1
|
Bitterman D, Wang JY, Collins A, Zafar K, Kabakova M, Patel P, Joerg L, Cohen M, Austin E, Jagdeo J. The role of IL-17 and Th17 cells in keloid pathogenesis. Arch Dermatol Res 2024; 316:626. [PMID: 39276195 DOI: 10.1007/s00403-024-03352-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/16/2024]
Abstract
Keloids are characterized histologically by excessive fibroblast proliferation and connective tissue deposition, and clinically by scar tissue extending beyond the original site of skin injury. These scars can cause pruritus, pain, physical disfigurement, anxiety, and depression. As a result, keloid patients often have a diminished quality of life with a disproportionate burden on ethnic minorities. Despite advances in understanding keloid pathology, there is no effective Food and Drug Administration (FDA)-approved pharmacotherapy. Recent studies have highlighted the possible pathologic role of T helper (Th)17 cells and interleukin (IL)-17 in keloid formation, as well as their implication in other inflammatory disorders. This systematic review characterizes the role of Th17 cells and IL-17 in keloid pathogenesis, highlighting this pathway as a potential therapeutic target. Adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a comprehensive search on PubMed, Embase, MEDLINE, and Web of Science databases on June 5, 2024. The search included terms related to Th17 cells, IL-17, and keloids. Thirteen studies met the inclusion criteria, comprising basic science and bioinformatic studies focusing on Th17 cells and IL-17. Key findings include increased Th17 cell infiltration and IL-17 expression in keloids, IL-17's role in amplifying the inflammatory and fibrotic response via the promotion of IL-6 expression, and IL-17's involvement in upregulating fibrotic markers via SDF-1 and HIF-1α pathways. IL-17 also activates the transforming growth factor beta (TGF-β)/Smad pathway in keloid fibroblasts. Th17 cells and IL-17 significantly contribute to the inflammatory and fibrotic processes in keloid pathogenesis. Therefore, targeting the IL-17 pathway offers a potential new therapeutic target to improve keloid patients' outcomes. Future research could further elucidate the role of Th17 cells and IL-17 in keloid pathogenesis and assess the safety and efficacy of targeting this pathway in human studies.
Collapse
Affiliation(s)
- David Bitterman
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System - Brooklyn Campus, Brooklyn, NY, USA
- New York Medical College, Valhalla, NY, USA
| | - Jennifer Y Wang
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System - Brooklyn Campus, Brooklyn, NY, USA
- Department of Dermatology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Alexia Collins
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System - Brooklyn Campus, Brooklyn, NY, USA
- Department of Dermatology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Kayla Zafar
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System - Brooklyn Campus, Brooklyn, NY, USA
- St. George's University School of Medicine, Grenada, West Indies, True Blue, Grenada
| | - Margaret Kabakova
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System - Brooklyn Campus, Brooklyn, NY, USA
- Department of Dermatology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Paras Patel
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System - Brooklyn Campus, Brooklyn, NY, USA
- Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - Lucie Joerg
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System - Brooklyn Campus, Brooklyn, NY, USA
- Albany Medical College, Albany, NY, USA
| | - Marc Cohen
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System - Brooklyn Campus, Brooklyn, NY, USA
- Department of Dermatology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Evan Austin
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System - Brooklyn Campus, Brooklyn, NY, USA
- Department of Dermatology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Jared Jagdeo
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System - Brooklyn Campus, Brooklyn, NY, USA.
- Department of Dermatology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA.
| |
Collapse
|
2
|
Mao J, Chen L, Qian S, Wang Y, Zhao B, Zhao Q, Lu B, Mao X, Zhai P, Zhang Y, Zhang L, Sun X. Transcriptome network analysis of inflammation and fibrosis in keloids. J Dermatol Sci 2024; 113:62-73. [PMID: 38242738 DOI: 10.1016/j.jdermsci.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/07/2023] [Accepted: 12/24/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Keloid (KL) is a common benign skin tumor. KL is typically characterized by significant fibrosis and an intensive inflammatory response. Therefore, a comprehensive understanding of the interactions between cellular inflammation and fibrotic cells is essential to elucidate the mechanisms driving the progression of KL and to develop therapeutics. OBJECTIVE Investigate the transcriptome landscape of inflammation and fibrosis in keloid scars. METHODS In this paper, we performed transcriptome sequencing and microRNA (miRNA) sequencing on unselected live cells from six human keloid tissues and normal skin tissues to elucidate a comprehensive transcriptome landscape. In addition, we used single-cell RNA sequencing (scRNA-seq) analysis to analyze intercellular communication networks and enrich fibroblast populations in two additional keloid and normal skin samples to study fibroblast diversity. RESULTS By RNA sequencing and a miRNA-mRNA-PPI network analysis, we identified miR-615-5p and miR-122b-3p as possible miRNAs associated with keloids, as they differed most significantly in keloids. Similarly, COL3A1, COL1A2, THBS2, TNC, IGTA, THBS4, TGFB3 as genes with significant differences in keloid may be associated with keloid development. Using single-cell RNA sequencing data from 24,086 cells collected from normal or keloid, we report reconstructed intercellular signaling network analysis and aggregation to modules associated with specific cell subpopulations at the cellular level for keloid alterations. CONCLUSIONS Our multitranscriptomic dataset delineates inflammatory and fibro heterogeneity of human keloids, underlining the importance of intercellular crosstalk between inflammatory cells and fibro cells and revealing potential therapeutic targets.
Collapse
Affiliation(s)
- Jiayi Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Chen
- Department of Plastic and Burn Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shutong Qian
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhuan Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Binfan Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuyu Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bolun Lu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiyuan Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peisong Zhai
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuguang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liucheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaoming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|