1
|
Song P, Zhang W, Guo S, Wang G, Gao T, Li C, Liu L. Membranal Expression of Calreticulin Induced by Unfolded Protein Response in Melanocytes: A Mechanism Underlying Oxidative Stress-Induced Autoimmunity in Vitiligo. J Invest Dermatol 2024; 144:1622-1632.e5. [PMID: 38246583 DOI: 10.1016/j.jid.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Calreticulin (CRT), a damage-associated molecular pattern molecule, is reported to translocate from the endoplasmic reticulum to the membrane in melanocytes under oxidative stress. To investigate the potential role of CRT in the pathogenesis of vitiligo, we analyzed the correlation between CRT and ROS in serum and lesions of vitiligo, detected CRT and protein kinase RNA-like endoplasmic reticulum kinase (PERK) expression in vitiligo lesions, and studied the production of CRT and mediators of unfolded protein response (UPR) pathway and then tested the chemotactic migration of CD8+ T cells or CD11c+ CD86+ cells. Initially, we verified the overexpression of CRT in perilesional epidermis that was positively correlated with the disease severity of vitiligo. Furthermore, the PERK branch of UPR was confirmed to be responsible for the overexpression and membranal translocation of CRT in melanocytes under oxidative stress. We also found that oxidative stress-induced membranal translocation of CRT promoted the activation and migration of CD8+ T cells in vitiligo. In addition, dendritic cells from patients with vitiligo were also prone to maturation with the coincubation of melanocytes harboring membranal CRT. CRT could be induced on the membrane of melanocytes through UPR and might play a role in oxidative stress-triggered CD8+ T-cell response in vitiligo.
Collapse
Affiliation(s)
- Pu Song
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weigang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Ling Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
2
|
Coutant K, Magne B, Ferland K, Fuentes-Rodriguez A, Chancy O, Mitchell A, Germain L, Landreville S. Melanocytes in regenerative medicine applications and disease modeling. J Transl Med 2024; 22:336. [PMID: 38589876 PMCID: PMC11003097 DOI: 10.1186/s12967-024-05113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Melanocytes are dendritic cells localized in skin, eyes, hair follicles, ears, heart and central nervous system. They are characterized by the presence of melanosomes enriched in melanin which are responsible for skin, eye and hair pigmentation. They also have different functions in photoprotection, immunity and sound perception. Melanocyte dysfunction can cause pigmentary disorders, hearing and vision impairments or increased cancer susceptibility. This review focuses on the role of melanocytes in homeostasis and disease, before discussing their potential in regenerative medicine applications, such as for disease modeling, drug testing or therapy development using stem cell technologies, tissue engineering and extracellular vesicles.
Collapse
Affiliation(s)
- Kelly Coutant
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Brice Magne
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Karel Ferland
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Aurélie Fuentes-Rodriguez
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Olivier Chancy
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Andrew Mitchell
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Lucie Germain
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada.
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada.
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| | - Solange Landreville
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada.
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada.
- Université Laval Cancer Research Center, Quebec City, QC, Canada.
| |
Collapse
|
3
|
Zhou Q, Wang W, Yu Q, Wang J, Zhu W. Transversely Sectioned Mini-Punch Grafting: A Novel Technique for Effective Treatment of Hairline Vitiligo. Clin Cosmet Investig Dermatol 2023; 16:1539-1543. [PMID: 37342540 PMCID: PMC10278645 DOI: 10.2147/ccid.s412948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Objective Hairline vitiligo is a special area. Hairy areas within the hairline often require repigmentation and regrowing hair shafts. The face and forehead outside the hairline do not require regrowing hair shafts, only repigmentation. To tackle this issue, we modified the conventional mini-punch grafting with a combined application of mini-punch grafting and follicular hair transplant. Methods Five patients with localized hairline stable vitiligo aged 26-32 years old had a history of nonsurgical treatments for at least 3 months and without progress. The grafts were transversely sectioned. The intact half follicles were preserved below the cross-section. Sectioned grafts were placed into the chambers for transplanting with forceps. Results The treatment using transversely sectioned mini-punch grafting with the patient was performed for all five patients, and the results were satisfactory. In the area of the forehead outside the hairline with the sectioned mini-punch grafting above the cross-section, hair loss and repigmentation were observed. In the area of the hairy areas within the hairline, growing hair shafts and repigmentation were observed, without hair loss. Conclusion Our report can help to manage hairline vitiligo or hairy areas vitiligo. This method can be considered a potential method for the treatment of hairline vitiligo, thus providing a simple solution to complex problems.
Collapse
Affiliation(s)
- Qiaochu Zhou
- Department of Dermatology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai University, Wenzhou, Zhejiang, People’s Republic of China
| | - Wei Wang
- Department of Gynecology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai University, Wenzhou, Zhejiang, People’s Republic of China
| | - Qi Yu
- Department of Dermatology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai University, Wenzhou, Zhejiang, People’s Republic of China
| | - Jinhui Wang
- Department of Dermatology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai University, Wenzhou, Zhejiang, People’s Republic of China
| | - Wenzheng Zhu
- Department of Dermatology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai University, Wenzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
4
|
Dong J, Lai Y, Zhang X, Yue Y, Zhong H, Shang J. Optimization of Monobenzone-Induced Vitiligo Mouse Model by the Addition of Chronic Stress. Int J Mol Sci 2023; 24:ijms24086990. [PMID: 37108153 PMCID: PMC10138324 DOI: 10.3390/ijms24086990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Vitiligo is a common primary, limited or generalized skin depigmentation disorder. Its pathogenesis is complex, multifactorial and unclear. For this reason, few animal models can simulate the onset of vitiligo, and studies of drug interventions are limited. Studies have found that there may be a pathophysiological connection between mental factors and the development of vitiligo. At present, the construction methods of the vitiligo model mainly include chemical induction and autoimmune induction against melanocytes. Mental factors are not taken into account in existing models. Therefore, in this study, mental inducement was added to the monobenzone (MBEH)-induced vitiligo model. We determined that chronic unpredictable mild stress (CUMS) inhibited the melanogenesis of skin. MBEH inhibited melanin production without affecting the behavioral state of mice, but mice in the MBEH combined with CUMS (MC) group were depressed and demonstrated increased depigmentation of the skin. Further analysis of metabolic differences showed that all three models altered the metabolic profile of the skin. In summary, we successfully constructed a vitiligo mouse model induced by MBEH combined with CUMS, which may be better used in the evaluation and study of vitiligo drugs.
Collapse
Affiliation(s)
- Jing Dong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yifan Lai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaofeng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yunyun Yue
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Zhong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jing Shang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, National Institutes for Food and Drug Control, Beijing 100050, China
| |
Collapse
|
5
|
Liu J, Lei X, Zhang Y, Pan Y. The prediction of molecular toxicity based on BiGRU and GraphSAGE. Comput Biol Med 2023; 153:106524. [PMID: 36623439 DOI: 10.1016/j.compbiomed.2022.106524] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/10/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
The prediction of molecules toxicity properties plays an crucial role in the realm of the drug discovery, since it can swiftly screen out the expected drug moleculars. The conventional method for predicting toxicity is to use some in vivo or in vitro biological experiments in the laboratory, which can easily pose a threat significant time and financial waste and even ethical issues. Therefore, using computational approaches to predict molecular toxicity has become a common strategy in modern drug discovery. In this article, we propose a novel model named MTBG, which primarily makes use of both SMILES (Simplified molecular input line entry system) strings and graph structures of molecules to extract drug molecular feature in the field of drug molecular toxicity prediction. To verify the performance of the MTBG model, we opt the Tox21 dataset and several widely used baseline models. Experimental results demonstrate that our model can perform better than these baseline models.
Collapse
Affiliation(s)
- Jianping Liu
- School of Computer Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an, 710119, China.
| | - Yuchen Zhang
- School of Computer Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Yi Pan
- Faculty of Computer Science and Control Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|