1
|
Chennareddy S, Rindler K, Ruggiero JR, Alkon N, Cohenour ER, Tran S, Weninger W, Griss J, Jonak C, Brunner PM. Single-cell RNA sequencing comparison of CD4+, CD8+ and TCR-γδ+ cutaneous T-cell lymphomas reveals subset-specific molecular phenotypes. Br J Dermatol 2024:ljae313. [PMID: 39133553 DOI: 10.1093/bjd/ljae313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/17/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Malignant clones of primary cutaneous T-cell lymphomas (CTCL) can show a CD4, CD8 or TCR-γδ phenotype, but their individual impact on tumor biology and skin lesion formation remains ill-defined. OBJECTIVES To perform a comprehensive molecular characterization of CD4+ vs. CD8+ and TCR-γ/δ+ CTCL lesions. METHODS We performed scRNA-seq of 18 CTCL skin biopsies to compare classic CD4+ advanced-stage mycosis fungoides (MF) with TCR-γ/δ+MF and primary cutaneous CD8+ aggressive epidermotropic cytotoxic T-cell lymphoma (Berti's lymphoma). RESULTS Malignant clones of TCR-γ/δ+MF and Berti's lymphoma showed similar clustering patterns distinct from CD4+MF, along with increased expression of cytotoxic markers such as NKG7, CTSW, GZMA, and GZMM. Only advanced-stage CD4+MF clones expressed central memory T-cell markers (SELL, CCR7, LEF1), alongside B1/B2 blood involvement, whereas TCR-γ/δ+MF and Berti's lymphoma harbored a more tissue-resident phenotype (CD69, CXCR4, NR4A1) without detectable cells in the blood. CD4+MF and TCR-γ/δ+MF skin lesions harbored strong type 2 immune activation across myeloid cells, while Berti's lymphoma was more skewed towards type 1 immune responses. Both CD4+MF and TCR-γ/δ+MF lesions showed upregulation of keratinocyte hyperactivation markers such as S100As and KRT16 genes. This increase was entirely absent in Berti's lymphoma, possibly reflecting an aberrant keratinocyte response to invading tumor cells, that could contribute to the formation of the typical ulcero-necrotic lesions within this entity. CONCLUSIONS Our scRNAseq profiling study reveals specific molecular patterns associated with distinct CTCL subtypes.
Collapse
Affiliation(s)
- Sumanth Chennareddy
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - John R Ruggiero
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Austria
| | - Emry R Cohenour
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sophia Tran
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Austria
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Austria
| | - Patrick M Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Yang M, Xuan Z, Wang Q, Yan S, Zhou D, Naman CB, Zhang J, He S, Yan X, Cui W. Fucoxanthin has potential for therapeutic efficacy in neurodegenerative disorders by acting on multiple targets. Nutr Neurosci 2021; 25:2167-2180. [PMID: 33993853 DOI: 10.1080/1028415x.2021.1926140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fucoxanthin, one of the most abundant carotenoids from edible brown seaweeds, for years has been used as a bioactive dietary supplement and functional food ingredient. Recently, fucoxanthin was reported to penetrate the blood-brain barrier, and was superior to other carotenoids to exert anti-neurodegenerative disorder effects via acting on multiple targets, including amyloid protein aggregation, oxidative stress, neuroinflammation, neuronal loss, neurotransmission dysregulation and gut microbiota disorder. However, the concentration of fucoxanthin required for in vivo neuroprotective effects is somewhat high, and the poor bioavailability of this molecule might prevent its clinical use. As such, new strategies have been introduced to overcome these obstacles, and may help to develop fucoxanthin as a novel lead for neurodegenerative disorders. Moreover, it has been shown that some metabolites of fucoxanthin may produce potent in vivo neuroprotective effects. Altogether, these studies suggest the possibility for future development of fucoxanthin as a one-compound-multiple-target or pro-drug type pharmaceutical or nutraceutical treatment for neurodegenerative disorders.Trial registration: ClinicalTrials.gov identifier: NCT03625284.Trial registration: ClinicalTrials.gov identifier: NCT02875392.Trial registration: ClinicalTrials.gov identifier: NCT03613740.Trial registration: ClinicalTrials.gov identifier: NCT04761406.
Collapse
Affiliation(s)
- Mengxiang Yang
- Ningbo Kangning Hospital, Ningbo, People's Republic of China.,Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Zhenquan Xuan
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Qiyao Wang
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Sicheng Yan
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Dongsheng Zhou
- Ningbo Kangning Hospital, Ningbo, People's Republic of China
| | - C Benjamin Naman
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, People's Republic of China
| | - Jinrong Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, People's Republic of China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, People's Republic of China
| | - Xiaojun Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, People's Republic of China.,Laboratory of Seafood Processing, Innovative and Application Institute, Zhejiang Ocean University, Zhoushan, People's Republic of China
| | - Wei Cui
- Ningbo Kangning Hospital, Ningbo, People's Republic of China.,Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| |
Collapse
|
3
|
Pemmari T, Laakso J, Patrikainen MS, Parkkila S, Järvinen TAH. Carbonic Anhydrase VI in Skin Wound Healing Study on Car6 Knockout Mice. Int J Mol Sci 2020; 21:ijms21145092. [PMID: 32708518 PMCID: PMC7404312 DOI: 10.3390/ijms21145092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 01/22/2023] Open
Abstract
Carbonic anhydrases (CAs) contribute to tumor cell migration by generating an acidic environment through the conversion of carbon dioxide to bicarbonate and a proton. CA VI is secreted to milk and saliva, and it could contribute to wound closure, as a potential trophic factor, in animals that typically lick their wounds. Our aim was to investigate whether human CA VI improves skin-wound healing in full-thickness skin-wound models. The effect was studied in Car6 -/- knockout mice and wild type littermates. Half of both mice strains were given topically administered, milk-derived CA VI after wounding and eight hours later. The amount of topically given CA VI exceeded the predicted amount of natural saliva-delivered CA VI. The healing was followed for seven days and studied from photographs and histological sections. Our results showed no significant differences between the treatment groups in wound closure, re-epithelization, or granulation tissue formation, nor did the Car6 genotype affect the healing. Our results demonstrate that CA VI does not play a major role in skin-wound healing and also suggest that saliva-derived CA VI is not responsible for the licking-associated improved wound healing in animals.
Collapse
Affiliation(s)
- Toini Pemmari
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Jaakko Laakso
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Maarit S Patrikainen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- Fimlab Ltd., Tampere University Hospital, 33520 Tampere, Finland
| | - Tero A H Järvinen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- Department of Orthopedics and Traumatology, Tampere University Hospital, 33520 Tampere, Finland
| |
Collapse
|