1
|
Pascolini G, Scaglione GL, Mariotti F, Concolino P, Minucci A, Didona B, Castiglia D, Di Zenzo G. Evidence of a Dose-Dependent Phenotypic Effect of the Desmoplakin (DSP) c.273+5G > A Variant in a Child With Palmoplantar Keratoderma and Woolly Hair Association. Exp Dermatol 2024; 33:e70012. [PMID: 39582392 DOI: 10.1111/exd.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/09/2024] [Accepted: 10/20/2024] [Indexed: 11/26/2024]
Affiliation(s)
- Giulia Pascolini
- Genetic Counselling Unit, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
- Rare Skin Diseases Center, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | | | - Feliciana Mariotti
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Paola Concolino
- Departmental Unit of Molecular and Genomic Diagnostics, Policlinico Gemelli IRCCS Foundation, Rome, Italy
| | - Angelo Minucci
- Departmental Unit of Molecular and Genomic Diagnostics, Policlinico Gemelli IRCCS Foundation, Rome, Italy
| | - Biagio Didona
- Rare Skin Diseases Center, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Daniele Castiglia
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Giovanni Di Zenzo
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| |
Collapse
|
2
|
Andrei D, Bremer J, Kramer D, Nijenhuis AM, van der Molen M, Diercks GFH, van den Akker PC, Vermeer MCSC, van der Meer P, Bolling MC. Epidermal growth factor receptor inhibition leads to cellular phenotype correction of DSP-mutated keratinocytes. Exp Dermatol 2024; 33:e15046. [PMID: 38509711 DOI: 10.1111/exd.15046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/27/2024] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
Desmoplakin (DSP) is a desmosomal component expressed in skin and heart, essential for desmosome stability and intermediate filament connection. Pathogenic variants in the DSP gene encoding DSP, lead to heterogeneous skin, adnexa and heart-related phenotypes, including skin fragility, woolly hair (WH), palmoplantar keratoderma (PPK) and arrhythmogenic/dilated cardiomyopathy (ACM/DCM). The ambiguity of computer-based prediction analysis of pathogenicity and effect of DSP variants, indicates a necessity for functional analysis. Here, we report a heterozygous DSP variant that was not previously described, NM_004415.4:c.3337C>T (NM_004415.4(NP_004406.2):p.(Arg1113*)) in a patient with PPK, WH and ACM. RNA and protein analysis revealed ~50% reduction of DSP mRNA and protein expression. Patient's keratinocytes showed fragile cell-cell connections and perinuclear retracted intermediate filaments. Epidermal growth factor receptor (EGFR) is a transmembrane protein expressed in the basal epidermal layer involved in proliferation and differentiation, processes that are disrupted in the development of PPK, and in the regulation of the desmosome. In skin of the abovementioned patient, evident EGFR upregulation was observed. EGFR inhibition in patient's keratinocytes strongly increased DSP expression at the plasma membrane, improved intermediate filament connection with the membrane edges and reduced the cell-cell fragility. This cell phenotypic recovery was due to a translocation of DSP to the plasma membrane together with an increased number of desmosomes. These results indicate a therapeutic potential of EGFR inhibitors for disorders caused by DSP haploinsufficiency.
Collapse
Affiliation(s)
- Daniela Andrei
- Department of Dermatology, Expertise Center for Blistering Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jeroen Bremer
- Department of Dermatology, Expertise Center for Blistering Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Duco Kramer
- Department of Dermatology, Expertise Center for Blistering Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Albertine M Nijenhuis
- Department of Dermatology, Expertise Center for Blistering Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marije van der Molen
- Department of Dermatology, Expertise Center for Blistering Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gilles F H Diercks
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter C van den Akker
- Department of Genetics, Expertise Center for Blistering Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mathilde C S C Vermeer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maria C Bolling
- Department of Dermatology, Expertise Center for Blistering Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Towards a Better Understanding of Genotype-Phenotype Correlations and Therapeutic Targets for Cardiocutaneous Genes: The Importance of Functional Studies above Prediction. Int J Mol Sci 2022; 23:ijms231810765. [PMID: 36142674 PMCID: PMC9503274 DOI: 10.3390/ijms231810765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Genetic variants in gene-encoding proteins involved in cell−cell connecting structures, such as desmosomes and gap junctions, may cause a skin and/or cardiac phenotype, of which the combination is called cardiocutaneous syndrome. The cardiac phenotype is characterized by cardiomyopathy and/or arrhythmias, while the skin particularly displays phenotypes such as keratoderma, hair abnormalities and skin fragility. The reported variants associated with cardiocutaneous syndrome, in genes DSP, JUP, DSC2, KLHL24, GJA1, are classified by interpretation guidelines from the American College of Medical Genetics and Genomics. The genotype−phenotype correlation, however, remains poorly understood. By providing an overview of variants that are assessed for a functional protein pathology, we show that this number (n = 115) is low compared to the number of variants that are assessed by in silico algorithms (>5000). As expected, there is a mismatch between the prediction of variant pathogenicity and the prediction of the functional effect compared to the real functional evidence. Aiding to improve genotype−phenotype correlations, we separate variants into ‘protein reducing’ or ‘altered protein’ variants and provide general conclusions about the skin and heart phenotype involved. We conclude by stipulating that adequate prognoses can only be given, and targeted therapies can only be designed, upon full knowledge of the protein pathology through functional investigation.
Collapse
|