1
|
Tao L, Wang J, Wang K, Liu Q, Li H, Xu S, Gu C, Zhu Y. Exerkine FNDC5/irisin-enriched exosomes promote proliferation and inhibit ferroptosis of osteoblasts through interaction with Caveolin-1. Aging Cell 2024; 23:e14181. [PMID: 38689463 PMCID: PMC11320359 DOI: 10.1111/acel.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Postmenopausal osteoporosis is a prevalent metabolic bone disorder characterized by a decrease in bone mineral density and deterioration of bone microstructure. Despite the high prevalence of this disease, no effective treatment for osteoporosis has been developed. Exercise has long been considered a potent anabolic factor that promotes bone mass via upregulation of myokines secreted by skeletal muscle, exerting long-term osteoprotective effects and few side effects. Irisin was recently identified as a novel myokine that is significantly upregulated by exercise and could increase bone mass. However, the mechanisms underlying exercise-induced muscle-bone crosstalk remain unclear. Here, we identified that polyunsaturated fatty acids (arachidonic acid and docosahexaenoic acid) are increased in skeletal muscles following a 10-week treadmill exercise programme, which then promotes the expression and release of FNDC5/irisin. In osteoblasts, irisin binds directly to Cav1, which recruits and interacts with AMP-activated protein kinase α (AMPKα) to activate the AMPK pathway. Nrf2 is the downstream target of the AMPK pathway and increases the transcription of HMOX1 and Fpn. HMOX1 is involved in regulating the cell cycle and promotes the proliferation of osteoblasts. Moreover, upregulation of Fpn in osteoblasts enhanced iron removal, thereby suppressing ferroptosis in osteoblasts. Additionally, we confirmed that myotube-derived exosomes are involved in the transportation of irisin and enter osteoblasts through caveolae-mediated endocytosis. In conclusion, our findings highlight the crucial role of irisin, present in myotube-derived exosomes, as a crucial regulator of exercise-induced protective effects on bone, which provides novel insights into the mechanisms underlying exercise-dependent treatment of osteoporosis.
Collapse
Affiliation(s)
- Lin Tao
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Jinpeng Wang
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Ke Wang
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Qichang Liu
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Hongyang Li
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Site Xu
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Chunjian Gu
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Yue Zhu
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
2
|
Seth N, Abujamra BA, Boulina M, Lev-Tov H, Jozic I. Upregulation of Caveolae-Associated Proteins in Lesional Samples of Hidradenitis Suppurativa: A Case Series Study. JID INNOVATIONS 2023; 3:100223. [PMID: 37731470 PMCID: PMC10507649 DOI: 10.1016/j.xjidi.2023.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 09/22/2023] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic, inflammatory skin condition. HS disease management has proven difficult owing to an insufficient understanding of the immunological processes that drive its pathogenesis. We have demonstrated that misregulation of caveolae perturbs inflammatory responses, inhibits cutaneous wound healing, and contributes to immune privilege collapse in other hair follicle-related diseases. However, nothing is known about its role or the role of structural components of caveolae (caveolin [Cav1] 1, Cav2, and Cavin-1) in the pathophysiology of HS. We aimed to identify whether Cav1, Cav2, and Cavin-1 may serve as immunohistochemical markers of HS. Lesional and perilesional HS skin samples from patients (n = 7, mean age = 35.7 years, range = 20-57 years) with active HS and normal skin from control participants (n = 4, mean age = 36.7 years, range = 23-49 years) were used to assess Cav1, Cav2, and Cavin-1 expression and localization by immunofluorescence staining. HS samples demonstrated increased levels of Cav1 compared with normal skin, whereas Cav1, Cav2, and Cavin-1 were all elevated in hair follicles of lesional versus perilesional HS samples, suggesting a potentially novel therapeutic target and highlighting caveolae as potential biomarkers of HS.
Collapse
Affiliation(s)
- Neil Seth
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Beatriz Abdo Abujamra
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Maria Boulina
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Hadar Lev-Tov
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ivan Jozic
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
3
|
Abstract
It took several hundred million years of evolution, in order to develop the endocrine vitamin D signaling system, which is formed by a nuclear receptor, the transcription factor VDR (vitamin D receptor), its ligand, the vitamin D3 metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) and several metabolizing enzymes and transport proteins. Even within the nuclear receptor superfamily the affinity of VDR for 1,25(OH)2D3 is outstandingly high (KD = 0.1 nM). The activation of VDR by 1,25(OH)2D3 is the core mechanism of genomic signaling of vitamin D3, which results in the modulation of the epigenome at thousands of promoter and enhancer regions as well as finally in the activation or repression of hundreds of target gene transcription. In addition, rapid non-genomic actions of vitamin D are described, which are mechanistically far less understood. The main function of vitamin D is to keep the human body in homeostasis. This implies the control of calcium levels, which is essential for bone mineralization, as well as for pushing of innate immunity to react sufficiently strong to microbe infection and preventing overreactions of adaptive immunity, i.e., not to cause autoimmune diseases. This review will discuss whether genomic signaling is sufficient for explaining all physiological functions of vitamin D3.
Collapse
Affiliation(s)
- Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, PL-10748 Olsztyn, Poland; School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland.
| |
Collapse
|
4
|
Żmijewski MA. Nongenomic Activities of Vitamin D. Nutrients 2022; 14:nu14235104. [PMID: 36501134 PMCID: PMC9737885 DOI: 10.3390/nu14235104] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Vitamin D shows a variety of pleiotropic activities which cannot be fully explained by the stimulation of classic pathway- and vitamin D receptor (VDR)-dependent transcriptional modulation. Thus, existence of rapid and nongenomic responses to vitamin D was suggested. An active form of vitamin D (calcitriol, 1,25(OH)2D3) is an essential regulator of calcium-phosphate homeostasis, and this process is tightly regulated by VDR genomic activity. However, it seems that early in evolution, the production of secosteroids (vitamin-D-like steroids) and their subsequent photodegradation served as a protective mechanism against ultraviolet radiation and oxidative stress. Consequently, direct cell-protective activities of vitamin D were proven. Furthermore, calcitriol triggers rapid calcium influx through epithelia and its uptake by a variety of cells. Subsequently, protein disulfide-isomerase A3 (PDIA3) was described as a membrane vitamin D receptor responsible for rapid nongenomic responses. Vitamin D was also found to stimulate a release of secondary massagers and modulate several intracellular processes-including cell cycle, proliferation, or immune responses-through wingless (WNT), sonic hedgehog (SSH), STAT1-3, or NF-kappaB pathways. Megalin and its coreceptor, cubilin, facilitate the import of vitamin D complex with vitamin-D-binding protein (DBP), and its involvement in rapid membrane responses was suggested. Vitamin D also directly and indirectly influences mitochondrial function, including fusion-fission, energy production, mitochondrial membrane potential, activity of ion channels, and apoptosis. Although mechanisms of the nongenomic responses to vitamin D are still not fully understood, in this review, their impact on physiology, pathology, and potential clinical applications will be discussed.
Collapse
Affiliation(s)
- Michał A Żmijewski
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, PL-80211 Gdańsk, Poland
| |
Collapse
|
5
|
Takamura N, Yamaguchi Y. Involvement of caveolin-1 in skin diseases. Front Immunol 2022; 13:1035451. [PMID: 36532050 PMCID: PMC9748611 DOI: 10.3389/fimmu.2022.1035451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 12/02/2022] Open
Abstract
The skin is the outermost layer and largest organ in the human body. Since the skin interfaces with the environment, it has a variety of roles, including providing a protective barrier against external factors, regulating body temperature, and retaining water in the body. It is also involved in the immune system, interacting with immune cells residing in the dermis. Caveolin-1 (CAV-1) is essential for caveolae formation and has multiple functions including endocytosis, lipid homeostasis, and signal transduction. CAV-1 is known to interact with a variety of signaling molecules and receptors and may influence cell proliferation and migration. Several skin-related disorders, especially those of the inflammatory or hyperproliferative type such as skin cancers, psoriasis, fibrosis, and wound healing, are reported to be associated with aberrant CAV-1 expression. In this review, we have explored CAV-1 involvement in skin physiology and skin diseases.
Collapse
|
6
|
Molecular characterization and expression profiling of caveolin-1 from Amphiprion clarkii and elucidation of its involvement in antiviral response and redox homeostasis. Comp Biochem Physiol B Biochem Mol Biol 2022; 262:110775. [DOI: 10.1016/j.cbpb.2022.110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022]
|
7
|
Savina A, Jaffredo T, Saldmann F, Faulkes CG, Moguelet P, Leroy C, Marmol DD, Codogno P, Foucher L, Zalc A, Viltard M, Friedlander G, Aractingi S, Fontaine RH. Single-cell transcriptomics reveals age-resistant maintenance of cell identities, stem cell compartments and differentiation trajectories in long-lived naked mole-rats skin. Aging (Albany NY) 2022; 14:3728-3756. [PMID: 35507806 PMCID: PMC9134947 DOI: 10.18632/aging.204054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/25/2022] [Indexed: 11/25/2022]
Abstract
Naked mole-rats (NMR) are subterranean rodents characterized by an unusual longevity coupled with an unexplained resistance to aging. In the present study, we performed extensive in situ analysis and single-cell RNA-sequencing comparing young and older animals. At variance with other species, NMR exhibited a striking stability of skin compartments and cell types, which remained stable over time without aging-associated changes. Remarkably, the number of stem cells was constant throughout aging. We found three classical cellular states defining a unique keratinocyte differentiation trajectory that were not altered after pseudo-temporal reconstruction. Epidermal gene expression did not change with aging either. Langerhans cell clusters were conserved, and only a higher basal stem cell expression of Igfbp3 was found in aged animals. In accordance, NMR skin healing closure was similar in young and older animals. Altogether, these results indicate that NMR skin is characterized by peculiar genetic and cellular features, different from those previously demonstrated for mice and humans. The remarkable stability of the aging NMR skin transcriptome likely reflects unaltered homeostasis and resilience.
Collapse
Affiliation(s)
| | - Thierry Jaffredo
- Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, INSERM, Paris, France
| | | | - Chris G. Faulkes
- Queen Mary University of London, School of Biological and Chemical Sciences, London, United Kingdom
| | - Philippe Moguelet
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Christine Leroy
- Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, Paris, France
| | | | - Patrice Codogno
- Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, Paris, France
| | - Lucy Foucher
- Ecole Nationale Vétérinaire d'Alfort, Centre de Recherche Biomédicale, Maisons-Alfort, France
| | - Antoine Zalc
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Mélanie Viltard
- Fondation pour la Recherche en Physiologie, Brussels, Belgium
| | - Gérard Friedlander
- Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, Paris, France
| | - Selim Aractingi
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
- Service de Dermatologie, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, France
| | | |
Collapse
|
8
|
Han J, Zhang H, Li N, Aziz AUR, Zhang Z, Liu B. The raft cytoskeleton binding protein complexes personate functional regulators in cell behaviors. Acta Histochem 2022; 124:151859. [PMID: 35123353 DOI: 10.1016/j.acthis.2022.151859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 12/08/2022]
Abstract
Several cytoskeleton proteins interact with raft proteins to form raft-cytoskeleton binding protein complexes (RCPCs) that control cell migration and adhesion. The purpose of this paper is to review the latest research on the modes and mechanisms by which a RCPC controls different cellular functions. This paper discusses RCPC composition and its role in cytoskeleton reorganization, as well as the latest developments in molecular mechanisms that regulate cell adhesion and migration under normal conditions. In addition, the role of some external stimuli (such as stress and chemical signals) in this process is further debated, and meanwhile potential mechanisms for RCPC to regulate lipid raft fluidity is proposed. Thus, this review mainly contributes to the understanding of RCPC signal transduction in cells. Additionally, the targeted signal transduction of RCPC and its mechanism connection with cell behaviors will provide a logical basis for the development of unified interventions to combat metastasis related dysfunction and diseases.
Collapse
Affiliation(s)
- Jinxin Han
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian 116024, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian 116024, China
| | - Na Li
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian 116024, China
| | - Aziz Ur Rehman Aziz
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian 116024, China
| | - Zhengyao Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Bo Liu
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian 116024, China.
| |
Collapse
|
9
|
Kruglikov IL, Zhang Z, Scherer PE. Skin aging: Dermal adipocytes metabolically reprogram dermal fibroblasts. Bioessays 2022; 44:e2100207. [PMID: 34766637 PMCID: PMC8688300 DOI: 10.1002/bies.202100207] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023]
Abstract
Emerging data connects the aging process in dermal fibroblasts with metabolic reprogramming, provided by enhanced fatty acid oxidation and reduced glycolysis. This switch may be caused by a significant expansion of the dermal white adipose tissue (dWAT) layer in aged, hair-covered skin. Dermal adipocytes cycle through de-differentiation and re-differentiation. As a result, there is a strongly enhanced release of free fatty acids into the extracellular space during the de-differentiation of dermal adipocytes in the catagen phase of the hair follicle cycle. Both caveolin-1 and adiponectin are critical factors influencing these processes. Controlling the expression levels of these two factors also offers the ability to manipulate the metabolic preferences of the different cell types within the microenvironment of the skin, including dermal fibroblasts. Differential expression of adiponectin and caveolin-1 in the various cell types may also be responsible for the cellular metabolic heterogeneity within the cells of the skin.
Collapse
Affiliation(s)
| | - Zhuzhen Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA,Corresponding author: Scherer, P.E.,
| |
Collapse
|
10
|
Jozic I, Abujamra BA, Elliott MH, Wikramanayake TC, Marjanovic J, Stone RC, Head CR, Pastar I, Kirsner RS, Andreopoulos FM, Musi JP, Tomic-Canic M. Glucocorticoid-mediated induction of caveolin-1 disrupts cytoskeletal organization, inhibits cell migration and re-epithelialization of non-healing wounds. Commun Biol 2021; 4:757. [PMID: 34145387 PMCID: PMC8213848 DOI: 10.1038/s42003-021-02298-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022] Open
Abstract
Although impaired keratinocyte migration is a recognized hallmark of chronic wounds, the molecular mechanisms underpinning impaired cell movement are poorly understood. Here, we demonstrate that both diabetic foot ulcers (DFUs) and venous leg ulcers (VLUs) exhibit global deregulation of cytoskeletal organization in genomic comparison to normal skin and acute wounds. Interestingly, we found that DFUs and VLUs exhibited downregulation of ArhGAP35, which serves both as an inactivator of RhoA and as a glucocorticoid repressor. Since chronic wounds exhibit elevated levels of cortisol and caveolin-1 (Cav1), we posited that observed elevation of Cav1 expression may contribute to impaired actin-cytoskeletal signaling, manifesting in aberrant keratinocyte migration. We showed that Cav1 indeed antagonizes ArhGAP35, resulting in increased activation of RhoA and diminished activation of Cdc42, which can be rescued by Cav1 disruption. Furthermore, we demonstrate that both inducible keratinocyte specific Cav1 knockout mice, and MβCD treated diabetic mice, exhibit accelerated wound closure. Taken together, our findings provide a previously unreported mechanism by which Cav1-mediated cytoskeletal organization prevents wound closure in patients with chronic wounds.
Collapse
Affiliation(s)
- Ivan Jozic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Beatriz Abdo Abujamra
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael H Elliott
- Departments of Ophthalmology, Physiology, and Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tongyu C Wikramanayake
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jelena Marjanovic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rivka C Stone
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Cheyanne R Head
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert S Kirsner
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fotios M Andreopoulos
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Juan P Musi
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
11
|
A Cell Membrane-Level Approach to Cicatricial Alopecia Management: Is Caveolin-1 a Viable Therapeutic Target in Frontal Fibrosing Alopecia? Biomedicines 2021; 9:biomedicines9050572. [PMID: 34069454 PMCID: PMC8159142 DOI: 10.3390/biomedicines9050572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Irreversible destruction of the hair follicle (HF) in primary cicatricial alopecia and its most common variant, frontal fibrosing alopecia (FFA), results from apoptosis and pathological epithelial-mesenchymal transition (EMT) of epithelial HF stem cells (eHFSCs), in conjunction with the collapse of bulge immune privilege (IP) and interferon-gamma-mediated chronic inflammation. The scaffolding protein caveolin-1 (Cav1) is a key component of specialized cell membrane microdomains (caveolae) that regulates multiple signaling events, and even though Cav1 is most prominently expressed in the bulge area of human scalp HFs, it has not been investigated in any cicatricial alopecia context. Interestingly, in mice, Cav1 is involved in the regulation of (1) key HF IP guardians (TGF-β and α-MSH signaling), (2) IP collapse inducers/markers (IFNγ, substance P and MICA), and (3) EMT. Therefore, we hypothesize that Cav1 may be an unrecognized, important player in the pathobiology of cicatricial alopecias, and particularly, in FFA, which is currently considered as the most common type of primary lymphocytic scarring alopecia in the world. We envision that localized therapeutic inhibition of Cav1 in management of FFA (by cholesterol depleting agents, i.e., cyclodextrins/statins), could inhibit and potentially reverse bulge IP collapse and pathological EMT. Moreover, manipulation of HF Cav1 expression/localization would not only be relevant for management of cicatricial alopecia, but FFA could also serve as a model disease for elucidating the role of Cav1 in other stem cell- and/or IP collapse-related pathologies.
Collapse
|
12
|
Resnik SR, Egger A, Abdo Abujamra B, Jozic I. Clinical Implications of Cellular Senescence on Wound Healing. CURRENT DERMATOLOGY REPORTS 2020. [DOI: 10.1007/s13671-020-00320-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Zmijewski MA, Carlberg C. Vitamin D receptor(s): In the nucleus but also at membranes? Exp Dermatol 2020; 29:876-884. [PMID: 32654294 DOI: 10.1111/exd.14147] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/10/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
The genomic actions of the vitamin D are mediated via its biologically most potent metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ) and the transcription factor vitamin D receptor (VDR). Activation of VDR by 1,25(OH)2 D3 leads to change in the expression of more 1000 genes in various human tissues. Based on (epi)genome, transcriptome and crystal structure data the molecular details of this nuclear vitamin D signalling pathway are well understood. Vitamin D is known for its role on calcium homeostasis and bone formation, but it also modulates energy metabolism, innate and adaptive immunity as well as cellular growth, differentiation and apoptosis. The observation of rapid, non-genomic effects of 1,25(OH)2 D3 at cellular membranes and in the cytosol initiated the question, whether there are alternative vitamin D-binding proteins in these cellular compartments. So far, the best candidate is the enzyme PDIA3 (protein disulphide isomerase family A member 3), which is found at various subcellular locations. Furthermore, also VDR seems to play a role in membrane-based responses to vitamin D. In this viewpoint, we will dispute whether these rapid, non-genomic pathways are a meaningful addition to the genome-wide effects of vitamin D.
Collapse
Affiliation(s)
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
14
|
Corrigendum. Exp Dermatol 2020; 29:446. [DOI: 10.1111/exd.14094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Egger AN, Rajabi‐Estarabadi A, Williams NM, Resnik SR, Fox JD, Wong LL, Jozic I. The importance of caveolins and caveolae to dermatology: Lessons from the caves and beyond. Exp Dermatol 2020; 29:136-148. [PMID: 31845391 PMCID: PMC7028117 DOI: 10.1111/exd.14068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022]
Abstract
Caveolae are flask-shaped invaginations of the cell membrane rich in cholesterol and sphingomyelin, with caveolin proteins acting as their primary structural components that allow compartmentalization and orchestration of various signalling molecules. In this review, we discuss how pleiotropic functions of caveolin-1 (Cav1) and its intricate roles in numerous cellular functions including lipid trafficking, signalling, cell migration and proliferation, as well as cellular senescence, infection and inflammation, are integral for normal development and functioning of skin and its appendages. We then examine how disruption of the homeostatic levels of Cav1 can lead to development of various cutaneous pathophysiologies including skin cancers, cutaneous fibroses, psoriasis, alopecia, age-related changes in skin and aberrant wound healing and propose how levels of Cav1 may have theragnostic value in skin physiology/pathophysiology.
Collapse
Affiliation(s)
- Andjela N. Egger
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Ali Rajabi‐Estarabadi
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Natalie M. Williams
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Sydney R. Resnik
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Joshua D. Fox
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Lulu L. Wong
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Ivan Jozic
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| |
Collapse
|