1
|
Liu S, Liao S, He J, Zhou Y, He Q. IGF2BP2: an m 6A reader that affects cellular function and disease progression. Cell Mol Biol Lett 2025; 30:43. [PMID: 40205577 PMCID: PMC11983839 DOI: 10.1186/s11658-025-00723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/27/2025] [Indexed: 04/11/2025] Open
Abstract
Insulin-like growth factor 2 messenger RNA (mRNA)-binding protein 2 (IGF2BP2) is a widely studied N6-methyladenosine (m6A) modification reader, primarily functioning to recognize and bind to m6A modification sites on the mRNA of downstream target genes, thereby enhancing their stability. Previous studies have suggested that the IGF2BP2-m6A modification plays an essential role in cellular functions and the progression of various diseases. In this review, we focus on summarizing the molecular mechanisms by which IGF2BP2 enhances the mRNA stability of downstream target genes through m6A modification, thereby regulating cell ferroptosis, epithelial-mesenchymal transition (EMT), stemness, angiogenesis, inflammatory responses, and lipid metabolism, ultimately affecting disease progression. Additionally, we update the related research progress on IGF2BP2. This article aims to elucidate the effects of IGF2BP2 on cell ferroptosis, EMT, stemness, angiogenesis, inflammatory responses, and lipid metabolism, providing a new perspective for a comprehensive understanding of the relationship between IGF2BP2 and cell functions such as ferroptosis and EMT, as well as the potential for targeted IGF2BP2 therapy for tumors and other diseases.
Collapse
Affiliation(s)
- Siyi Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Shan Liao
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Junyu He
- Department of Clinical Laboratory, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, 410007, Hunan, People's Republic of China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China.
| | - Qian He
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, China.
| |
Collapse
|
2
|
Zhang S, Wu Q, Cheng W, Dong W, Kou B. YTHDC1-Mediated lncRNA MSC-AS1 m6A Modification Potentiates Laryngeal Squamous Cell Carcinoma Development via Repressing ATXN7 Transcription. Mol Biotechnol 2025; 67:1659-1673. [PMID: 38637450 DOI: 10.1007/s12033-024-01150-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
Laryngeal squamous cell carcinoma (LSCC) has the highest mortality rate among head and neck squamous cell carcinoma. This study was designed to investigate the biological effect of long noncoding RNA (lncRNA) MSC antisense RNA 1 (MSC-AS1) on LSCC development and the underlying mechanism. The expression and prognostic value of lncRNAs in head and neck squamous cell carcinoma were predicted in the bioinformatics tools. The overexpression of MSC-AS1 in LSCC patients predicted a poor prognosis. Depletion of MSC-AS1 using shRNA repressed the malignant phenotype of AMC-HN-8 and TU-177 cells. MSC-AS1, mainly localized in the nucleus, interacted closely with the transcription factor CCCTC-binding factor (CTCF). CTCF played anti-tumor effects in vitro and in vivo. Ataxin-7 (ATXN7) was predicted to be a downstream target of CTCF, whose expression was negatively controlled by MSC-AS1. MSC-AS1 was found to block the expression of CTCF, thereby repressing ATXN7. Finally, MSC-AS1 overexpression in LSCC was governed by YTH domain-containing protein 1 (YTHDC1)-mediated m6A modification. In summary, our research identified the YTHDC1/MSC-AS1/CTCF/ATXN7 axis in LSCC development, which indicated that MSC-AS1 is an attractive biomarker in the LSCC treatment.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, People's Republic of China
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Qun Wu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Wei Cheng
- Department of General Surgery, Danfeng County Hospital, Shangluo, 726200, Shaanxi, People's Republic of China
| | - Weijiang Dong
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Bo Kou
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
3
|
Chen L, Gao Y, Yang H, Su Y, Zhang Y, Lou L, Wang X, Ding D. Long non-coding RNA MSC-AS1 confers imatinib resistance of gastrointestinal stromal tumor cells by activating FNDC1 and ANLN-mediated PI3K/AKT pathway. Hum Cell 2025; 38:38. [PMID: 39751699 DOI: 10.1007/s13577-024-01167-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025]
Abstract
Imatinib resistance is a major obstacle to the successful treatment of gastrointestinal stromal tumors (GIST). Long non-coding RNAs (LncRNAs) have been identified as important regulatory factors in chemotherapy resistance. This study aimed to identify key lncRNAs involved in imatinib resistance of GISTs. First, MSC-AS1 was found to be upregulated in imatinib-resistant GIST tissues and imatinib-resistant GIST cells. Cellular experiments demonstrated that MSC-AS1 overexpression decreased imatinib sensitivity of GIST cells, evidenced by increased cell survival, colony formation, migration, and invasion. Moreover, suppression of MSC-AS1 improved the imatinib resistance of imatinib-resistant GIST cells. Furthermore, MSC-AS1 upregulated the expression of FNDC1 and Anillin via sponging miR-200b-3p, activated the phosphatidylinositol-3-kinase-AKT signaling pathway, and thereby driving imatinib resistance in vitro and in vivo. Overall, this study elucidates the crucial role and mechanism of MSC-AS1 in the imatinib resistance of GIST, providing the potential therapeutic strategy for overcoming the imatinib resistance of GIST.
Collapse
Affiliation(s)
- Lin Chen
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, No. 126 Sendai Street, Nanguan District, Changchun, 130031, China
| | - Yongjian Gao
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, No. 126 Sendai Street, Nanguan District, Changchun, 130031, China
| | - Huaixi Yang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, No. 126 Sendai Street, Nanguan District, Changchun, 130031, China
| | - Yanzhuo Su
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, No. 126 Sendai Street, Nanguan District, Changchun, 130031, China
| | - Yunxin Zhang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, No. 126 Sendai Street, Nanguan District, Changchun, 130031, China
| | - Lin Lou
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, No. 126 Sendai Street, Nanguan District, Changchun, 130031, China
| | - Xuefeng Wang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, No. 126 Sendai Street, Nanguan District, Changchun, 130031, China
| | - Dayong Ding
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, No. 126 Sendai Street, Nanguan District, Changchun, 130031, China.
| |
Collapse
|
4
|
Zheng H, Li Q, Yang K. A circadian rhythm-related lncRNA signature correlates with prognosis and tumor immune microenvironment in head and neck squamous cell carcinoma. Discov Oncol 2024; 15:308. [PMID: 39052123 PMCID: PMC11272767 DOI: 10.1007/s12672-024-01181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVE To investigate circadian rhythm-associated long non-coding RNA (lncRNA) signatures in predicting prognosis, metabolism, and immune infiltration in Head and Neck Squamous Cell Carcinoma (HNSC). METHODS HNSC samples were collected from the TCGA database. A signature was constructed using Cox regression and Least Absolute Shrinkage and Selection Operator (LASSO) methods. The immune cell infiltration was analyzed using CIBERSORT, ssGSEA, and MCPcounter. The RT-qPCR was used to detect the expression of signature lncRNAs. RESULTS A signature comprising 8 lncRNAs was constructed. The constructed signature demonstrated good prognostic prediction capability for HNSC. A nomogram encompassing risk score accurately predicted the long-term OS probability of HNSC. The infiltration levels of T cell, B cell and Macrophages were significantly higher in the high-risk group than in the low-risk group. Cluster analysis showed that the signature lncRNAs could classify the HNSC samples into two clusters. The RT-qPCR suggested that the expression of lncRNAs in signature was consistent with the data in TCGA. CONCLUSION The circadian rhythm-associated lncRNA signature has potential as a prognostic indicator for HNSC. It exhibits associations with metabolism, immune microenvironment, and drug sensitivity, thereby providing valuable insights for informing the treatment of HNSC.
Collapse
Affiliation(s)
- Hongyu Zheng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qiuyue Li
- Department of Emergency Medicine, The Second Hospital of Tianjin Medical University, No.23, Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Kai Yang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
5
|
Luo W, Zhang N, Wang Z, Chen H, Sun J, Yao C, Zhang Y. LncRNA USP2-AS1 facilitates the osteogenic differentiation of bone marrow mesenchymal stem cells by targeting KDM3A/ETS1/USP2 to activate the Wnt/β-catenin signaling pathway. RNA Biol 2024; 21:1-13. [PMID: 38131611 PMCID: PMC10761055 DOI: 10.1080/15476286.2023.2290771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 12/23/2023] Open
Abstract
Human bone marrow mesenchymal stem cells (HBMSCs) can promote new bone formation. Previous studies have proven the ability of long non-coding RNAs (lncRNAs) to modulate the osteogenic differentiation of mesenchymal stem cells. However, the molecular mechanism modulated by lncRNAs in affecting the osteogenic differentiation of HBMSCs remains largely unknown. Thus, this study aims to reveal the role of lncRNA ubiquitin-specific peptidase 2 antisense RNA 1 (USP2-AS1) in regulating the osteogenic differentiation of HBMSCs and investigate its regulatory mechanism. Through bioinformatics analysis and RT-qPCR, we confirmed that USP2-AS1 expression was increased in HBMSCs after culturing in osteogenic differentiation medium (OM-HBMSCs). Moreover, we uncovered that knockdown of USP2-AS1 inhibited the osteogenic differentiation of HBMSCs. Further exploration indicated that USP2-AS1 positively regulated the expression of its nearby gene USP2. Mechanistically, USP2-AS1 recruited lysine demethylase 3A (KDM3A) to stabilize ETS proto-oncogene 1 (ETS1), transcription factor that transcriptionally activated USP2. Additionally, USP2-induced Wnt/β-catenin signalling pathway activation via deubiquitination of β-catenin protein. In summary, our study proved that lncRNA USP2-AS1 facilitates the osteogenic differentiation of HBMSCs by targeting KDM3A/ETS1/USP2 axis to activate the Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Wanxin Luo
- Department of Orthopaedics, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Na Zhang
- Department of Endocrinology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
- Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Ziping Wang
- Department of Orthopaedics, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hao Chen
- Department of Orthopaedics, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jie Sun
- Department of Orthopaedics, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Chen Yao
- Department of Orthopaedics, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yafeng Zhang
- Department of Orthopaedics, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
6
|
Li Z, Duan Y, Yan S, Zhang Y, Wu Y. The miR-302/367 cluster: Aging, inflammation, and cancer. Cell Biochem Funct 2023; 41:752-766. [PMID: 37555645 DOI: 10.1002/cbf.3836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023]
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNAs that occupy a significant role in biological processes as important regulators of intracellular homeostasis. First, we will discuss the biological genesis and functions of the miR-302/367 cluster, including miR-302a, miR-302b, miR-302c, miR-302d, and miR-367, as well as their roles in physiologically healthy tissues. The second section of this study reviews the progress of the miR-302/367 cluster in the treatment of cancer, inflammation, and diseases associated with aging. This cluster's aberrant expression in cells and/or tissues exhibits similar or different effects in various diseases through molecular mechanisms such as proliferation, apoptosis, cycling, drug resistance, and invasion. This article also discusses the upstream and downstream regulatory networks of miR-302/367 clusters and their related mechanisms. Particularly because studies on the upstream regulatory molecules of miR-302/367 clusters, which include age-related macular degeneration, myocardial infarction, and cancer, have become more prevalent in recent years. MiR-302/367 cluster can be an important therapeutic target and the use of miRNAs in combination with other molecular markers may improve diagnostic or therapeutic capabilities, providing unique insights and a more dynamic view of various diseases. It is noted that miRNAs can be an important bio-diagnostic target and offer a promising method for illness diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Zhou Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, China
| | - Yan Duan
- Department of Stomatology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
| | - Shaofu Yan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, China
| | - Yao Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, China
| | - Yunxia Wu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, China
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
7
|
Fang Z, Mei W, Qu C, Lu J, Shang L, Cao F, Li F. Role of m6A writers, erasers and readers in cancer. Exp Hematol Oncol 2022; 11:45. [PMID: 35945641 PMCID: PMC9361621 DOI: 10.1186/s40164-022-00298-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/04/2022] [Indexed: 02/06/2023] Open
Abstract
The N(6)-methyladenosine (m6A) modification is the most pervasive modification of human RNAs. In recent years, an increasing number of studies have suggested that m6A likely plays important roles in cancers. Many studies have demonstrated that m6A is involved in the biological functions of cancer cells, such as proliferation, invasion, metastasis, and drug resistance. In addition, m6A is closely related to the prognosis of cancer patients. In this review, we highlight recent advances in understanding the function of m6A in various cancers. We emphasize the importance of m6A to cancer progression and look forward to describe future research directions.
Collapse
Affiliation(s)
- Zhen Fang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wentong Mei
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chang Qu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiongdi Lu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Wang G, Ding B, Sun L, Guo J, Wang S, Li W, Zhang Y, Lv J, Qiu W. Construction and Validation of a Necroptosis-Related Signature Associated With the Immune Microenvironment in Liver Hepatocellular Carcinoma. Front Genet 2022; 13:859544. [PMID: 35480307 PMCID: PMC9037783 DOI: 10.3389/fgene.2022.859544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/09/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Liver hepatocellular carcinoma (LIHC) is a widespread and often deadly neoplasm. There is increasing evidence that necroptosis mediates numerous tumor-associated behaviors, as well as the regulation of the tumor microenvironment, suggesting its use as a biomarker for tumor prognosis. Methods: Data on mRNA expression and necroptosis regulators were acquired from the TCGA and KEGG databases, respectively. Clinical liver hepatocellular carcinoma (LIHC) patient data and information on the expression of necroptosis regulators were processed by unsupervised cluster analysis was performed on LIHC patients together with necroptotic regulator expression and, differentially expressed necroptosis-related genes (DENRGs) were identified by comparing the two clusters. A signature based on eight DENRGs was constructed and verified through independent data sets, and its relationship with the tumor microenvironment was investigated. Results: Unsupervised cluster analysis demonstrated inherent immune differences among LIHC patients. In all, 1,516 DENRGs were obtained by comparison between the two clusters. In the training set, the final eight genes obtained by univariate, LASSO, and multivariate Cox regression were utilized for constructing the signature. The survival and receiver operating characteristic (ROC) curve achieved satisfactory results in both sets. The high-risk group was characterized by greater immune infiltration and poor prognosis. The results of survival analysis based on the expression of eight DENRGs further confirmed the signature. Conclusion: We established and validated a risk signature based on eight DERNGs related to the tumor microenvironment. This provides a possible explanation for the different clinical effects of immunotherapy and provides a novel perspective for predicting tumor prognosis in LIHC.
Collapse
Affiliation(s)
- Gongjun Wang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Baoning Ding
- School of Statistics, Shandong University of Finance and Economics, Jinan, China
| | | | - Jing Guo
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shasha Wang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenqian Li
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuqi Zhang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Lv
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Wensheng Qiu, Jing Lv,
| | - Wensheng Qiu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Wensheng Qiu, Jing Lv,
| |
Collapse
|
9
|
Zhao H, Cui Y, Dong F, Li W. lncRNA MSC-AS1 Aggravates Diabetic Nephropathy by Regulating the miR-325/CCNG1 Axis. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:2279072. [PMID: 35126911 PMCID: PMC8808114 DOI: 10.1155/2022/2279072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is the most common microvascular complication of diabetes and has become the second leading cause of end-stage renal disease in the world. This study aims to clarify the regulatory mechanism of the lncRNA MSC-AS1/miR-325/cyclin G1 (CCNG1) axis in DN. METHODS The regulatory mechanism of lncRNA MSC-AS1/miR-325/CCNG1 was evaluated by RT-qPCR, CCK-8 assay, flow cytometry assay, RNA pull-down assay, ELISA, and western blot assay. RESULTS Upregulation of lncRNA MSC-AS1 was detected in DN patients and HRMC cells treated with high glucose (HG). Knockdown of lncRNA MSC-AS1 reduced the proliferation, fibrosis, and inflammation of HRMC cells induced by HG. In addition, lncRNA MSC-AS1 acts as a miR-325 sponge in the DN. CCNG1 is the direct target of miR-325, which can be positively regulated by lncRNA MSC-AS1 in DN. More importantly, downregulation of miR-325 and upregulation of CCNG1 can attenuate the protective effect of lncRNA MSC-AS1 knockdown on DN. CONCLUSION lncRNA MSC-AS1 aggravates DN by downregulating miR-325 and upregulating CCNG1.
Collapse
Affiliation(s)
- Hongtu Zhao
- Department of Endocrinology, 960th Hospital Chinese Peoples Liberat Army, Tai'an, Shandong, China
| | - Yuanyuan Cui
- Department of Endocrine Rheumatology and Immunology, People's Hospital of Gaotang County, Liaocheng, Shandong, China
| | - Fuqing Dong
- Department of Endocrinology, Zibo Zhoucun People's Hospital, Zibo, Shandong, China
| | - Wencong Li
- Department of Endocrinology, Shandong Provincial Third Hospital, Jinan, Shandong, China
| |
Collapse
|
10
|
Chen K, Xing J, Yu W, Xia Y, Zhang Y, Cheng F, Rao T. Identification and Validation of Hub Genes Associated with Bladder Cancer by Integrated Bioinformatics and Experimental Assays. Front Oncol 2022; 11:782981. [PMID: 34988018 PMCID: PMC8721040 DOI: 10.3389/fonc.2021.782981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Bladder cancer (BC) is the most common malignant tumor of the urinary system and is associated with high morbidity and mortality; however, the molecular mechanism underlying its occurrence is not clear. In this study, the gene expression profile and related clinical information of GSE13507 were downloaded from the Gene Expression Omnibus (GEO) database. RNA sequencing (RNA-seq) expression data and related clinical information were retrieved from The Cancer Genome Atlas (TCGA) database. Overlapping genes were identified by differential gene expression analysis and weighted gene co-expression network analysis (WGCNA). Then, we carried out functional enrichment analysis to understand the potential biological functions of these co-expressed genes. Finally, we performed a protein-protein interaction (PPI) analysis combined with survival analysis. Using the CytoHubba plug-in of Cytoscape, TROAP, CENPF, PRC1, AURKB, CCNB2, CDC20, TTK, CEP55, ASPM, and CDCA8 were identified as candidate central genes. According to the survival analysis, the high expression of TTK was related to the poor overall survival (OS) of patients with BC. TTK may also affect the bladder tumor microenvironment (TME) by affecting the number of immune cells. The expression level of TTK was verified by immunohistochemistry (IHC) and real-time quantitative polymerase chain reaction (RT-qPCR), and the tumor-promoting effect of TTK in BC cells was confirmed in vitro. Our results also identified the MSC-AS1/hsa-miR-664b-3p/TTK regulatory axis, which may also play an important role in the progression of BC, but further research is needed to verify this result. In summary, our results provide a new idea for accurate early diagnosis, clinical treatment, and prognosis of BC.
Collapse
Affiliation(s)
- Kang Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ji Xing
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuqi Xia
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunlong Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|