1
|
Zhao JQ, Zhou QQ, Sun Y, Yu T, Jiang Y, Li HJ. The anti-non-small cell lung cancer effect of Diosbulbin B: Targeting YY1 induced cell cycle arrest and apoptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155734. [PMID: 38761775 DOI: 10.1016/j.phymed.2024.155734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Toxic components frequently exhibit unique characteristics and activities, offering ample opportunities for the advancement of anti-cancer medications. As the main hepatotoxic component of Dioscorea bulbifera L. (DB), Diosbulbin B (DIOB) has been widely studied for its anti-tumor activity at nontoxic doses. However, the effectiveness and mechanism of DIOB against non-small cell lung cancer (NSCLC) remains unclear. PURPOSE To evaluate the anti-NSCLC activity of DIOB and to elucidate the specific mechanism of action. METHOD The effect of DIOB on NSCLCL in vitro was evaluated through CCK8, colony formation, and flow cytometry. The in vivo efficacy and safety of DIOB in treating NSCLC were assessed using various techniques, including HE staining, tunel staining, immunohistochemistry, and biochemical index detection. To understand the underlying mechanism, cell transfection, western blotting, molecular docking, cellular thermal shift assay (CESTA), and surface plasmon resonance (SPR) were employed for investigation. RESULTS DIOB effectively hindered the progression of NSCLC both in vitro and in vivo settings at a no-observed-adverse-effect concentration (NOAEC) and a safe dosage. Specifically, DIOB induced significant G0/G1 phase arrest and apoptosis in A549, PC-9, and H1299 cells, while also notably inhibiting the growth of subcutaneous tumors in nude mice. Mechanistically, DIOB could directly interact with oncogene Yin Yang 1 (YY1) and inhibit its expression. The reduction in YY1 resulted in the triggering of the tumor suppressor P53, which induced cell cycle arrest and apoptosis in NSCLC cells by inhibiting the expression of Cyclin A2, B2, CDK1, CDK2, CDK4, BCL-2, and inducing the expression of BAX. In NSCLC cells, the induction of G0/G1 phase arrest and apoptosis by DIOB was effectively reversed when YY1 was overexpressed or P53 was knocked down. Importantly, we observed that DIOB exerted the same effect by directly influencing the expression of YY1-regulated c-Myc and BIM, particularly in the absence of P53. CONCLUSION For the inaugural investigation, this research unveiled the anti-NSCLC impact of DIOB, alongside its fundamental mechanism. DIOB has demonstrated potential as a treatment agent for NSCLC due to its impressive efficacy in countering NSCLC.
Collapse
Affiliation(s)
- Jin-Quan Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Qi-Qi Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Yuan Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Ting Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Yan Jiang
- Nanjing Forestry University, Nanjing 210037, China.
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
2
|
Xue T, Lin JX, He YQ, Li JW, Liu ZB, Jia YJ, Zhou XY, Li XQ, Yu BH. Yin Yang 1 expression predicts a favourable survival in diffuse large B-cell lymphoma. Heliyon 2024; 10:e24376. [PMID: 38312674 PMCID: PMC10835246 DOI: 10.1016/j.heliyon.2024.e24376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Aims Yin Yang 1 (YY1) is a multifunctional transcription factor that plays an important role in tumour development and progression, while its clinical significance in diffuse large B-cell lymphoma (DLBCL) remains largely unexplored. This study aimed to investigate the expression and clinical implications of YY1 in DLBCL. Methods YY1 expression in 198 cases of DLBCL was determined using immunohistochemistry. The correlation between YY1 expression and clinicopathological parameters as well as the overall survival (OS) and progression-free survival (PFS) of patients was analyzed. Results YY1 protein expression was observed in 121 out of 198 (61.1 %) DLBCL cases. YY1 expression was significantly more frequent in cases of the GCB subgroup than in the non-GCB subgroup (P = 0.005). YY1 was positively correlated with the expression of MUM1, BCL6, pAKT and MYC/BCL2 but was negatively associated with the expression of CXCR4. No significant relationships were identified between YY1 and clinical characteristics, including age, sex, stage, localization, and B symptoms. Univariate analysis showed that the OS (P = 0.003) and PFS (P = 0.005) of patients in the YY1-negative group were significantly worse than those in the YY1-positive group. Multivariate analysis indicated that negative YY1 was a risk factor for inferior OS (P < 0.001) and PFS (P = 0.017) independent of the international prognostic index (IPI) score, treatment and Ann Arbor stage. Furthermore, YY1 is more powerful for stratifying DLBCL patients into different risk groups when combined with MYC/BCL2 double-expression (DE) status. Conclusions YY1 was frequently expressed in DLBCL, especially in those of GCB phenotype and with MYC/BCL2-DE. As an independent prognostic factor, YY1 expression could predict a favourable outcome in DLBCL. In addition, a complex regulatory mechanism might be involved in the interactions between YY1 and MYC, pAKT as well as CXCR4 in DLBCL, which warrants further investigation.
Collapse
Affiliation(s)
- Tian Xue
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia-Xin Lin
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Qi He
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ji-Wei Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ze-Bing Liu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Jun Jia
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Yan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Qiu Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bao-Hua Yu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Jung M, Bui I, Bonavida B. Role of YY1 in the Regulation of Anti-Apoptotic Gene Products in Drug-Resistant Cancer Cells. Cancers (Basel) 2023; 15:4267. [PMID: 37686541 PMCID: PMC10486809 DOI: 10.3390/cancers15174267] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Cancer is a leading cause of death among the various diseases encountered in humans. Cancer is not a single entity and consists of numerous different types and subtypes that require various treatment regimens. In the last decade, several milestones in cancer treatments were accomplished, such as specific targeting agents or revitalizing the dormant anti-tumor immune response. These milestones have resulted in significant positive clinical responses as well as tumor regression and the prolongation of survival in subsets of cancer patients. Hence, in non-responding patients and non-responding relapsed patients, cancers develop intrinsic mechanisms of resistance to cell death via the overexpression of anti-apoptotic gene products. In parallel, the majority of resistant cancers have been reported to overexpress a transcription factor, Yin Yang 1 (YY1), which regulates the chemo-immuno-resistance of cancer cells to therapeutic anticancer cytotoxic agents. The relationship between the overexpression of YY1 and several anti-apoptotic gene products, such as B-cell lymphoma 2 protein (Bcl-2), B-cell lymphoma extra-large (Bcl-xL), myeloid cell leukemia 1 (Mcl-1) and survivin, is investigated in this paper. The findings demonstrate that these anti-apoptotic gene products are regulated, in part, by YY1 at the transcriptional, epigenetic, post-transcriptional and translational levels. While targeting each of the anti-apoptotic gene products individually has been examined and clinically tested for some, this targeting strategy is not effective due to compensation by other overexpressed anti-apoptotic gene products. In contrast, targeting YY1 directly, through small interfering RNAs (siRNAs), gene editing or small molecule inhibitors, can be therapeutically more effective and generalized in YY1-overexpressed resistant cancers.
Collapse
Affiliation(s)
| | | | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Quercetin Induces Apoptosis in HepG2 Cells via Directly Interacting with YY1 to Disrupt YY1-p53 Interaction. Metabolites 2023; 13:metabo13020229. [PMID: 36837850 PMCID: PMC9968089 DOI: 10.3390/metabo13020229] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Quercetin is a flavonol found in edible plants and possesses a significant anticancer activity. This study explored the mechanism by which quercetin prevented liver cancer via inducing apoptosis in HepG2 cells. Quercetin induced cell proliferation and apoptosis through inhibiting YY1 and facilitating p53 expression and subsequently increasing the Bax/Bcl-2 ratio. The results revealed that YY1 knockdown promoted apoptosis, whilst YY1 overexpression suppressed apoptosis via direct physical interaction between YY1 and p53 to regulate the p53 signaling pathway. Molecular docking using native and mutant YY1 proteins showed that quercetin could interact directly with YY1, and the binding of quercetin to YY1 significantly decreased the docking energy of YY1 with p53 protein. The interactions between quercetin and YY1 protein included direct binding and non-bonded indirect interactions, as confirmed by cellular thermal shift assay, UV-Vis absorption spectroscopy, fluorescence spectroscopy and circular dichroism spectroscopy. It was likely that quercetin directly bound to YY1 protein to compete with p53 for the binding sites of YY1 to disrupt the YY1-p53 interaction, thereby promoting p53 activation. This study provides insights into the mechanism underlying quercetin's anticancer action and supports the development of quercetin as an anticancer therapeutic agent.
Collapse
|
5
|
Steinhoff M, Alam M, Ahmad A, Uddin S, Buddenkotte J. Targeting oncogenic transcription factors in skin malignancies: An update on cancer stemness and therapeutic outcomes. Semin Cancer Biol 2022; 87:98-116. [PMID: 36372325 DOI: 10.1016/j.semcancer.2022.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
The skin is the largest organ of the human body and prone to various diseases, including cancer; thus, provides the first line of defense against exogenous biological and non-biological agents. Skin cancer, a complex and heterogenic process, with steep incidence rate often metastasizes due to poor understanding of the underlying mechanisms of pathogenesis and clinical challenges. Indeed, accumulating evidence indicates that deregulation of transcription factors (TFs) due to genetic, epigenetic and signaling distortions plays essential role in the development of cutaneous malignancies and therapeutic challenges including cancer stemness features and reprogramming. This review highlights the recent developments exploring underlying mechanisms how deregulated TFs (e.g., NF-κB, AP-1, STAT etc.,) orchestrates cutaneous onco-pathogenesis, reprogramming, stemness and poor clinical outcomes. Along this line, bioactive drugs, and their derivatives from natural and or synthetic origin has gained attention due to their multitargeting potential, potentially safer and effective therapeutic outcome for human malignancies. We also discussed therapeutic importance of targeting aberrantly expressed TFs in skin cancers with bioactive natural products and or synthetic agents.
Collapse
Affiliation(s)
- Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar.
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Center, Qatar University, Doha, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|