1
|
Carmona-Rocha E, Rusiñol L, Puig L. New and Emerging Oral/Topical Small-Molecule Treatments for Psoriasis. Pharmaceutics 2024; 16:239. [PMID: 38399292 PMCID: PMC10892104 DOI: 10.3390/pharmaceutics16020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
The introduction of biologic therapies has led to dramatic improvements in the management of moderate-to-severe psoriasis. Even though the efficacy and safety of the newer biologic agents are difficult to match, oral administration is considered an important advantage by many patients. Current research is focused on the development of oral therapies with improved efficacy and safety compared with available alternatives, as exemplified by deucravacitinib, the first oral allosteric Tyk2 inhibitor approved for the treatment of moderate to severe psoriasis in adults. Recent advances in our knowledge of psoriasis pathogenesis have also led to the development of targeted topical molecules, mostly focused on intracellular signaling pathways such as AhR, PDE-4, and Jak-STAT. Tapinarof (an AhR modulator) and roflumilast (a PDE-4 inhibitor) have exhibited favorable efficacy and safety outcomes and have been approved by the FDA for the topical treatment of plaque psoriasis. This revision focuses on the most recent oral and topical therapies available for psoriasis, especially those that are currently under evaluation and development for the treatment of psoriasis.
Collapse
Affiliation(s)
- Elena Carmona-Rocha
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (E.C.-R.); (L.R.)
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Sant Pau Teaching Unit, School of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Lluís Rusiñol
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (E.C.-R.); (L.R.)
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Sant Pau Teaching Unit, School of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Lluís Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (E.C.-R.); (L.R.)
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Sant Pau Teaching Unit, School of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| |
Collapse
|
2
|
Lan Y, Wu X, Zhong X, Song P, Liu L, Liu Y, Ai X, Han C, Zhang Z. Increased neutrophil-derived IL-17A identified in generalized pustular psoriasis. Exp Dermatol 2024; 33:e15026. [PMID: 38414093 DOI: 10.1111/exd.15026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/29/2024]
Abstract
Generalized pustular psoriasis (GPP) is considered to be a distinct clinical entity from psoriasis vulgaris (PV), with different clinical and histological manifestations. The pathogenesis of GPP has not been thoroughly elucidated, especially in those patients lacking interleukin (IL)36RN. In present study, we performed RNA sequence analysis on skin lesions from 10 GPP patients (4 with and 6 without IL36RN mutation) and 10 PV patients without IL36RN mutation. Compared with PV, significantly overexpressed genes in GPP patients were enriched in IL-17 signalling pathway (MMP1, MMP3, DEFB4A and DEFB4B, etc.) and associated with neutrophil infiltration (MMP1, MMP3, ANXA and SERPINB, etc.). GPP with IL36RN mutations evidenced WNT11 upregulation and IL36RN downregulation in comparison to those GPP without IL36RN mutations. The expression of IL-17A/IL-36 in skin or serum and the origin of IL-17A in skin were also investigated. IL-17A expression in skin was significantly higher in GPP than PV patients, whereas, there were no differences in skin IL-36α/IL-36γ/IL-36RA or serum IL-17A/IL-36α/IL-36γ between GPP than PV. Besides, double immunofluorescence staining of MPO/IL-17A or CD3/IL-17A further confirmed that the majority of IL-17A in GPP skin was derived from neutrophils, but not T cells. These data emphasized the role of neutrophil-derived IL-17A in the pathogenesis of GPP with or without IL36RN mutations. Targeting neutrophil-derived IL-17A might be a promising treatment for GPP.
Collapse
Affiliation(s)
- Yu Lan
- Department of Dermatology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiaoyan Wu
- Department of Dermatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xinyu Zhong
- Department of Dermatology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Pengfei Song
- Department of Dermatology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Leying Liu
- Department of Dermatology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yuhua Liu
- Department of Dermatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xuechen Ai
- Department of Dermatology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Changxu Han
- Department of Dermatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zhenying Zhang
- Department of Dermatology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- Department of Dermatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
3
|
Ben Abdallah H, Bregnhøj A, Ghatnekar G, Iversen L, Johansen C. Heat shock protein 90 inhibition attenuates inflammation in models of atopic dermatitis: a novel mechanism of action. Front Immunol 2024; 14:1289788. [PMID: 38274815 PMCID: PMC10808526 DOI: 10.3389/fimmu.2023.1289788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Background Heat shock protein 90 (HSP90) is an important chaperone supporting the function of many proinflammatory client proteins. Recent studies indicate HSP90 inhibition may be a novel mechanism of action for inflammatory skin diseases; however, this has not been explored in atopic dermatitis (AD). Objectives Our study aimed to investigate HSP90 as a novel target to treat AD. Methods Experimental models of AD were used including primary human keratinocytes stimulated with cytokines (TNF/IFNγ or TNF/IL-4) and a mouse model established by MC903 applications. Results In primary human keratinocytes using RT-qPCR, the HSP90 inhibitor RGRN-305 strongly suppressed the gene expression of Th1- (TNF, IL1B, IL6) and Th2-associated (CCL17, CCL22, TSLP) cytokines and chemokines related to AD. We next demonstrated that topical and oral RGRN-305 robustly suppressed MC903-induced AD-like inflammation in mice by reducing clinical signs of dermatitis (oedema and erythema) and immune cell infiltration into the skin (T cells, neutrophils, mast cells). Interestingly, topical RGRN-305 exhibited similar or slightly inferior efficacy but less weight loss compared with topical dexamethasone. Furthermore, RNA sequencing of skin biopsies revealed that RGRN-305 attenuated MC903-induced transcriptome alterations, suppressing genes implicated in inflammation including AD-associated cytokines (Il1b, Il4, Il6, Il13), which was confirmed by RT-qPCR. Lastly, we discovered using Western blot that RGRN-305 disrupted JAK-STAT signaling by suppressing the activity of STAT3 and STAT6 in primary human keratinocytes, which was consistent with enrichment analyses from the mouse model. Conclusion HSP90 inhibition by RGRN-305 robustly suppressed inflammation in experimental models mimicking AD, proving that HSP90 inhibition may be a novel mechanism of action in treating AD.
Collapse
Affiliation(s)
- Hakim Ben Abdallah
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Bregnhøj
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Lars Iversen
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Johansen
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
4
|
Gao Y, Gong B, Chen Z, Song J, Xu N, Weng Z. Damage-Associated Molecular Patterns, a Class of Potential Psoriasis Drug Targets. Int J Mol Sci 2024; 25:771. [PMID: 38255845 PMCID: PMC10815563 DOI: 10.3390/ijms25020771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Psoriasis is a chronic skin disorder that involves both innate and adaptive immune responses in its pathogenesis. Local tissue damage is a hallmark feature of psoriasis and other autoimmune diseases. In psoriasis, damage-associated molecular patterns (DAMPs) released by damaged local tissue act as danger signals and trigger inflammatory responses by recruiting and activating immune cells. They also stimulate the release of pro-inflammatory cytokines and chemokines, which exacerbate the inflammatory response and contribute to disease progression. Recent studies have highlighted the role of DAMPs as key regulators of immune responses involved in the initiation and maintenance of psoriatic inflammation. This review summarizes the current understanding of the immune mechanism of psoriasis, focusing on several important DAMPs and their mechanisms of action. We also discussed the potential of DAMPs as diagnostic and therapeutic targets for psoriasis, offering new insights into the development of more effective treatments for this challenging skin disease.
Collapse
Affiliation(s)
| | | | | | | | - Na Xu
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Y.G.); (B.G.); (Z.C.); (J.S.)
| | - Zhuangfeng Weng
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Y.G.); (B.G.); (Z.C.); (J.S.)
| |
Collapse
|
5
|
Ben Abdallah H, Bregnhøj A, Iversen L, Johansen C. Transcriptomic Analysis of Hidradenitis Suppurativa: A Unique Molecular Signature with Broad Immune Activation. Int J Mol Sci 2023; 24:17014. [PMID: 38069342 PMCID: PMC10707244 DOI: 10.3390/ijms242317014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Hidradenitis suppurativa is a chronic inflammatory skin disease with limited treatment options. The poorly understood pathogenesis hinders the development of effective treatments; therefore, a pressing need exists to further elucidate the molecular mechanisms in hidradenitis suppurativa. This study investigated the underlying inflammatory pathways and cell types in hidradenitis suppurativa using transcriptomic approaches with RNA sequencing of lesional and non-lesional skin biopsies from hidradenitis suppurativa, which was jointly analyzed with previously published transcriptomic data from atopic dermatitis and psoriasis patients. The differential expression and pathway enrichment analyses demonstrated the activation of multiple inflammatory processes, including the innate and adaptive immune systems, implicated in the hidradenitis suppurativa pathogenesis. In agreement, hidradenitis suppurativa exhibited a unique and heterogeneous cell type signature involving lymphoid and myeloid cells such as B cells and macrophages. Furthermore, hidradenitis suppurativa displayed increased expression of TH1/2/17 signatures with no predominant TH signatures unlike psoriasis (TH1/17) and atopic dermatitis (TH2). In summary, our study provides molecular insights into the pathomechanisms in hidradenitis suppurativa, revealing a strong and widespread immune activation, which may benefit from treatment strategies offering a broad immunomodulation of various key inflammatory pathways. Our data not only corroborate previously reported findings but also enhance our understanding of the immune dysregulation in hidradenitis suppurativa, uncovering novel and potential therapeutic targets.
Collapse
Affiliation(s)
- Hakim Ben Abdallah
- Department of Dermatology and Venereology, Aarhus University Hospital, 8200 Aarhus, Denmark; (A.B.); (L.I.); (C.J.)
| | | | | | | |
Collapse
|
6
|
Rusiñol L, Carmona-Rocha E, Puig L. Psoriasis: a focus on upcoming oral formulations. Expert Opin Investig Drugs 2023; 32:583-600. [PMID: 37507233 DOI: 10.1080/13543784.2023.2242767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
INTRODUCTION Targeted therapies have greatly improved the quality of life of patients with psoriasis. Despite the extensive list of treatments available, multiple new drugs are being developed, especially oral therapies with potential advantages as regards comfort of administration. However, the efficacy and safety of these new oral therapies need to be improved to match those of novel biologics. AREAS COVERED We provide a narrative review of the oral therapies for psoriasis that are currently under development, from Jak inhibitors to oral IL-17 and IL-23 inhibitors, among others. A literature search was performed for articles published from 1 January 2020, to 6 June 2023. EXPERT OPINION The approval of deucravacitinib, the first Jak inhibitor for the treatment of moderate-to-severe plaque psoriasis, heralds a bright therapeutic future with multiple new oral formulations. A great number of oral treatments with singular mechanism of action, like A3AR agonists, HSP90 inhibitors, ROCK-2 inhibitors, oral TNF inhibitors, oral IL-23 inhibitors, oral IL-17 inhibitors, PD4 inhibitors (orismilast) and several Tyk2 inhibitors, are currently being evaluated in clinical trials and could be suitable for approval in the future. Growing variation in treatment modes of administration will allow dermatologists to better integrate patient preferences in the therapeutic decision process.
Collapse
Affiliation(s)
- Lluís Rusiñol
- Dermatology Department IIB Sant Pau, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Elena Carmona-Rocha
- Dermatology Department IIB Sant Pau, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Lluís Puig
- Dermatology Department IIB Sant Pau, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| |
Collapse
|
7
|
Ben Abdallah H, Seeler S, Bregnhøj A, Ghatnekar G, Kristensen LS, Iversen L, Johansen C. Heat shock protein 90 inhibitor RGRN-305 potently attenuates skin inflammation. Front Immunol 2023; 14:1128897. [PMID: 36825010 PMCID: PMC9941631 DOI: 10.3389/fimmu.2023.1128897] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction Chronic inflammatory skin diseases may have a profound negative impact on the quality of life. Current treatment options may be inadequate, offering an unsatisfactory response or side effects. Therefore, ongoing efforts exist to identify novel effective and safe treatments. Heat shock protein (HSP) 90 is a chaperone that promotes the activity of a wide range of client proteins including key proinflammatory molecules involved in aberrant inflammation. Recently, a proof-of-concept clinical trial of 13 patients suggested that RGRN-305 (an HSP90 inhibitor) may be an oral treatment for psoriasis. However, HSP90 inhibition may be a novel therapeutic approach extending beyond psoriasis to include multiple immune-mediated inflammatory skin diseases. Methods This study aimed to investigate (i) the anti-inflammatory effects and mechanisms of HSP90 inhibition and (ii) the feasibility of topical RGRN-305 administration (new route of administration) in models of inflammation elicited by 12-O-tetradecanoylphorbol-13-acetate (TPA) in primary human keratinocytes and mice (irritative dermatitis murine model). Results/Discussion In primary human keratinocytes stimulated with TPA, a Nanostring® nCounter gene expression assay demonstrated that HSP90 inhibition with RGRN-305 suppressed many proinflammatory genes. Furthermore, when measured by quantitative real-time polymerase chain reaction (RT-qPCR), RGRN-305 significantly reduced the gene expression of TNF, IL1B, IL6 and CXCL8. We next demonstrated that topical RGRN-305 application significantly ameliorated TPA-induced skin inflammation in mice. The increase in ear thickness (a marker of inflammation) was significantly reduced (up to 89% inhibition). In accordance, RT-qPCR of the ear tissue demonstrated that RGRN-305 robustly reduced the gene expression of proinflammatory markers (Tnf, Il1b, Il6, Il17A and Defb4). Moreover, RNA sequencing revealed that RGRN-305 mitigated TPA-induced alterations in gene expression and suppressed genes implicated in inflammation. Lastly, we discovered that the anti-inflammatory effects were mediated, at least partly, by suppressing the activity of NF-κB, ERK1/2, p38 MAPK and c-Jun signaling pathways, which are consistent with previous findings in other experimental models beyond skin inflammation. In summary, HSP90 inhibition robustly suppressed TPA-induced inflammation by targeting key proinflammatory cytokines and signaling pathways. Our findings suggest that HSP90 inhibition may be a novel mechanism of action for treating immune-mediated skin disease beyond psoriasis, and it may be a topical treatment option.
Collapse
Affiliation(s)
- Hakim Ben Abdallah
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark,*Correspondence: Hakim Ben Abdallah,
| | - Sabine Seeler
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anne Bregnhøj
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Lars Iversen
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Johansen
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
8
|
Dong Q, Li D, Xie BB, Hu LH, Huang J, Jia XX, Tang YL, Liu GH, Shen NN, Yu XB. IL-17A and TNF-α inhibitors induce multiple molecular changes in psoriasis. Front Immunol 2022; 13:1015182. [PMID: 36483564 PMCID: PMC9723344 DOI: 10.3389/fimmu.2022.1015182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
Adalimumab and secukinumab are commonly used for moderate to severe psoriasis vulgaris (PV). Although distinct individual responses to and impaired effectiveness of these biological agents occur occasionally, little is known about the underlying reasons. Here, we report a proteomic analysis of psoriatic lesions from patients treated with these drugs using data-independent acquisition mass spectrometry (DIA-MS). Thousands of differentially expressed proteins (DEPs) changed over 12 weeks of treatment. Network analysis showed that DEPs could interact and induce transformation in matrix components, metabolic regulation, and immune response. The results of parallel reaction monitoring (PRM) analysis suggested that S100s, STAT1, KRT2, TYMP, SOD2, HSP90AB1, TFRC, and COL5A1 were the most significantly changed proteins in both groups. There was a positive association between the Psoriasis Area and Severity Index (PASI) score and three proteins (TFRC, IMPDH2, KRT2). Our study findings suggest that inhibition of IL-17A and TNF-α can induce changes in multiple molecules in psoriatic lesions and have an overlapping influence on the immune response and process through direct or indirect effects.
Collapse
Affiliation(s)
- Qiang Dong
- Department of Dermatology, Dermatology Hospital of Zhejiang Province, Huzhou, Zhejiang, China
| | - Dan Li
- Department of Dermatology, Dermatology Hospital of Zhejiang Province, Huzhou, Zhejiang, China
| | - Bi Bo Xie
- Department of Dermatology, Dermatology Hospital of Zhejiang Province, Huzhou, Zhejiang, China
| | - Li Hua Hu
- Department of Dermatology, Dermatology Hospital of Zhejiang Province, Huzhou, Zhejiang, China
| | - Jia Huang
- Department of Dermatology, Dermatology Hospital of Zhejiang Province, Huzhou, Zhejiang, China
| | - Xiao Xiao Jia
- Department of Dermatology, Dermatology Hospital of Zhejiang Province, Huzhou, Zhejiang, China
| | - Yan Li Tang
- Department of Dermatology, Dermatology Hospital of Zhejiang Province, Huzhou, Zhejiang, China
| | - Gan Hong Liu
- Department of Dermatology, Dermatology Hospital of Zhejiang Province, Huzhou, Zhejiang, China
| | - Ning Ning Shen
- Department of Dermatology, Dermatology Hospital of Zhejiang Province, Huzhou, Zhejiang, China
| | - Xiao Bing Yu
- Department of Dermatology, Dermatology Hospital of Zhejiang Province, Huzhou, Zhejiang, China
| |
Collapse
|
9
|
Tukaj S, Sitko K. Heat Shock Protein 90 (Hsp90) and Hsp70 as Potential Therapeutic Targets in Autoimmune Skin Diseases. Biomolecules 2022; 12:biom12081153. [PMID: 36009046 PMCID: PMC9405624 DOI: 10.3390/biom12081153] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 12/22/2022] Open
Abstract
Over a hundred different autoimmune diseases have been described to date, which can affect every organ in the body, including the largest one, the skin. In fact, up to one-fifth of the world's population suffers from chronic, noninfectious inflammatory skin diseases, the development of which is significantly influenced by an autoimmune response. One of the hallmarks of autoimmune diseases is the loss of immune tolerance, which leads to the formation of autoreactive lymphocytes or autoantibodies and, consequently, to chronic inflammation and tissue damage. The treatment of autoimmune skin diseases mainly focuses on immunosuppression (using, e.g., corticosteroids) but almost never leads to the development of permanent mechanisms of immune tolerance. In addition, current therapies and their long-term administration may cause serious adverse effects. Hence, safer and more effective therapies that bring sustained balance between pro- and anti-inflammatory responses are still desired. Both intra- and extracellular heat shock proteins (Hsps), specifically well-characterized inducible Hsp90 and Hsp70 chaperones, have been highlighted as therapeutic targets for autoimmune diseases. This review presents preclinical data on the involvement of Hsp90 and Hsp70 in modulating the immune response, specifically in the context of the treatment of selected autoimmune skin diseases with emphasis on autoimmune bullous skin diseases and psoriasis.
Collapse
|
10
|
Bregnhøj A, Thuesen KKH, Emmanuel T, Litman T, Grek CL, Ghatnekar GS, Johansen C, Iversen L. HSP90 inhibitor RGRN-305 for oral treatment of plaque type psoriasis: efficacy, safety and biomarker results in an open-label proof-of-concept study. Br J Dermatol 2021; 186:861-874. [PMID: 34748646 DOI: 10.1111/bjd.20880] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND HSP90 is a downstream regulator of tumor necrosis factor α (TNFα) and interleukin (IL)-17A signaling and may therefore serve as a novel target in the treatment of psoriasis. OBJECTIVE This phase 1b proof-of-concept study was undertaken to evaluate the safety and efficacy of a novel HSP90 inhibitor (RGRN-305) in the treatment of plaque psoriasis. METHODS An open-label, single-arm, dose-selection, single-center proof-of-concept study. Patients with plaque psoriasis were treated with 250 mg or 500 mg RGRN-305 daily for 12 weeks. Efficacy was evaluated clinically using Psoriasis Area and Severity Index (PASI), body surface area (BSA), and Physician Global Assessment (PGA) scores and by Dermatology Life Quality Index (DLQI). Skin biopsies collected at baseline and at 4, 8, and 12 weeks after treatment start were used for immunohistochemical staining and for gene expression analysis. Safety was monitored via laboratory tests, vital signs, ECG, and physical examinations. RESULTS Six of the eleven patients completing the study responded to RGRN-305 with a PASI improvement between 71% and 94%, whereas five patients were considered nonresponders with a PASI response < 50%. No severe adverse events were reported. Four of seven patients treated with 500 mg RGRN-305 daily experienced a mild to moderate exanthematous drug induced eruption due to study treatment. Two patients chose to discontinue the study due to this exanthematous eruption. RGRN-305 treatment resulted in pronounced inhibition of the IL-23, TNFα, and IL-17A signaling pathways and normalization of both histological changes and psoriatic lesion gene expression profiles in patients responding to treatment. CONCLUSION Treatment with RGRN-305 showed an acceptable safety, especially in the low-dose group, and was associated with clinically meaningful improvement in a subset of patients with plaque psoriasis, indicating that HSP90 may serve as a novel future target in psoriasis treatment.
Collapse
Affiliation(s)
- A Bregnhøj
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - K K H Thuesen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - T Emmanuel
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - T Litman
- Department of Immunology and Microbiology, University of Copenhagen, 2200, Copenhagen, Denmark
| | - C L Grek
- FirstString Research, Mount Pleasant, SC, 29464, USA
| | | | - C Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - L Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
11
|
Ben Abdallah H, Johansen C, Iversen L. Key Signaling Pathways in Psoriasis: Recent Insights from Antipsoriatic Therapeutics. PSORIASIS-TARGETS AND THERAPY 2021; 11:83-97. [PMID: 34235053 PMCID: PMC8254604 DOI: 10.2147/ptt.s294173] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/05/2021] [Indexed: 12/27/2022]
Abstract
Psoriasis is a common chronic inflammatory skin disease associated with several comorbidities and reduced quality of life. In the past decades, highly effective targeted therapies have led to breakthroughs in the management of psoriasis, providing important insights into the pathogenesis. This article reviews the current concepts of the pathophysiological pathways and the recent progress in antipsoriatic therapeutics, highlighting key targets, signaling pathways and clinical effects in psoriasis.
Collapse
Affiliation(s)
| | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|