1
|
Maslov LN, Naryzhnaya NV, Voronkov NS, Kurbatov BK, Derkachev IA, Ryabov VV, Vyshlov EV, Kolpakov VV, Tomilova EA, Sapozhenkova EV, Singh N, Fu F, Pei J. The role of β-adrenergic receptors in the regulation of cardiac tolerance to ischemia/reperfusion. Why do β-adrenergic receptor agonists and antagonists protect the heart? Fundam Clin Pharmacol 2024; 38:658-673. [PMID: 38423796 DOI: 10.1111/fcp.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Catecholamines and β-adrenergic receptors (β-ARs) play an important role in the regulation of cardiac tolerance to the impact of ischemia and reperfusion. This systematic review analyzed the molecular mechanisms of the cardioprotective activity of β-AR ligands. METHODS We performed an electronic search of topical articles using PubMed databases from 1966 to 2023. We cited original in vitro and in vivo studies and review articles that documented the cardioprotective properties of β-AR agonists and antagonists. RESULTS The infarct-reducing effect of β-AR antagonists did not depend on a decrease in the heart rate. The target for β-blockers is not only cardiomyocytes but also neutrophils. β1-blockers (metoprolol, propranolol, timolol) and the selective β2-AR agonist arformoterol have an infarct-reducing effect in coronary artery occlusion (CAO) in animals. Antagonists of β1- and β2-АR (metoprolol, propranolol, nadolol, carvedilol, bisoprolol, esmolol) are able to prevent reperfusion cardiac injury. All β-AR ligands that reduced infarct size are the selective or nonselective β1-blockers. It was hypothesized that β1-AR blocking promotes an increase in cardiac tolerance to I/R. The activation of β1-AR, β2-AR, and β3-AR can increase cardiac tolerance to I/R. The cardioprotective effect of β-AR agonists is mediated via the activation of kinases and reactive oxygen species production. CONCLUSIONS It is unclear why β-blockers with the similar receptor selectivity have the infarct-sparing effect while other β-blockers with the same selectivity do not affect infarct size. What is the molecular mechanism of the infarct-reducing effect of β-blockers in reperfusion? Why did in early studies β-blockers decrease the mortality rate in patients with acute myocardial infarction (AMI) and without reperfusion and in more recent studies β-blockers had no effect on the mortality rate in patients with AMI and reperfusion? The creation of more effective β-AR ligands depends on the answers to these questions.
Collapse
Affiliation(s)
- Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Natalia V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Nikita S Voronkov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Boris K Kurbatov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Ivan A Derkachev
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Vyacheslav V Ryabov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Evgeny V Vyshlov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | | | | | | | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jianming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
2
|
Kourampi I, Katsioupa M, Oikonomou E, Tsigkou V, Marinos G, Goliopoulou A, Katsarou O, Kalogeras K, Theofilis P, Tsatsaragkou A, Siasos G, Tousoulis D, Vavuranakis M. The Role of Ranolazine in Heart Failure-Current Concepts. Am J Cardiol 2023; 209:92-103. [PMID: 37844876 DOI: 10.1016/j.amjcard.2023.09.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023]
Abstract
Heart failure is a complex clinical syndrome with a detrimental impact on mortality and morbidity. Energy substrate utilization and myocardial ion channel regulation have gained research interest especially after the introduction of sodium-glucose co-transporter 2 inhibitors in the treatment of heart failure. Ranolazine or N-(2,6-dimethylphenyl)-2-(4-[2-hydroxy-3-(2-methoxyphenoxy) propyl] piperazin-1-yl) acetamide hydrochloride is an active piperazine derivative which inhibits late sodium current thus minimizing calcium overload in the ischemic cardiomyocytes. Ranolazine also prevents fatty acid oxidation and favors glycose utilization ameliorating the "energy starvation" of the failing heart. Heart failure with preserved ejection fraction is characterized by diastolic impairment; according to the literature ranolazine could be beneficial in the management of increased left ventricular end-diastolic pressure, right ventricular systolic dysfunction and wall shear stress which is reflected by the high natriuretic peptides. Fewer data is evident regarding the effects of ranolazine in heart failure with reduced ejection fraction and mainly support the control of the sodium-calcium exchanger and function of sarcoendoplasmic reticulum calcium adenosine triphosphatase. Ranolazine's therapeutic mechanisms in myocardial ion channels and energy utilization are documented in patients with chronic coronary syndromes. Nevertheless, ranolazine might have a broader effect in the therapy of heart failure and further mechanistic research is required.
Collapse
Affiliation(s)
- Islam Kourampi
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Maria Katsioupa
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| | - Vasiliki Tsigkou
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Georgios Marinos
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Athina Goliopoulou
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Ourania Katsarou
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Panagiotis Theofilis
- 1st Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Aikaterini Tsatsaragkou
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece; Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston Massachusetts
| | - Dimitris Tousoulis
- 1st Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
3
|
Role of ranolazine in heart failure: From cellular to clinic perspective. Eur J Pharmacol 2022; 919:174787. [PMID: 35114190 DOI: 10.1016/j.ejphar.2022.174787] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/25/2021] [Accepted: 01/25/2022] [Indexed: 12/17/2022]
Abstract
Ranolazine was approved by the US Food and Drug Administration as an antianginal drug in 2006, and has been used since in certain groups of patients with stable angina. The therapeutic action of ranolazine was initially attributed to inhibitory effects on fatty acids metabolism. As investigations went on, however, it developed that the main beneficial effects of ranolazine arise from its action on the late sodium current in the heart. Since late sodium currents were discovered to be involved in various heart pathologies such as ischemia, arrhythmias, systolic and diastolic dysfunctions, and all these conditions are associated with heart failure, ranolazine has in some way been tested either directly or indirectly on heart failure in numerous experimental and clinical studies. As the heart continuously remodels following any sort of severe injury, the inhibition by ranolazine of the underlying mechanisms of cardiac remodeling including ion disturbances, oxidative stress, inflammation, apoptosis, fibrosis, metabolic dysregulation, and neurohormonal impairment are discussed, along with unresolved issues. A projection of pathologies targeted by ranolazine from cellular level to clinical is provided in this review.
Collapse
|
4
|
Murphy SR, Wang L, Wang Z, Domondon P, Lang D, Habecker BA, Myles RC, Ripplinger CM. β-Adrenergic Inhibition Prevents Action Potential and Calcium Handling Changes during Regional Myocardial Ischemia. Front Physiol 2017; 8:630. [PMID: 28894423 PMCID: PMC5581400 DOI: 10.3389/fphys.2017.00630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
β-adrenergic receptor (β-AR) blockers may be administered during acute myocardial infarction (MI), as they reduce energy demand through negative chronotropic and inotropic effects and prevent ischemia-induced arrhythmogenesis. However, the direct effects of β-AR blockers on ventricular electrophysiology and intracellular Ca2+ handling during ischemia remain unknown. Using optical mapping of transmembrane potential (with RH237) and sarcoplasmic reticulum (SR) Ca2+ (with the low-affinity indicator Fluo-5N AM), the effects of 15 min of regional ischemia were assessed in isolated rabbit hearts (n = 19). The impact of β-AR inhibition on isolated hearts was assessed by pre-treatment with 100 nM propranolol (Prop) prior to ischemia (n = 7). To control for chronotropy and inotropy, hearts were continuously paced at 3.3 Hz and contraction was inhibited with 20 μM blebbistatin. Untreated ischemic hearts displayed prototypical shortening of action potential duration (APD80) in the ischemic zone (IZ) compared to the non-ischemic zone (NI) at 10 and 15 min ischemia, whereas APD shortening was prevented with Prop. Untreated ischemic hearts also displayed significant changes in SR Ca2+ handling in the IZ, including prolongation of SR Ca2+ reuptake and SR Ca2+ alternans, which were prevented with Prop pre-treatment. At 5 min ischemia, Prop pre-treated hearts also showed larger SR Ca2+ release amplitude in the IZ compared to untreated hearts. These results suggest that even when controlling for chronotropic and inotropic effects, β-AR inhibition has a favorable effect during acute regional ischemia via direct effects on APD and Ca2+ handling.
Collapse
Affiliation(s)
- Shannon R Murphy
- Department of Pharmacology, University of California, DavisDavis, CA, United States
| | - Lianguo Wang
- Department of Pharmacology, University of California, DavisDavis, CA, United States
| | - Zhen Wang
- Department of Pharmacology, University of California, DavisDavis, CA, United States
| | - Philip Domondon
- Department of Biomedical Engineering, University of California, DavisDavis, CA, United States
| | - Di Lang
- Department of Pharmacology, University of California, DavisDavis, CA, United States
| | - Beth A Habecker
- Department of Physiology and Pharmacology, Oregon Health & Science UniversityPortland, OR, United States
| | - Rachel C Myles
- Institute of Cardiovascular and Medical Sciences, University of GlasgowGlasgow, United Kingdom
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, DavisDavis, CA, United States
| |
Collapse
|
5
|
Azam MA, Zamiri N, Massé S, Kusha M, Lai PFH, Nair GK, Tan NS, Labos C, Nanthakumar K. Effects of Late Sodium Current Blockade on Ventricular Refibrillation in a Rabbit Model. Circ Arrhythm Electrophysiol 2017; 10:CIRCEP.116.004331. [PMID: 28314848 DOI: 10.1161/circep.116.004331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/19/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND After defibrillation of initial ventricular fibrillation (VF), it is crucial to prevent refibrillation to ensure successful resuscitation outcomes. Inability of the late Na+ current to inactivate leads to intracellular Ca2+ dysregulation and arrhythmias. Our aim was to determine the effects of ranolazine and GS-967, inhibitors of the late Na+ current, on ventricular refibrillation. METHODS AND RESULTS Long-duration VF was induced electrically in Langendorff-perfused rabbit hearts (n=22) and terminated with a defibrillator after 6 minutes. Fibrillating hearts were randomized into 3 groups: treatment with ranolazine, GS-967, or nontreated controls. In the treated groups, hearts were perfused with ranolazine or GS-967 at 2 minutes of VF. In control experiments, perfusion solution was supplemented with isotonic saline in lieu of a drug. Inducibility of refibrillation was assessed after initial long-duration VF by attempting to reinduce VF. Sustained refibrillation was successful in fewer ranolazine-treated (29.17%; P=0.005) or GS-967-treated (45.83%, P=0.035) hearts compared with that in nontreated control hearts (84.85%). In GS-967-treated hearts, significantly more spontaneous termination of initial long-duration VF was observed (66.67%; P=0.01). Ca2+ transient duration was reduced in ranolazine-treated hearts compared with that in controls (P=0.05) and also Ca2+ alternans (P=0.03). CONCLUSIONS Late Na+ current inhibition during long-duration VF reduces the susceptibility to subsequent refibrillation, partially by mitigating dysregulation of intracellular Ca2+. These results suggest the potential therapeutic use of ranolazine and GS-967 and call for further testing in cardiac arrest models.
Collapse
Affiliation(s)
- Mohammed Ali Azam
- From the Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Ontario, Canada (M.A.A., N.Z., S.M., M.K., P.F.H.L., G.K.N., N.S.T., K.N.); and Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada (C.L.)
| | - Nima Zamiri
- From the Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Ontario, Canada (M.A.A., N.Z., S.M., M.K., P.F.H.L., G.K.N., N.S.T., K.N.); and Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada (C.L.)
| | - Stéphane Massé
- From the Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Ontario, Canada (M.A.A., N.Z., S.M., M.K., P.F.H.L., G.K.N., N.S.T., K.N.); and Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada (C.L.)
| | - Marjan Kusha
- From the Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Ontario, Canada (M.A.A., N.Z., S.M., M.K., P.F.H.L., G.K.N., N.S.T., K.N.); and Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada (C.L.)
| | - Patrick F H Lai
- From the Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Ontario, Canada (M.A.A., N.Z., S.M., M.K., P.F.H.L., G.K.N., N.S.T., K.N.); and Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada (C.L.)
| | - Govind K Nair
- From the Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Ontario, Canada (M.A.A., N.Z., S.M., M.K., P.F.H.L., G.K.N., N.S.T., K.N.); and Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada (C.L.)
| | - Nigel S Tan
- From the Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Ontario, Canada (M.A.A., N.Z., S.M., M.K., P.F.H.L., G.K.N., N.S.T., K.N.); and Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada (C.L.)
| | - Christopher Labos
- From the Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Ontario, Canada (M.A.A., N.Z., S.M., M.K., P.F.H.L., G.K.N., N.S.T., K.N.); and Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada (C.L.)
| | - Kumaraswamy Nanthakumar
- From the Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Ontario, Canada (M.A.A., N.Z., S.M., M.K., P.F.H.L., G.K.N., N.S.T., K.N.); and Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada (C.L.).
| |
Collapse
|
6
|
Li Z, Lu L, Guo J, Yang J, Zhang J, He B, Xu L. Responses of spatial-temporal dynamics of bacterioplankton community to large-scale reservoir operation: a case study in the Three Gorges Reservoir, China. Sci Rep 2017; 7:42469. [PMID: 28211884 PMCID: PMC5304162 DOI: 10.1038/srep42469] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/11/2017] [Indexed: 02/01/2023] Open
Abstract
Large rivers are commonly regulated by damming, yet the effects of such disruption on bacterioplankton community structures have not been adequately studied. The aim of this study was to explore the biogeographical patterns present under dam regulation and to uncover the major drivers structuring bacterioplankton communities. Bacterioplankton assemblages in the Three Gorges Reservoir (TGR) were analyzed using Illumina Miseq sequencing by comparing seven sites located within the TGR before and after impoundment. This approach revealed ecological and spatial-temporal variations in bacterioplankton community composition along the longitudinal axis. The community was dynamic and dominated by Proteobacteria and Actinobacteria phyla, encompassing 39.26% and 37.14% of all sequences, respectively, followed by Bacteroidetes (8.67%) and Cyanobacteria (3.90%). The Shannon-Wiener index of the bacterioplankton community in the flood season (August) was generally higher than that in the impoundment season (November). Principal Component Analysis of the bacterioplankton community compositions showed separation between different seasons and sampling sites. Results of the relationship between bacterioplankton community compositions and environmental variables highlighted that ecological processes of element cycling and large dam disturbances are of prime importance in driving the assemblages of riverine bacterioplankton communities.
Collapse
Affiliation(s)
- Zhe Li
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Lunhui Lu
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jinsong Guo
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.,Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jixiang Yang
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Bin He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Linlin Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
7
|
Ronchi C, Torre E, Rizzetto R, Bernardi J, Rocchetti M, Zaza A. Late sodium current and intracellular ionic homeostasis in acute ischemia. Basic Res Cardiol 2017; 112:12. [PMID: 28101642 DOI: 10.1007/s00395-017-0602-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 01/03/2017] [Indexed: 11/25/2022]
Abstract
Blockade of the late Na+ current (I NaL) protects from ischemia/reperfusion damage; nevertheless, information on changes in I NaL during acute ischemia and their effect on intracellular milieu is missing. I NaL, cytosolic Na+ and Ca2+ activities (Nacyt, Cacyt) were measured in isolated rat ventricular myocytes during 7 min of simulated ischemia (ISC); in all the conditions tested, effects consistently exerted by ranolazine (RAN) and tetrodotoxin (TTX) were interpreted as due to I NaL blockade. The results indicate that I NaL was enhanced during ISC in spite of changes in action potential (AP) contour; I NaL significantly contributed to Nacyt rise, but only marginally to Cacyt rise. The impact of I NaL on Cacyt was markedly enhanced by blockade of the sarcolemmal(s) Na+/Ca2+ exchanger (NCX) and was due to the presence of (Na+-sensitive) Ca2+ efflux through mitochondrial NCX (mNCX). sNCX blockade increased Cacyt and decreased Nacyt, thus indicating that, throughout ISC, sNCX operated in the forward mode, in spite of the substantial Nacyt increment. Thus, a robust Ca2+ source, other than sNCX and including mitochondria, contributed to Cacyt during ISC. Most, but not all, of RAN effects were shared by TTX. (1) The paradigm that attributes Cacyt accumulation during acute ischemia to decrease/reversal of sNCX transport may not be of general applicability; (2) I NaL is enhanced during ISC, when the effect of Nacyt on mitochondrial Ca2+ transport may substantially contribute to I NaL impact on Cacyt; (3) RAN may act mostly, but not exclusively, through I NaL blockade during ISC.
Collapse
Affiliation(s)
- Carlotta Ronchi
- Department of Biotechnologies and Biosciences, University Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Eleonora Torre
- Department of Biotechnologies and Biosciences, University Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Riccardo Rizzetto
- Department of Biotechnologies and Biosciences, University Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Joyce Bernardi
- Department of Biotechnologies and Biosciences, University Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Marcella Rocchetti
- Department of Biotechnologies and Biosciences, University Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Antonio Zaza
- Department of Biotechnologies and Biosciences, University Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy.
| |
Collapse
|
8
|
Zou D, Geng N, Chen Y, Ren L, Liu X, Wan J, Guo S, Wang S. Ranolazine improves oxidative stress and mitochondrial function in the atrium of acetylcholine-CaCl2 induced atrial fibrillation rats. Life Sci 2016; 156:7-14. [DOI: 10.1016/j.lfs.2016.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 05/08/2016] [Accepted: 05/17/2016] [Indexed: 12/19/2022]
|
9
|
Hale SL, Kloner RA. Ranolazine Treatment for Myocardial Infarction? Effects on the Development of Necrosis, Left Ventricular Function and Arrhythmias in Experimental Models. Cardiovasc Drugs Ther 2014; 28:469-75. [DOI: 10.1007/s10557-014-6548-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|