Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Key Laboratory of Gynecologic Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Kun Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Key Laboratory of Gynecologic Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Ying Liang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Ting Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Liping Feng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Xingsheng Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
9
|
Hur GH, Ryu AR, Kim YW, Lee MY. The Potential Anti-Photoaging Effect of Photodynamic Therapy Using Chlorin e6-Curcumin Conjugate in UVB-Irradiated Fibroblasts and Hairless Mice. Pharmaceutics 2022; 14:pharmaceutics14050968. [PMID: 35631555 PMCID: PMC9143416 DOI: 10.3390/pharmaceutics14050968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Photodynamic therapy (PDT) has been used to treat cancers and non-malignant skin diseases. In this study, a chlorin e6–curcumin conjugate (Ce6-PEG-Cur), a combination of chlorin e6 (Ce6) and curcumin via a PEG linker, was used as a photosensitizer. The in vitro and in vivo effects of PDT using Ce6-PEG-Cur were analyzed in UVB-irradiated fibroblasts and hairless mice. The UVB-induced expression of MMPs was reduced in Hs68 fibroblast cells, and procollagen type Ⅰ expression was enhanced by Ce6-PEG-Cur-mediated PDT on a Western blotting gel. Moreover, UVB-induced collagen levels were restored upon application of Ce6-PEG-Cur-mediated PDT. Ce6-PEG-Cur-mediated PDT inhibited the expression of phosphorylated p38 in the MAPK signaling pathway, and it reduced the expression of phosphorylated NF-κB. In animal models, Ce6-PEG-Cur-mediated PDT inhibited the expression of MMPs, whereas procollagen type Ⅰ levels were enhanced in the dorsal skin of UVB-irradiated mice. Moreover, UVB-induced dorsal roughness was significantly reduced following Ce6-PEG-Cur-mediated PDT treatment. H&E staining and Masson’s trichrome staining showed that the thickness of the epidermal region was reduced, and the density of collagen fibers increased. Taken together, Ce6-PEG-Cur-mediated PDT might delay and improve skin photoaging by ultraviolet light, suggesting its potential for use as a more effective photo-aging treatment.
Collapse
Affiliation(s)
- Ga-Hee Hur
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea;
| | - A-Reum Ryu
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea;
| | - Yong-Wan Kim
- Dongsung Bio Pharmaceutical Co., Ltd., Seoul 01340, Korea;
| | - Mi-Young Lee
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea;
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea;
- Correspondence: ; Tel.: +82-41-530-1355
| |
Collapse
|
10
|
Hong JA, Bae D, Oh KN, Oh DR, Kim Y, Kim Y, Jeong Im S, Choi EJ, Lee SG, Kim M, Jeong C, Choi CY. Protective effects of Quercus acuta Thunb. fruit extract against UVB-induced photoaging through ERK/AP-1 signaling modulation in human keratinocytes. BMC Complement Med Ther 2022; 22:6. [PMID: 34983480 PMCID: PMC8728912 DOI: 10.1186/s12906-021-03473-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background Quercus acuta Thunb. (Fagaceae) or Japanese evergreen oak is cultivated as an ornamental plant in South Korea, China, Japan, and Taiwan and used in traditional medicine. The acorn or fruit of Quercus acuta Thunb. (QAF) is the main ingredient of acorn jelly, a traditional food in Korea. Its leaf was recently shown to have potent xanthine oxidase inhibitory and anti-hyperuricemic activities; however, there have been no studies on the biological activity of QAF extracts. Solar ultraviolet light triggers photoaging of the skin, which increases the production of reactive oxygen species (ROS) and expression of matrix metalloproteinase (MMPs), and destroys collagen fibers, consequently inducing wrinkle formation. The aim of this study was to investigate the effect of water extracts of QAF against UVB-induced skin photoaging and to elucidate the underlying molecular mechanisms in human keratinocytes (HaCaT). Methods In this study, we used HPLC to identify the major active components of QAF water extracts. Anti-photoaging effects of QAF extracts were evaluated by analyzing ROS procollagen type I in UVB-irradiated HaCaT keratinocytes. Antiradical activity was determined using 2,2-diphenyl-1-picrylhydrazyl and 2,20-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) assays. The expression of MMP-1 was tested by western blotting and ELISA kits. QAF effects on phosphorylation of the MAPK (p38, JNK, and ERK) pathway and transcription factor AP-1, which enhances the expression of MMPs, were analyzed by western blots. Results We identified two major active components in QAF water extracts, gallotannic acid and ellagic acid. The QAF aqueous extracts recovered UVB-induced cell toxicity and reduced oxidative stress by inhibiting intracellular ROS generation in HaCaT cells. QAF rescued UVB-induced collagen degradation by suppressing MMP-1 expression. The anti-photoaging activities of QAF were associated with the inhibition of UVB-induced phosphorylation of extracellular signal-regulated kinase (ERK) and activator protein 1 (AP-1). Our findings indicated that QAF prevents UVB-induced skin damage due to collagen degradation and MMP-1 activation via inactivation of the ERK/AP-1 signaling pathway. Overall, this study strongly suggests that QAF exerts anti-skin-aging effects and is a potential natural biomaterial that inhibits UVB-induced photoaging. Conclusion These results show that QAF water extract effectively prevents skin photoaging by enhancing collagen deposition and inhibiting MMP-1 via the ERK/AP-1 signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03473-1.
Collapse
Affiliation(s)
- Ji-Ae Hong
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea.,School of Biological Sciences and Biotechnology, College of Natural Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Donghyuk Bae
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Kyo-Nyeo Oh
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Dool-Ri Oh
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Yujin Kim
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Yonguk Kim
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - So Jeong Im
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Eun-Jin Choi
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Seul-Gi Lee
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Moonjong Kim
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Changsik Jeong
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, South Korea
| | - Chul Yung Choi
- Department of Biomedical Science, College of Natural Science, Chosun University, 309, pilmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
11
|
Ahn HS, Kim HJ, Na C, Jang DS, Shin YK, Lee SH. The Protective Effect of Adenocaulon himalaicum Edgew. and Its Bioactive Compound Neochlorogenic Acid against UVB-Induced Skin Damage in Human Dermal Fibroblasts and Epidermal Keratinocytes. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081669. [PMID: 34451713 PMCID: PMC8399472 DOI: 10.3390/plants10081669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 05/08/2023]
Abstract
Skin aging induced by ultraviolet (UV) irradiation increases expression of matrix metalloproteinase-1 (MMP-1) and destroys collagen fibers, as a result accelerating wrinkle formation. Natural products have been received scientific attention as utilized agents against photoaging. The aim of this study was to investigate the protective effect of Adenocaulon himalaicum Edgew. extract (AHE) against ultraviolet B (UVB)-induced skin damage, and to explain the underlying mechanisms in human dermal fibroblasts and epidermal keratinocytes. AHE effectively protects skin photoaging by preventing collagen degradation through MMP-1 inhibition via the MAPK/AP-1 signaling pathway. AHE significantly increased the expression of skin hydration factors, such as filaggrin, involucrin, loricrin, and caspase-14. To find how AHE possesses a direct impact on cellular activities, we identified neochlorogenic acid as a bioactive component of AHE for the first time. Neochlorogenic acid showed the anti-photoaging effect through ameliorating UVB-induced collagen degradation, reinforcing the skin barrier. Like the AHE-regulating mechanism, neochlorogenic acid modulates the MAPK/AP-1 signaling pathway and skin hydration factors. Taken together, these results suggest that AHE and neochlorogenic acid are well-qualified candidate for enhancing the conditions of photoaged skin.
Collapse
Affiliation(s)
- Hye Shin Ahn
- New Material Development Team, COSMAX BIO Ltd., 255 Pangyo-ro, Bungdang-gu, Seongnam 13486, Gyeonggi-do, Korea; (H.S.A.); (H.J.K.); (C.N.)
| | - Hyun Jae Kim
- New Material Development Team, COSMAX BIO Ltd., 255 Pangyo-ro, Bungdang-gu, Seongnam 13486, Gyeonggi-do, Korea; (H.S.A.); (H.J.K.); (C.N.)
| | - Changseon Na
- New Material Development Team, COSMAX BIO Ltd., 255 Pangyo-ro, Bungdang-gu, Seongnam 13486, Gyeonggi-do, Korea; (H.S.A.); (H.J.K.); (C.N.)
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Dongdaemun-gu, Korea;
| | - Yu-Kyong Shin
- New Material Development Team, COSMAX BIO Ltd., 255 Pangyo-ro, Bungdang-gu, Seongnam 13486, Gyeonggi-do, Korea; (H.S.A.); (H.J.K.); (C.N.)
- Correspondence: (Y.-K.S.); (S.H.L.); Tel.: +82-31-8018-0388 (Y.-K.S.); +82-31-8018-0384 (S.H.L.)
| | - Sun Hee Lee
- New Material Development Team, COSMAX BIO Ltd., 255 Pangyo-ro, Bungdang-gu, Seongnam 13486, Gyeonggi-do, Korea; (H.S.A.); (H.J.K.); (C.N.)
- Correspondence: (Y.-K.S.); (S.H.L.); Tel.: +82-31-8018-0388 (Y.-K.S.); +82-31-8018-0384 (S.H.L.)
| |
Collapse
|
12
|
Acetylated Resveratrol and Oxyresveratrol Suppress UVB-Induced MMP-1 Expression in Human Dermal Fibroblasts. Antioxidants (Basel) 2021; 10:antiox10081252. [PMID: 34439500 PMCID: PMC8389240 DOI: 10.3390/antiox10081252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
Resveratrol (RES) and oxyresveratrol (OXYRES) are considered and utilized as active ingredients of anti-aging skin cosmetics. However, these compounds are susceptible to oxidative discoloration and unpleasant odor in solutions, limiting their use in cosmetics. Accordingly, RES and OXYRES were chemically modified to acetylated derivatives with enhanced stability, and their anti-aging effect on the skin and detailed molecular mechanism of their acetylated derivatives were investigated. Acetylated RES and OXYRES lost their acetyl group and exerted an inhibitory effect on H2O2-induced ROS levels in human dermal fibroblast (HDF) cells. In addition, RES, OXYRES, and their acetylated derivatives suppressed UVB-induced matrix metalloproteinase (MMP)-1 expression via inhibition of mitogen-activated protein kinases (MAPKs) and Akt/mTOR signaling pathways. Furthermore, RES, OXYRES, and their acetylated derivatives suppressed type I collagen in TPA-treated HDF cells. Collectively, these results suggest the beneficial effects and underlying molecular mechanisms of RES, OXYRES, and their acetylated derivatives for anti- skin aging applications.
Collapse
|
13
|
Panax ginseng C. A. Meyer Phenolic Acid Extract Alleviates Ultraviolet B-Irradiation-Induced Photoaging in a Hairless Mouse Skin Photodamage Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9962007. [PMID: 34394397 PMCID: PMC8356000 DOI: 10.1155/2021/9962007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/18/2021] [Accepted: 07/21/2021] [Indexed: 11/18/2022]
Abstract
Here, we evaluated the in vivo skin-protective effects of topical applications of Panax ginseng C. A. Meyer extract (PG2) and its phenolic acid- (PA-) based components against UVB-induced skin photoaging. PG2 or PA applied to skin of hairless mice after UVB-irradiation alleviated UVB-induced effects observed in untreated skin, such as increased transepidermal water loss (TEWL), increased epidermal thickness, and decreased stratum corneum water content without affecting body weight. Moreover, PG2 and PA treatments countered reduced mRNA-level expression of genes encoding filaggrin (FLG), transglutaminase-1 (TGM1), and hyaluronan synthases (HAS1, HAS2, and HAS3) caused by UVB exposure and reduced UVB-induced collagen fiber degradation by inhibiting the expression of matrix metalloproteinase genes encoding MMP-1, MMP-2, and MMP-9. Meanwhile, topical treatments reduced cyclooxygenase-2 (COX-2) mRNA-level expression in photodamaged skin, leading to the inhibition of interleukin-1β (IL-1β) and interleukin-6 (IL-6) mRNA-level expression. Thus, ginseng phenolic acid-based preparations have potential value as topical treatments to protect skin against UVB-induced photoaging.
Collapse
|
14
|
Zhai X, Gong M, Peng Y, Yang D. Effects of UV Induced-Photoaging on the Hair Follicle Cycle of C57BL6/J Mice. Clin Cosmet Investig Dermatol 2021; 14:527-539. [PMID: 34040410 PMCID: PMC8140904 DOI: 10.2147/ccid.s310487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022]
Abstract
Purpose To study the changes in the hair follicle cycle and related stem cells induced by photoaging to establish a mouse model of senescence in hair follicles. Methods There were 54 C57BL6/J mice randomly divided into three groups. The UVA group and the UVB group underwent photoaging induced by UV lamps for 8 weeks. Changes in skin and the hair follicle cycle were compared by physical signs, dermoscopy, and hematoxylin and eosin and Masson's staining in each group. Western blot, immunohistochemistry, and RT-qPCR were carried out to test canonical proteins and gene expression of the Wnt signaling pathway in the samples. Immunofluorescence was chosen to show variations in the stem cells related to the hair follicle cycle. Results There were more gray hairs in the UVA group than the other groups (P<0.05). Both diameter of the hair shaft and depth of hair root were significantly decreased in the UV groups (P<0.05). Stem cells and melanocytes of the hair follicles were reduced in the UVA group. UV, especially UVB, up-regulated the expression of the Wnt signaling pathway and prolonged anagen and telogen phases in the hair follicles, compared with the control group (P<0.05). Conclusion By decreasing the number of stem cells related to hair follicles, UVA induces hair follicle photoaging characterized by hair follicle miniaturization and gray hairs. UV up-regulated the expression of the Wnt signaling pathway, and the hair follicle cycle was significantly prolonged by UVB.
Collapse
Affiliation(s)
- Xu Zhai
- Department of Plastic Surgery, The 2nd Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Meihua Gong
- Department of Plastic Surgery, The 2nd Hospital of Harbin Medical University, Harbin, People's Republic of China.,Department of Plastic and Cosmetic Surgery, Shenzhen People's Hospital, Second Affiliated Hospital of Jinan University Medical College, Shenzhen, People's Republic of China
| | - Yixuan Peng
- Department of Plastic Surgery, The 2nd Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Daping Yang
- Department of Plastic Surgery, The 2nd Hospital of Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
15
|
Gong G, Zheng Y. The anti-UV properties of Saussurea involucrate Matsum. & Koidz. Via regulating PI3K/Akt pathway in B16F10 cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113694. [PMID: 33321189 DOI: 10.1016/j.jep.2020.113694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ultra Violet (UV) radiation is the major reason for reactive oxygen species (ROS) forming, skin cell damage, melanin production, and could horribly cause skin cancer. Saussureae Involucratae Herba (SIH) is the aerial part of Saussurea involucrata Matsum. & Koidz. This Material Medica is popular with both in Uyghur and Chinese medicines filed. SIH is one of the famous species of the Asteraceae family and which prescribed for skin protection from UV-induced damage according to China Pharmacopeia (2020). However, the detailed working mechanism involved is still not elucidated. AIM OF THE STUDY We would like to probe the potential transduction pathway of SIH against UV-induced skin cell damages in cultured B16F10 cells. METHODS Western blot, luciferase assay, laser confocal, RT-PCR and flow cytometer were employed here to verify the protective pharmaceutical value of SIH in cultured B16F10 cells after UV pre-treatment. RESULTS Our result revealed that SIH attenuates ROS formation after UV-induced damage in B16F10 cells in a dose-dependent manner. Moreover, the transcriptional and translational anti-oxidative encoding genes were up-regulated under the presence of SIH. Further studies showed that SIH activated transcriptional activity of anti-oxidant response element (ARE). Moreover, we found that SIH dramatically stimulates PI3K/Akt phosphorylation in cultured B16F10 cells, this result was further verified by its specific inhibitors, LY294002 and Tocris. CONCLUSION Our findings concluded that SIH protect melanoma cells from UV damages via activating PI3K/Akt signaling and which could provide scientific evidence for anti-UV pharmaceutical values of this herbal extract.
Collapse
Affiliation(s)
- Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong, 519041, China
| | - Yuzhong Zheng
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, 521041, China.
| |
Collapse
|
16
|
Ye G, Feng Y, Mi Z, Wang D, Lin S, Chen F, Cui J, Yu Y. Expression and Functional Characterization of c-Fos Gene in Chinese Fire-Bellied Newt Cynops Orientalis. Genes (Basel) 2021; 12:genes12020205. [PMID: 33573315 PMCID: PMC7912203 DOI: 10.3390/genes12020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Abstract
c-Fos is an immediate-early gene that modulates cellular responses to a wide variety of stimuli and also plays an important role in tissue regeneration. However, the sequence and functions of c-Fos are still poorly understood in newts. This study describes the molecular cloning and characterization of the c-Fos gene (Co-c-Fos) of the Chinese fire-bellied newt, Cynops orientalis. The full-length Co-c-Fos cDNA sequence consists of a 1290 bp coding sequence that encoded 429 amino acids. The alignment and phylogenetic analyses reveal that the amino acid sequence of Co-c-Fos shared a conserved basic leucine zipper domain, including a nuclear localization sequence and a leucine heptad repeat. The Co-c-Fos mRNA is widely expressed in various tissues and is highly and uniformly expressed along the newt limb. After limb amputation, the expression of Co-c-Fos mRNA was immediately upregulated, but rapidly declined. However, the significant upregulation of Co-c-Fos protein expression was sustained for 24 h, overlapping with the wound healing stage of C. orientalis limb regeneration. To investigate if Co-c-Fos participate in newt wound healing, a skin wound healing model is employed. The results show that the treatment of T-5224, a selective c-Fos inhibitor, could largely impair the healing process of newt’s skin wound, as well as the injury-induced matrix metalloproteinase-3 upregulation, which is fundamental to wound epithelium formation. These data suggest that Co-c-Fos might participate in wound healing by modulating the expression of its potential target gene matrix metalloproteinase-3. Our study provides important insights into mechanisms that are responsible for the initiation of newt limb regeneration.
Collapse
Affiliation(s)
- Gang Ye
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, China; (G.Y.); (Y.F.); (Z.M.); (D.W.); (S.L.); (F.C.); (J.C.)
| | - Yalong Feng
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, China; (G.Y.); (Y.F.); (Z.M.); (D.W.); (S.L.); (F.C.); (J.C.)
| | - Zhaoxiang Mi
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, China; (G.Y.); (Y.F.); (Z.M.); (D.W.); (S.L.); (F.C.); (J.C.)
| | - Du Wang
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, China; (G.Y.); (Y.F.); (Z.M.); (D.W.); (S.L.); (F.C.); (J.C.)
| | - Shuai Lin
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, China; (G.Y.); (Y.F.); (Z.M.); (D.W.); (S.L.); (F.C.); (J.C.)
| | - Fulin Chen
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, China; (G.Y.); (Y.F.); (Z.M.); (D.W.); (S.L.); (F.C.); (J.C.)
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Jihong Cui
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, China; (G.Y.); (Y.F.); (Z.M.); (D.W.); (S.L.); (F.C.); (J.C.)
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Yuan Yu
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, China; (G.Y.); (Y.F.); (Z.M.); (D.W.); (S.L.); (F.C.); (J.C.)
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
- Correspondence:
| |
Collapse
|
17
|
Akbaribazm M, Khazaei MR, Khazaei F, Khazaei M. Doxorubicin and Trifolium pratense L. (Red clover) extract synergistically inhibits brain and lung metastases in 4T1 tumor-bearing BALB/c mice. Food Sci Nutr 2020; 8:5557-5570. [PMID: 33133558 PMCID: PMC7590334 DOI: 10.1002/fsn3.1820] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022] Open
Abstract
Trifolium pratense L. (Red clover-T. pratense) commonly consumed as a healthy beverage has been demonstrated to have various biological activities including antioxidant and anticancer effects. The aim of this study was to investigate the antimetastasis effects of doxorubicin (DOX) and T. pratense extract in 4T1 tumor-bearing BALB/c mice. In this study, 56 female BALB/c mice were randomly divided into seven groups (n = 8/group) to receive DOX and T. pratense extract in three different doses (100, 200, and 400 mg/kg/day) for 35 days. On day 36 after starting treatments, serum cytokines (IL-8 and IL-6) were measured. Immunohistochemical (IHC) staining was performed for GATA-3 in the brain and lung, and for CK5/6 in tumor tissues. Metastasis-related gene (matrix metalloproteinase-2 [MMP-2] and sirtuin-1 [SIRT-1]) expressions were also measured by real-time PCR. Our results showed that cotreatment with DOX and T. pratense extract improved stereological parameters (i.e., reduction in the volume of metastatic tumors) in the lung and brain and decreased the serum levels of inflammatory cytokines (IL-8 and IL-6). DOX and T. pratense extract synergistically down-regulated MMP-2 and up-regulated SIRT-1 genes, decreased the number of CK5/6-positive cells in tumor tissues, and inhibited metastasis of GATA-3-positive cells into the lung and brain. The combination of T. pratense extract and DOX synergistically inhibited the metastasis of 4T1 xenograft cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Mohsen Akbaribazm
- Student Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| | - Mohammad Rasoul Khazaei
- Fertility and Infertility Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Fatemeh Khazaei
- Student Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| | - Mozafar Khazaei
- Fertility and Infertility Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
18
|
Mai ZH, Huang Y, Huang D, Huang ZS, He ZX, Li PL, Zhang S, Weng JF, Gu WL. Reversine and herbal Xiang-Sha-Liu-Jun-Zi decoction ameliorate thioacetamide-induced hepatic injury by regulating the RelA/NF-κB/caspase signaling pathway. Open Life Sci 2020; 15:696-710. [PMID: 33817258 PMCID: PMC7747499 DOI: 10.1515/biol-2020-0059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/30/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023] Open
Abstract
This study investigated the anti-fibrotic effects of reversine and Chinese medicine Xiang–Sha–Liu–Jun–Zi decoction (XSLJZD) on thioacetamide (TAA)-induced hepatic injury. Sprague-Dawley rats were intraperitoneally administered with TAA, then injected with reversine intraperitoneally, and/or orally provided with XSLJZD. TAA resulted in liver injury with increases in the liver index and levels of serum aspartate aminotransferase (AST) and alanine aminotransferase. Reversine alleviated the liver index and AST level and improved TAA-induced pathological changes but decreased TAA-induced collagen deposition, and α-smooth muscle actin and transforming growth factor-β1 expression. Reversine also modulated the mRNA levels of inflammatory cytokines, such as RelA, interleukin (IL)-17A, IL-22, IL-1β, IL-6, NLR family pyrin domain containing 3, platelet-derived growth factor, and monocyte chemoattractant protein, and suppressed nuclear factor (NF)-κB (p65) phosphorylation and caspase 1 activation. Meanwhile, XSLJZD protected TAA-injured liver without increasing fibrosis and enhanced the regulating effect of reversine on RelA, IL-17A, IL-1β, and MCP-1 cytokines. In conclusion, reversine ameliorates liver injury and inhibits inflammation reaction by regulating NF-κB, and XSLJZD protects the liver through its synergistic effect with reversine on regulating inflammatory cytokines.
Collapse
Affiliation(s)
- Zhen-Hao Mai
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 518180, People's Republic of China.,Guangzhou Medical University, Guangzhou, Guangdong 510180, People's Republic of China
| | - Yu Huang
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 518180, People's Republic of China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, People's Republic of China
| | - Di Huang
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 518180, People's Republic of China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, People's Republic of China
| | - Zi-Sheng Huang
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 518180, People's Republic of China.,Guangzhou Medical University, Guangzhou, Guangdong 510180, People's Republic of China
| | - Zhi-Xiang He
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 518180, People's Republic of China
| | - Pei-Lin Li
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 518180, People's Republic of China
| | - Shuai Zhang
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 518180, People's Republic of China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, People's Republic of China
| | - Jie-Feng Weng
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 518180, People's Republic of China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, People's Republic of China
| | - Wei-Li Gu
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 518180, People's Republic of China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, People's Republic of China
| |
Collapse
|
19
|
Lee ES, Lee EY, Yoon J, Hong A, Nam SJ, Ko J. Sarmentosamide, an Anti-Aging Compound from a Marine-Derived Streptomyces sp. APmarine042. Mar Drugs 2020; 18:md18090463. [PMID: 32927886 PMCID: PMC7551700 DOI: 10.3390/md18090463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022] Open
Abstract
Many bioactive materials have been isolated from marine microorganisms, including alkaloids, peptides, lipids, mycosporine-like amino acids, glycosides, and isoprenoids. Some of these compounds have great potential in the cosmetic industry due to their photo-protective, anti-aging, and anti-oxidant activities. In this study, sarmentosamide (1) was isolated from marine-derived Streptomyces sp. APmarine042, after which its capacity to decrease skin aging was examined in-vitro. Sarmentosamide (1) was found to significantly reduce UVB-induced matrix metalloproteinase-1 (MMP-1) expression in normal human dermal fibroblasts (NHDFs) by inhibiting the extracellular signal-regulated kinase (ERK) and the c-Jun N-terminal kinase (JNK) phosphorylation, which are regulatory pathways upstream of MMP-1 transcription. Additionally, we confirmed that sarmentosamide (1) decreased tumor necrosis factor-alpha (TNF-α), induced MMP-1 secretion in NHDFs, and exhibited free-radical scavenging activity, as demonstrated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Therefore, our study suggests that sarmentosamide (1) could be a promising anti-aging agent that acts via the downregulation of MMP-1 expression.
Collapse
Affiliation(s)
- Eun-Soo Lee
- Amorepacific Corporation R&D Center, Yongin 17074, Korea;
| | - Eun-Young Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea; (E.-Y.L.); (J.Y.)
| | - Jisoo Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea; (E.-Y.L.); (J.Y.)
| | - Ahreum Hong
- Graduate School of Industrial Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea;
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea; (E.-Y.L.); (J.Y.)
- Correspondence: (S.-J.N.); (J.K.); Tel.: +82-2-3277-6805 (S.-J.N.); +82-31-280-5928 (J.K.)
| | - Jaeyoung Ko
- Amorepacific Corporation R&D Center, Yongin 17074, Korea;
- Correspondence: (S.-J.N.); (J.K.); Tel.: +82-2-3277-6805 (S.-J.N.); +82-31-280-5928 (J.K.)
| |
Collapse
|
20
|
Antiphotoaging Effects of 3,5-Dicaffeoyl-epi-quinic Acid via Inhibition of Matrix Metalloproteinases in UVB-Irradiated Human Keratinocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8949272. [PMID: 32419832 PMCID: PMC7206873 DOI: 10.1155/2020/8949272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/16/2020] [Accepted: 04/06/2020] [Indexed: 01/28/2023]
Abstract
UVB exposure is one of the causes of several skin complications including but not limited to premature aging, wrinkle formation, and hyperpigmentation. UV-induced skin aging is called photoaging, and oxidative stress-induced overexpression of matrix metalloproteinases (MMPs) is the main reason behind the photoaging-mediated collagen degradation. Natural origin inhibitors of MMPs are regarded as a promising approach to prevent or treat photoaging. Therefore, the present study investigated the protective effects of 3,5-dicaffeoyl-epi-quinic acid (DCEQA) in human HaCaT keratinocytes against UVB irradiation-related dysregulation of MMPs. Changes in the mRNA and protein expression and release of MMP-1, -2, and -9 were observed after UVB irradiation with or without DCEQA treatment. In addition, the effect of DCEQA on the activation of p38, JNK, and ERK MAPKs was analyzed. Treatment of UVB-irradiated HaCaT cells with 10 μM DCEQA significantly suppressed the overexpression of both mRNA and protein of MMP-1, -2, and -9 while slightly increasing the diminished type I procollagen production. UVB-induced activation of MAPKs was also ameliorated by DCEQA treatment in a dose-dependent manner. Results indicated that DCEQA treatment was able to protect keratinocytes from UVB-induced photoaging by inhibiting the stimulated production of MMPs and the related decrease in collagen production. It was suggested that DCEQA downregulated the collagen degradation via inhibition of MAPK activation, which resulted in decreased MMP activity.
Collapse
|
21
|
Shi S, Zheng G, Yang C, Chen X, Yan Q, Jiang F, Jiang X, Xin Y, Jiang G. Effects of Vitamin K3 Combined with UVB on the Proliferation and Apoptosis of Cutaneous Squamous Cell Carcinoma A431 Cells. Onco Targets Ther 2020; 12:11715-11727. [PMID: 32099380 PMCID: PMC6997229 DOI: 10.2147/ott.s228792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022] Open
Abstract
Purpose Cutaneous squamous cell carcinoma (cSCC) is the second most common form of skin cancer and its incidence continues to rise yearly. Photodynamic therapy (PDT) is a non-invasive form of cancer therapy, which utilizes the combined action of a photosensitizer, light, and oxygen molecules to selectively cause cellular damage to tumor cells. Vitamin K3 (VitK3) has been shown to induce apoptosis and inhibit the growth of tumor cells in humans. The purpose of this study was to determine the effect of VitK3 and ultraviolet radiation B (UVB) on oxidative damage, proliferation and apoptosis of A431 cells. Methods CCK-8 assay was used to detect cell proliferation; Hoechst staining, TUNEL assay and flow cytometry analysis were used to detect apoptosis. Western Blot was perfomed to measure the expression of apoptosis-related proteins. Flow cytometry analysis was employed to detect the reactive oxygen species (ROS) levels and mitochondrial membrane potential. Finally, the role of VitK3 in combination with UVB on the proliferation and apoptosis of A431 cells was investigated using mice xenograft models. Results We found that the co-treatment of VitK3 combined with UVB more significantly inhibited the growth and proliferation of A431 cells than either VitK3 or UVB alone. Hoechst 33258 staining and flow cytometry analysis revealed that apoptosis was more pronounced in the VitK3-UVB group compared to the VitK3 and UVB groups. Moreover, flow cytometry analysis showed that ROS and the depolarization of the mitochondrial membrane potential were higher in all the co-treatment groups compared to the control, VitK3, and UVB groups. The VitK3-UVB group exhibited a significantly lower tumor growth rate in mouse xenograft models. Conclusion This study reveals that VitK3 combined with UVB inhibits the growth and induces apoptosis of A431 cells in vitro and suppresses tumor growth and promotes apoptosis of cSCC in vivo.
Collapse
Affiliation(s)
- Shangyuchen Shi
- Department of Radiotherapy, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Gang Zheng
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China.,Department of Dermatology, Xuzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Huai'an 221003, People's Republic of China
| | - Chunsheng Yang
- The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, People's Republic of China
| | - Xi Chen
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Qiuyue Yan
- Department of Radiotherapy, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Fan Jiang
- Department of Radiotherapy, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Xiaojie Jiang
- Department of Radiotherapy, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Yong Xin
- Department of Radiotherapy, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| |
Collapse
|
22
|
Wang X, Hong H, Wu J. Hen collagen hydrolysate alleviates UVA-induced damage in human dermal fibroblasts. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103574] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
23
|
Aguilar-Toalá JE, Hernández-Mendoza A, González-Córdova AF, Vallejo-Cordoba B, Liceaga AM. Potential role of natural bioactive peptides for development of cosmeceutical skin products. Peptides 2019; 122:170170. [PMID: 31574281 DOI: 10.1016/j.peptides.2019.170170] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
In recent years, consumers' demand for cosmeceutical products with protective and therapeutic functions derived from natural sources have caused this industry to search for alternative active ingredients. Bioactive peptides have a wide spectrum of bioactivities, which make them ideal candidates for development of these cosmeceutical products. In vitro studies have demonstrated that bioactive peptides (obtained as extracts, hydrolysates, and/or individual peptides) exhibit biological properties including antioxidant, antimicrobial, and anti-inflammatory activities, in addition to their properties of inhibiting aging-related enzymes such as elastase, collagenase, tyrosinase and hyaluronidase. Some studies report multifunctional bioactive peptides that can simultaneously affect, beneficially, multiple physiological pathways in the skin. Moreover, in vivo studies have revealed that topical application or consumption of bioactive peptides possess remarkable skin protection. These properties suggest that bioactive peptides may contribute in the improvement of skin health by providing specific physiological functions, even though the mechanisms underlying the protective effect have not been completely elucidated. This review provides an overview of in vitro, in silico and in vivo properties of bioactive peptides with potential use as functional ingredients in the cosmeceutical field. It also describes the possible mechanisms involved as well as opportunities and challenges associated with their application.
Collapse
Affiliation(s)
- J E Aguilar-Toalá
- Protein Chemistry and Bioactive Peptides Laboratory, Department of Food Science, Purdue University, 745 Agriculture Mall Dr., West Lafayette, IN 47907, United States
| | - A Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, 46, Hermosillo, Sonora 83304, Mexico
| | - A F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, 46, Hermosillo, Sonora 83304, Mexico
| | - B Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, 46, Hermosillo, Sonora 83304, Mexico
| | - A M Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory, Department of Food Science, Purdue University, 745 Agriculture Mall Dr., West Lafayette, IN 47907, United States.
| |
Collapse
|
24
|
Hydrangenol Isolated from the Leaves of Hydrangea serrata Attenuates Wrinkle Formation and Repairs Skin Moisture in UVB-Irradiated Hairless Mice. Nutrients 2019; 11:nu11102354. [PMID: 31581754 PMCID: PMC6835603 DOI: 10.3390/nu11102354] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/20/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
Our previous study showed that hydrangenol isolated from Hydrangea serrata leaves exerts antiphotoaging activity in vitro. In this study, we determined its antiphotoaging effect in UVB-irradiated HR-1 hairless mice. We evaluated wrinkle formation, skin thickness, histological characteristics, and mRNA and protein expression using qRT-PCR and Western blot analysis in dorsal skins. Hydrangenol mitigated wrinkle formation, dorsal thickness, dehydration, and collagen degradation. Hydrangenol increased the expression of involucrin, filaggrin, and aquaporin-3 (AQP3) as well as hyaluronic acid (HA) production via hyaluronidase (HYAL)-1/-2 downregulation. Consistent with the recovery of collagen composition, the expression of Pro-COL1A1 was increased by hydrangenol. Matrix metalloproteinase (MMP)-1/-3, cyclooxygenase-2 (COX-2), and interleukin-6 (IL-6) expression was reduced by hydrangenol. Hydrangenol attenuated the phosphorylation of mitogen-activated protein kinases (MAPKs) including ERK and p38, activator protein 1 (AP-1) subunit, and signal transduction and activation of transcription 1 (STAT1). Hydrangenol upregulated the expression of nuclear factor-E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), NAD(P)H quinone dehydrogenase 1 (NQO-1), glutamate cysteine ligase modifier subunit (GCLM), and glutamate cysteine ligase catalysis subunit (GCLC). Taken together, our data suggest that hydrangenol can prevent wrinkle formation by reducing MMP and inflammatory cytokine levels and increasing the expression of moisturizing factors and antioxidant genes.
Collapse
|
25
|
Weng JR, Huang TH, Lin ZC, Alalaiwe A, Fang JY. Cutaneous delivery of [1-(4-chloro-3-nitrobenzenesulfonyl)-1H-indol-3-yl]-methanol, an indole-3-carbinol derivative, mitigates psoriasiform lesion by blocking MAPK/NF-κB/AP-1 activation. Biomed Pharmacother 2019; 119:109398. [PMID: 31493747 DOI: 10.1016/j.biopha.2019.109398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 02/03/2023] Open
Abstract
[1-(4-chloro-3-nitrobenzenesulfonyl)-1H-indol-3-yl]-methanol (CIM) has been used as a bioactive agent for inhibiting tumor growth and angiogenesis via mitogen-activated protein kinase (MAPK) and NF-κB blocking. The present work was undertaken to investigate the potential of CIM against psoriasis using imiquimod (IMQ)-stimulated psoriasis-like mouse and in vitro HaCaT keratinocytes as the models. We demonstrated that topical CIM treatment reduced IMQ-activated scaling, erythema, and barrier dysfunction. This compound also restrained the recruitment of neutrophils. The cytokines, including TNF-α, IL-1β, IL-6, and IL-17 in psoriasiform skin, can be attenuated to normal baseline by CIM. Topically applied CIM can be easily delivered into skin based on the affinity with stratum corneum (SC) ceramides. IMQ intervention increased the permeability by 3-fold as compared to healthy skin. CIM ameliorated psoriatic lesion without incurring overt signs of irritation. Both TNF-α and IMQ were employed as the stimulators to activate HaCaT for reciprocal elucidation of the mechanism of action. CIM inhibited the overexpression of IL-1β, IL-6, and IL-24 in HaCaT. CIM exerted anti-inflammatory activity by suppressing the phosphorylation of NF-κB and activator protein-1 (AP-1) through MAPK pathways. Our results indicate that CIM has potential as the antipsoriatic molecule. The detailed signaling pathways still need further investigation.
Collapse
Affiliation(s)
- Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan; School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwane; Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwang
| | - Zih-Chan Lin
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
26
|
Song HK, Noh EM, Kim JM, You YO, Kwon KB, Lee YR. Reversine inhibits MMP-3, IL-6 and IL-8 expression through suppression of ROS and JNK/AP-1 activation in interleukin-1β-stimulated human gingival fibroblasts. Arch Oral Biol 2019; 108:104530. [PMID: 31470141 DOI: 10.1016/j.archoralbio.2019.104530] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/08/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Periodontitis is an inflammatory disease of the supporting tissue around teeth commonly caused by gram-negative bacterial infections. Interleukin (IL)-1β, a cytokine involved in host immune and inflammatory responses, is known to induce the activation of various intracellular signaling pathways. One of these signaling mechanisms involves the regulation of gene expression by activation of transcription factors (AP-1 and NF-κB). These transcription factors are controlled by mitogen-activated protein kinases (MAPKs), which increase cytokine and matrix metalloproteinase (MMP) expression. We examined the preventive effects of reversine, a 2,6-disubstituted purine derivative, on cytokine and MMP-3 expression in human gingival fibroblasts (HGFs) stimulated with IL-lβ. STUDY DESIGN Western blot analyses were performed to verify the activities of MAPK, p65, p50, and c-Jun and the expression of MMPs in IL-1β-stimulated HGFs. Cytokine and MMP-3 expression in IL-1β-stimulated HGFs was measured by real-time quantitative polymerase chain reaction. RESULTS Reversine decreased the IL-1β-induced expression of proinflammatory cytokines (IL-6 and IL-8) and MMP-3 in HGFs. Furthermore, the mechanism underlying the effects of reversine involved the suppression of IL-1β-stimulated MAPK activation and AP-1 activation. CONCLUSION Reversine inhibits IL-1β-induced MMP and cytokine expression via inhibition of MAPK/AP-1 activation and ROS generation. Therefore, we suggest that reversine may be an effective therapeutic candidate for preventing periodontitis.
Collapse
Affiliation(s)
- Hyun-Kyung Song
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan City, Jeonbuk, 570-749, South Korea
| | - Eun-Mi Noh
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan City, Jeonbuk, 570-749, South Korea; Department of Oral Biochemistry, Institue of Wonkwang Dental Research, School of Dentistry, Wonkwang University, Iksan City, Jeonbuk, 570-749, South Korea
| | - Jeong-Mi Kim
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan City, Jeonbuk, 570-749, South Korea; Department of Oral Biochemistry, and Institute of Biomaterials, Implant, School of Dentistry, Wonkwang University, Iksan City, Jeonbuk, 570-749, South Korea
| | - Yong-Ouk You
- Department of Oral Biochemistry, and Institute of Biomaterials, Implant, School of Dentistry, Wonkwang University, Iksan City, Jeonbuk, 570-749, South Korea
| | - Kang-Beom Kwon
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan City, Jeonbuk, 570-749, South Korea; Department of Korean Physiology, Wonkwang University School of Korean Medicine, Iksan City, Jeonbuk, 570-749, South Korea.
| | - Young-Rae Lee
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan City, Jeonbuk, 570-749, South Korea; Department of Oral Biochemistry, and Institute of Biomaterials, Implant, School of Dentistry, Wonkwang University, Iksan City, Jeonbuk, 570-749, South Korea.
| |
Collapse
|
27
|
Zhen AX, Piao MJ, Kang KA, Fernando PDSM, Kang HK, Koh YS, Hyun JW. Esculetin Prevents the Induction of Matrix Metalloproteinase-1 by Hydrogen Peroxide in Skin Keratinocytes. J Cancer Prev 2019; 24:123-128. [PMID: 31360691 PMCID: PMC6619853 DOI: 10.15430/jcp.2019.24.2.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 11/10/2022] Open
Abstract
Background Reactive oxygen species (ROS) are involved in various cellular diseases. Excessive ROS can cause intracellular oxidative stress, resulting in a calcium imbalance and even aging. In this study, we evaluated the protective effect of esculetin on oxidative stress-induced aging in human HaCaT keratinocytes. Methods Human keratinocytes were pretreated with esculetin for 30 minutes and treated with H2O2. Then, the protective effects on oxidative stress-induced matrix metalloproteinase (MMP)-1 were detected by Flou-4-AM staining, reverse transcription-PCR, Western blotting, and quantitative fluorescence assay. Results Esculetin prevented H2O2-induced aging by inhibiting MMP-1 mRNA, protein, and activity levels. In addition, esculetin decreased abnormal levels of phospho-MEK1, phospho-ERK1/2, phospho-SEK1, phospho-JNK1/2, c-Fos, and phospho-c-Jun and inhibited activator protein 1 binding activity. Conclusions Esculetin prevented excessive levels of intracellular calcium and reduced the expression levels of aging-related proteins.
Collapse
Affiliation(s)
- Ao Xuan Zhen
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea
| | - Mei Jing Piao
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea
| | - Kyoung Ah Kang
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea
| | | | - Hee Kyoung Kang
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea
| | - Young Sang Koh
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea
| | - Jin Won Hyun
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea
| |
Collapse
|
28
|
Han HS, Shin JS, Myung DB, Ahn HS, Lee SH, Kim HJ, Lee KT. Hydrangea serrata (Thunb.) Ser. Extract Attenuate UVB-Induced Photoaging through MAPK/AP-1 Inactivation in Human Skin Fibroblasts and Hairless Mice. Nutrients 2019; 11:nu11030533. [PMID: 30823635 PMCID: PMC6470489 DOI: 10.3390/nu11030533] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Skin photoaging is mainly caused by exposure to ultraviolet (UV) light, which increases expressions of matrix metalloproteinases (MMPs) and destroys collagen fibers, consequently inducing wrinkle formation. Nutritional factors have received scientific attention for use as agents for normal skin functions. The aim of this study was to investigate the effect of hot water extracts from the leaves of Hydrangea serrata (Thunb.) Ser. (WHS) against ultraviolet B (UVB)-induced skin photoaging and to elucidate the underlying molecular mechanisms in human foreskin fibroblasts (Hs68) and HR-1 hairless mice. WHS recovered UVB-reduced cell viability and ameliorated oxidative stress by inhibiting intracellular reactive oxygen species (ROS) generation in Hs68 cells. WHS rescued UVB-induced collagen degradation by suppressing MMP expression, and reduced the mRNA levels of inflammatory cytokines. These anti-photoaging activities of WHS were associated with inhibition of the activator protein 1 (AP-1), signal transduction and activation of transcription 1 (STAT1), and mitogen-activated protein kinase (MAPK) signaling pathways. Oral administration of WHS effectively alleviated dorsal skin from wrinkle formation, epidermal thickening, collagen degradation, and skin dehydration in HR-1 hairless mice exposed to UVB. Notably, WHS suppressed UVB activation of the AP-1 and MAPK signaling pathways in dorsal mouse skin tissues. Taken together, our data indicate that WHS prevents UVB-induced skin damage due to collagen degradation and MMP activation via inactivation of MAPK/AP-1 signaling pathway.
Collapse
Affiliation(s)
- Hee-Soo Han
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea.
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea.
| | - Ji-Sun Shin
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea.
| | - Da-Bin Myung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea.
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea.
| | - Hye Shin Ahn
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Korea.
| | - Sun Hee Lee
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Korea.
| | - Hyoung Ja Kim
- Molecular Recognition Research Center, Materials and Life Science Research Division, Korea Institute of Science and Technology, Seoul 02792, Korea.
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea.
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
29
|
Hyun YJ, Piao MJ, Kang KA, Zhen AX, Madushan Fernando PDS, Kang HK, Ahn YS, Hyun JW. Effect of Fermented Fish Oil on Fine Particulate Matter-Induced Skin Aging. Mar Drugs 2019; 17:md17010061. [PMID: 30669248 PMCID: PMC6356237 DOI: 10.3390/md17010061] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/21/2022] Open
Abstract
Skin is exposed to various harmful environmental factors such as air pollution, which includes different types of particulate matter (PM). Atmospheric PM has harmful effects on humans through increasing the generation of reactive oxygen species (ROS), which have been reported to promote skin aging via the induction of matrix metalloproteinases (MMPs), which in turn can cause the degradation of collagen. In this study, we investigated the effect of fermented fish oil (FFO) derived from mackerel on fine PM (particles with a diameter < 2.5 µm: PM2.5)-induced skin aging in human keratinocytes. We found that FFO inhibited the PM2.5-induced generation of intracellular ROS and MMPs, including MMP-1, MMP-2, and MMP-9. In addition, FFO significantly abrogated the elevation of intracellular Ca2+ levels in PM2.5-treated cells and was also found to block the PM2.5-induced mitogen-activated protein kinase/activator protein 1 (MAPK/AP-1) pathway. In conclusion, FFO has an anti-aging effect on PM2.5-induced aging in human keratinocytes.
Collapse
Affiliation(s)
- Yu Jae Hyun
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | - Mei Jing Piao
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | - Kyoung Ah Kang
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | - Ao Xuan Zhen
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | | | - Hee Kyoung Kang
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | - Yong Seok Ahn
- Choung Ryong Fisheries Co. LTD, 7825 Iljudong-ro, Namwon-epu, Seogwipo, Jeju 63612, Korea.
| | - Jin Won Hyun
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
30
|
Cui B, Liu Q, Tong L, Feng X. The effects of the metformin on inhibition of UVA-induced expression of MMPs and COL-I in human skin fibroblasts. EUR J INFLAMM 2019. [DOI: 10.1177/2058739219876423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study was to investigate the effects of metformin (MF) on ultraviolet A (UVA)-induced expression of matrix metalloproteinases (MMPs) and type I collagen (COL-I) in human skin fibroblasts (HSFs). HSFs were cultured in vitro and divided into control group, UVA group, and UVA + MF group. Cell proliferation was detected by CCK-8 method, and intracellular reactive oxygen species (ROS) level was detected by flow cytometry with fluorescent probe 2′,7′-dichlorofluorescein diacetate (DCF-DA) staining. Meanwhile, real-time polymerase chain reaction (PCR) was used to examine the relative messenger RNA (mRNA) expression of aging-related genes, including MMP1, MMP3, and COL-I. Moreover, the expression of MMP1, MMP3, and COL-I proteins was further detected by western blot. Compared with the control group, the ROS content in the UVA group was increased significantly ( P < 0.05), while the ROS content in the UVA + MF group was evidently lower than that in the UVA group ( P < 0.05). In addition, the MMP1 and MMP3 mRNA levels were significantly elevated, while the COL-I mRNA was significantly decreased in UVA-induced HSF cells compared with the control cells. However, MF could significantly inhibit the improved MMP1 and MMP3 mRNA level and increase the COL-I mRNA level. Moreover, MF could significantly reverse the increasing MMP1 and MMP3 protein level and decreasing COL-I protein level induced by UVA. In conclusion, MF can increase the antioxidant capacity of cells and increase the synthesis of COL-I by inhibiting the level of intracellular ROS and the expression of related MMPs, thereby inhibiting the UVA-induced photoaging effect of HSF.
Collapse
Affiliation(s)
- Bangsheng Cui
- Department of Orthopedics, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, P.R. China
| | - Qi Liu
- Department of Dermatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, P.R. China
| | - Ling Tong
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, P.R. China
| | - Xuefeng Feng
- Department of Orthopedics, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, P.R. China
| |
Collapse
|
31
|
Avola R, Graziano ACE, Pannuzzo G, Bonina F, Cardile V. Hydroxytyrosol from olive fruits prevents blue-light-induced damage in human keratinocytes and fibroblasts. J Cell Physiol 2018; 234:9065-9076. [PMID: 30367495 DOI: 10.1002/jcp.27584] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022]
Abstract
Skin aging is a complex biological process influenced by a combination of endogenous or intrinsic and exogenous or extrinsic factors due to environmental damage. The primary environmental factor that causes human skin aging is the ultraviolet irradiation from the sun. Recently, it was established that the long-term exposure to light-emitting-diode-generated blue light (LED-BL) from electronic devices seems to have a relevant implication in the molecular mechanisms of premature photoaging. BL irradiation induces changes in the synthesis of various skin structures through DNA damage and overproduction of reactive oxygen species (ROS), matrix metalloproteinase-1 and -12, which are responsible for the loss of the main components of the extracellular matrix of skin like collagen type I and elastin. In the current study, using human keratinocytes and fibroblasts exposed to specific LED-BL radiation doses (45 and 15 J/cm 2 ), we produced an in vitro model of skin photoaging. We verified that, compared with untreated controls, the treatment with LED-BL irradiation results in the alteration of metalloprotease-1 (collagenase), metalloprotease-12 (elastase), 8-dihydroxy-2'-deoxyguanosine, proliferating cell nuclear antigen, and collagen type I. Moreover, we showed that the photoaging prevention is possible via the use of hydroxytyrosol extracted from olive fruits, well known for antioxidant properties. Our results demonstrated that hydroxytyrosol protects keratinocytes and fibroblasts from LED-BL-induced damage. Thus, hydroxytyrosol might be proposed as an encouraging candidate for the prevention of BL-induced premature photoaging.
Collapse
Affiliation(s)
- Rosanna Avola
- Department of Biomedical and Biotechnological Science-Section of Physiology, University of Catania, Via Santa Sofia, Catania, Italy
| | - Adriana Carol Eleonora Graziano
- Department of Biomedical and Biotechnological Science-Section of Physiology, University of Catania, Via Santa Sofia, Catania, Italy
| | - Giovanna Pannuzzo
- Department of Biomedical and Biotechnological Science-Section of Physiology, University of Catania, Via Santa Sofia, Catania, Italy
| | - Francesco Bonina
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Science-Section of Physiology, University of Catania, Via Santa Sofia, Catania, Italy
| |
Collapse
|
32
|
Liu Y, Hwang E, Ngo HTT, Perumalsamy H, Kim YJ, Li L, Yi TH. Protective Effects of Euphrasia officinalis Extract against Ultraviolet B-Induced Photoaging in Normal Human Dermal Fibroblasts. Int J Mol Sci 2018; 19:ijms19113327. [PMID: 30366440 PMCID: PMC6275060 DOI: 10.3390/ijms19113327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 02/02/2023] Open
Abstract
Ultraviolet (UV) radiation induces skin photoaging, which is associated with the elevation of matrix metalloproteinases (MMPs) and the impairment of collagen. The Euphrasia species play a well-known role in the treatment of certain eye disorders through their anti-oxidative and anti-inflammatory activities. However, their protective activity toward UVB-induced damage remains unclear. In the present study, we investigated the protective effect of Euphrasia officinalis (95% ethanol extract) on UVB-irradiated photoaging in normal human dermal fibroblasts (NHDFs). Our results show that Euphrasia officinalis extract exhibited obvious reactive oxygen species (ROS) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, enhanced NHDF cell migration, and reduced UVB-induced apoptosis. The UVB-induced increases in MMP-1 and MMP-3 and decrease in type I procollagen were ameliorated by Euphrasia officinalis treatment, which worked by suppressing the mitogen-activated protein kinase (MAPK) and nuclear transcription factor activator protein 1 (AP-1) signaling pathways. Taken together, our data strongly suggest that Euphrasia officinalis ethanol extract could reduce UVB-induced photoaging by alleviating oxidative stress, proinflammatory activity, and cell apoptosis.
Collapse
Affiliation(s)
- Ying Liu
- College of Life Sciences, Kyung Hee University, 1732, Deogyeong daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea.
| | - Eunson Hwang
- College of Life Sciences, Kyung Hee University, 1732, Deogyeong daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea.
| | - Hien T T Ngo
- College of Life Sciences, Kyung Hee University, 1732, Deogyeong daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea.
| | - Haribalan Perumalsamy
- College of Life Sciences, Kyung Hee University, 1732, Deogyeong daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea.
| | - Yeon Ju Kim
- College of Life Sciences, Kyung Hee University, 1732, Deogyeong daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea.
| | - Lu Li
- College of Life Sciences, Kyung Hee University, 1732, Deogyeong daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea.
| | - Tae-Hoo Yi
- College of Life Sciences, Kyung Hee University, 1732, Deogyeong daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea.
| |
Collapse
|
33
|
Effects of FM0807, a novel curcumin derivative, on lipopolysaccharide-induced inflammatory factor release via the ROS/JNK/p53 pathway in RAW264.7 cells. Biosci Rep 2018; 38:BSR20180849. [PMID: 30249753 PMCID: PMC6200701 DOI: 10.1042/bsr20180849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/04/2018] [Accepted: 09/21/2018] [Indexed: 12/29/2022] Open
Abstract
Purpose: Sepsis is a systemic inflammatory response caused by infection. Curcumin is known to have antioxidant and anti-inflammatory activities. FM0807, a curcumin derivative, was investigated in the present study to determine its effect on cytokines and the possible molecular mechanism. Main methods: The experiments were carried out in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Cell viability was measured by MTT assay. ELISA, Griess assays, fluorescence-based quantitative PCR, flow cytometric analysis, 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) experiments, and Western blotting were carried out to assess the potential effects of FM0807 on LPS-induced RAW 264.7 cells. Significant findings: FM0807 had no cytotoxic effects on RAW 264.7 cells. Furthermore, pretreatment with FM0807 inhibited the inflammatory factor tumor necrosis factor-α (TNF-α), interleukin (IL) 1β (IL-1β), IL-6, and inducible nitric oxide synthase (iNOS) at the protein and gene levels. FM0807 also inhibited the production of reactive oxygen species (ROS) and apoptosis. In addition, the activation of the ROS/JNK (c-jun NH2-terminal kinase)/p53 signaling pathway was inhibited by FM0807 in RAW 264.7 cells in vitro. Conclusion: FM0807 has anti-inflammatory activity in vitro, which suggests a potential clinical application in sepsis. The anti-inflammatory activity of FM0807 may be mediated by the ROS/JNK/p53 signaling pathway.
Collapse
|