1
|
Harkes R, Kukk O, Mukherjee S, Klarenbeek J, van den Broek B, Jalink K. Dynamic FRET-FLIM based screening of signal transduction pathways. Sci Rep 2021; 11:20711. [PMID: 34671065 PMCID: PMC8528867 DOI: 10.1038/s41598-021-00098-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/15/2021] [Indexed: 12/28/2022] Open
Abstract
Fluorescence Lifetime Imaging (FLIM) is an intrinsically quantitative method to screen for protein-protein interactions and is frequently used to record the outcome of signal transduction events. With new highly sensitive and photon efficient FLIM instrumentation, the technique also becomes attractive to screen, with high temporal resolution, for fast changes in Förster Resonance Energy Transfer (FRET), such as those occurring upon activation of cell signaling. The second messenger cyclic adenosine monophosphate (cAMP) is rapidly formed following activation of certain cell surface receptors. cAMP is subsequently degraded by a set of phosphodiesterases (PDEs) which display cell-type specific expression and may also affect baseline levels of the messenger. To study which specific PDEs contribute most to cAMP regulation, we knocked down individual PDEs and recorded breakdown rates of cAMP levels following transient stimulation in HeLa cells stably expressing the FRET/FLIM sensor, Epac-SH189. Many hundreds of cells were recorded at 5 s intervals for each condition. FLIM time traces were calculated for every cell, and decay kinetics were obtained. cAMP clearance was significantly slower when PDE3A and, to a lesser amount, PDE10A were knocked down, identifying these isoforms as dominant in HeLa cells. However, taking advantage of the quantitative FLIM data, we found that knockdown of individual PDEs has a very limited effect on baseline cAMP levels. By combining photon-efficient FLIM instrumentation with optimized sensors, systematic gene knockdown and an automated open-source analysis pipeline, our study demonstrates that dynamic screening of transient cell signals has become feasible. The quantitative platform described here provides detailed kinetic analysis of cellular signals in individual cells with unprecedented throughput.
Collapse
Affiliation(s)
- Rolf Harkes
- Cell Biophysics Group, Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Olga Kukk
- Cell Biophysics Group, Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sravasti Mukherjee
- Cell Biophysics Group, Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeffrey Klarenbeek
- Cell Biophysics Group, Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bram van den Broek
- Cell Biophysics Group, Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- BioImaging Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kees Jalink
- Cell Biophysics Group, Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Impedimetric Aptamer-Based Biosensors: Applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 174:43-91. [PMID: 32313965 DOI: 10.1007/10_2020_125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Impedimetric aptamer-based biosensors show high potential for handheld devices and point-of-care tests. In this review, we report on recent advances in aptamer-based impedimetric biosensors for applications in biotechnology. We detail on analytes relevant in medical and environmental biotechnology as well as food control, for which aptamer-based impedimetric biosensors were developed. The reviewed biosensors are examined for their performance, including sensitivity, selectivity, response time, and real sample validation. Additionally, the benefits and challenges of impedimetric aptasensors are summarized.
Collapse
|
3
|
Dynamic transcriptome profiling exploring cold tolerance in forensically important blow fly, Aldrichina grahami (Diptera: Calliphoridae). BMC Genomics 2020; 21:92. [PMID: 31996132 PMCID: PMC6988367 DOI: 10.1186/s12864-020-6509-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/20/2020] [Indexed: 01/14/2023] Open
Abstract
Background Aldrichina grahami (Diptera: Calliphoridae) is a forensically important fly, which has been widely applied to practical legal investigations. Unlike other necrophagous flies, A. grahami exhibits cold tolerance which helps to maintain its activity during low-temperature months, when other species are usually not active. Hence, A. grahami is considered an important forensic insect especially in cold seasons. In this study, we aim to explore the molecular mechanisms of cold tolerance of A. grahami through transcriptome. Results We collected eggs and larvae (first-instar, second-instar and third-instar) at three different temperatures (4 °C, 12 °C and 20 °C) and performed RNA-seq analyses. The differentially expressed genes (DEGs) associated with the cold-tolerance were screened out. The Venn analysis of DEGs from egg to third-instar larvae at three different temperatures showed there were 9 common genes. Candidate biological processes and genes were identified which refer to growth, and development of different temperatures, especially the chitin and cuticle metabolic process. The series-clusters showed crucial and unique trends when the temperature changed. Moreover, by comparing the results of growth and developmental transcriptomes from different temperatures, we found that DEGs belonging to the family of larval cuticle proteins (LCP), pupal cuticle protein (CUP), and heat shock proteins (HSP) have certain differences. Conclusions This study identified functional genes and showed differences in the expression pattern of diverse temperatures. The DEGs series-clusters with increasing or decreasing trends were analyzed which may play an important role in cold-tolerance. Moreover, the findings in LCP, CUP and HSP showed more possible modulations in a cold environment. This work will provide valuable information for the future investigation of the molecular mechanism of cold tolerance in A. grahami.
Collapse
|
4
|
Lin X, Huang Y, Sun Y, Tan X, Ouyang J, Zhao B, Wang Y, Xing X, Liu J. 4E-BP1 Thr46 Phosphorylation Association with Poor Prognosis in Quantitative Phosphoproteomics of Portal Vein Tumor Thrombus Revealed that 4E-BP1Thr46 Phosphorylation is Associated with Poor Prognosis in HCC. Cancer Manag Res 2020; 12:103-115. [PMID: 32021427 PMCID: PMC6954833 DOI: 10.2147/cmar.s230849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/30/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose Early formation of portal vein tumor thrombosis (PVTT) is a key characteristic of hepatocellular carcinoma (HCC) metastasis, but to date, the aetiology of PVTT in HCC metastasis is largely unknown. We aim to find highly sensitive and specific biomarkers for the prediction of HCC prognosis. Patients and methods We used isobaric tags for relative and absolute quantitation (iTRAQ) based quantitative phosphoproteomics approach to investigate the molecular signatures of the HCC with PVTT in primary HCC tissues, surrounding non-cancerous tissues and PVTT tissues. The different proteome profiles in three groups were investigated and might reveal different underlying molecular mechanisms. Results In total, we identified 1745 phosphoproteins with 2724 phosphopeptides and 4594 phosphorylation sites in three groups. Among these phosphoproteins, 80 phosphoproteins were dysregulated in PVTT/Pan group, 51 phosphoproteins were dysregulated in HCC/Pan group, and 10 phosphoproteins were dysregulated in PVTT/HCC group. Furthermore, the phosphorylation of 4E-BP1 was elevated in HCC tissues and PVTT tissues in comparison with surrounding non-cancerous tissues, and the elevated fold change of phosphorylation level was higher than that in expression level of 4E-BP1. The further IHC analysis in acohort of 20 HCC tissues showed that the phosphorylation of 4E-BP1 on Thr46 might be closely related to HCC prognosis. Conclusion The high phosphorylation level of 4E-BP1Thr46 might serve as a biomarker for the diagnosis of early recurrence and metastasis of HCC.
Collapse
Affiliation(s)
- Xincong Lin
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350007, People's Republic of China.,The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Yao Huang
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350007, People's Republic of China.,The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Ying Sun
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Xionghong Tan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Jiahe Ouyang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Xiaohua Xing
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350007, People's Republic of China.,The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Jingfeng Liu
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350007, People's Republic of China.,The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| |
Collapse
|
5
|
MacKeil JL, Brzezinska P, Burke-Kleinman J, Craig AW, Nicol CJB, Maurice DH. A PKA/cdc42 Signaling Axis Restricts Angiogenic Sprouting by Regulating Podosome Rosette Biogenesis and Matrix Remodeling. Sci Rep 2019; 9:2385. [PMID: 30787359 PMCID: PMC6382826 DOI: 10.1038/s41598-018-37805-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022] Open
Abstract
Angiogenic sprouting can contribute adaptively, or mal-adaptively, to a myriad of conditions including ischemic heart disease and cancer. While the cellular and molecular systems that regulate tip versus stalk endothelial cell (EC) specification during angiogenesis are known, those systems that regulate their distinct actions remain poorly understood. Pre-clinical and clinical findings support sustained adrenergic signaling in promoting angiogenesis, but links between adrenergic signaling and angiogenesis are lacking; importantly, adrenergic agents alter the activation status of the cAMP signaling system. Here, we show that the cAMP effector, PKA, acts in a cell autonomous fashion to constitutively reduce the in vitro and ex vivo angiogenic sprouting capacity of ECs. At a cellular level, we observed that silencing or inhibiting PKA in human ECs increased their invasive capacity, their generation of podosome rosettes and, consequently, their ability to degrade a collagen matrix. While inhibition of either Src-family kinases or of cdc42 reduced these events in control ECs, only cdc42 inhibition, or silencing, significantly impacted them in PKA(Cα)-silenced ECs. Consistent with these findings, cell-based measurements of cdc42 activity revealed that PKA activation inhibits EC cdc42 activity, at least in part, by promoting its interaction with the inhibitory regulator, guanine nucleotide dissociation inhibitor-α (RhoGDIα).
Collapse
Affiliation(s)
- J L MacKeil
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - P Brzezinska
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - J Burke-Kleinman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - A W Craig
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - C J B Nicol
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - D H Maurice
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada. .,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
6
|
Zuo H, Cattani-Cavalieri I, Musheshe N, Nikolaev VO, Schmidt M. Phosphodiesterases as therapeutic targets for respiratory diseases. Pharmacol Ther 2019; 197:225-242. [PMID: 30759374 DOI: 10.1016/j.pharmthera.2019.02.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD) and asthma, affect millions of people all over the world. Cyclic adenosine monophosphate (cAMP) which is one of the most important second messengers, plays a vital role in relaxing airway smooth muscles and suppressing inflammation. Given its vast role in regulating intracellular responses, cAMP provides an attractive pharmaceutical target in the treatment of chronic respiratory diseases. Phosphodiesterases (PDEs) are enzymes that hydrolyze cyclic nucleotides and help control cyclic nucleotide signals in a compartmentalized manner. Currently, the selective PDE4 inhibitor, roflumilast, is used as an add-on treatment for patients with severe COPD associated with bronchitis and a history of frequent exacerbations. In addition, other novel PDE inhibitors are in different phases of clinical trials. The current review provides an overview of the regulation of various PDEs and the potential application of selective PDE inhibitors in the treatment of COPD and asthma. The possibility to combine various PDE inhibitors as a way to increase their therapeutic effectiveness is also emphasized.
Collapse
Affiliation(s)
- Haoxiao Zuo
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Isabella Cattani-Cavalieri
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nshunge Musheshe
- Department of Molecular Pharmacology, University of Groningen, the Netherlands
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; German Center for Cardiovascular Research (DZHK), 20246 Hamburg, Germany
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
7
|
Fan HT, Guo JF, Zhang YX, Gu YX, Ning ZQ, Qiao YJ, Wang X. The rational search for PDE10A inhibitors from Sophora flavescens roots using pharmacophore‑ and docking‑based virtual screening. Mol Med Rep 2017; 17:388-393. [PMID: 29115449 DOI: 10.3892/mmr.2017.7871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/31/2017] [Indexed: 11/06/2022] Open
Abstract
Phosphodiesterase 10A (PDE10A) has been confirmed to be an important target for the treatment of central nervous system (CNS) disorders. The purpose of the present study was to identify PDE10A inhibitors from herbs used in traditional Chinese medicine. Pharmacophore and molecular docking techniques were used to virtually screen the chemical molecule database of Sophora flavescens, a well‑known Chinese herb that has been used for improving mental health and regulating the CNS. The pharmacophore model generated recognized the common functional groups of known PDE10A inhibitors. In addition, molecular docking was used to calculate the binding affinity of ligand‑PDE10A interactions and to investigate the possible binding pattern. Virtual screening based on the pharmacophore model and molecular docking was performed to identify potential PDE10A inhibitors from S. flavescens. The results demonstrated that nine hits from S. flavescens were potential PDE10A inhibitors, and their biological activity was further validated using literature mining. A total of two compounds were reported to inhibit cyclic adenosine monophosphate phosphodiesterase, and one protected against glutamate‑induced oxidative stress in the CNS. The remaining six compounds require further bioactivity validation. The results of the present study demonstrated that this method was a time‑ and cost‑saving strategy for the identification of bioactive compounds from traditional Chinese medicine.
Collapse
Affiliation(s)
- Han-Tian Fan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P.R. China
| | - Jun-Fang Guo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P.R. China
| | - Yu-Xin Zhang
- Key Laboratory of TCM‑Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, P.R. China
| | - Yu-Xi Gu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P.R. China
| | - Zhong-Qi Ning
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P.R. China
| | - Yan-Jiang Qiao
- Key Laboratory of TCM‑Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, P.R. China
| | - Xing Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
8
|
Discovery of tetrahydro-ß-carboline derivatives as a new class of phosphodiesterase 4 inhibitors. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2011-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Different phosphodiesterases (PDEs) regulate distinct phosphoproteomes during cAMP signaling. Proc Natl Acad Sci U S A 2017; 114:7741-7743. [PMID: 28710333 DOI: 10.1073/pnas.1709073114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
10
|
Wehbi VL, Taskén K. Molecular Mechanisms for cAMP-Mediated Immunoregulation in T cells - Role of Anchored Protein Kinase A Signaling Units. Front Immunol 2016; 7:222. [PMID: 27375620 PMCID: PMC4896925 DOI: 10.3389/fimmu.2016.00222] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/23/2016] [Indexed: 12/20/2022] Open
Abstract
The cyclic AMP/protein kinase A (cAMP/PKA) pathway is one of the most common and versatile signal pathways in eukaryotic cells. A-kinase anchoring proteins (AKAPs) target PKA to specific substrates and distinct subcellular compartments providing spatial and temporal specificity for mediation of biological effects channeled through the cAMP/PKA pathway. In the immune system, cAMP is a potent negative regulator of T cell receptor-mediated activation of effector T cells (Teff) acting through a proximal PKA/Csk/Lck pathway anchored via a scaffold consisting of the AKAP Ezrin holding PKA, the linker protein EBP50, and the anchoring protein phosphoprotein associated with glycosphingolipid-enriched microdomains holding Csk. As PKA activates Csk and Csk inhibits Lck, this pathway in response to cAMP shuts down proximal T cell activation. This immunomodulating pathway in Teff mediates clinically important responses to regulatory T cell (Treg) suppression and inflammatory mediators, such as prostaglandins (PGs), adrenergic stimuli, adenosine, and a number of other ligands. A major inducer of T cell cAMP levels is PG E2 (PGE2) acting through EP2 and EP4 prostanoid receptors. PGE2 plays a crucial role in the normal physiological control of immune homeostasis as well as in inflammation and cancer immune evasion. Peripherally induced Tregs express cyclooxygenase-2, secrete PGE2, and elicit the immunosuppressive cAMP pathway in Teff as one tumor immune evasion mechanism. Moreover, a cAMP increase can also be induced by indirect mechanisms, such as intercellular transfer between T cells. Indeed, Treg, known to have elevated levels of intracellular cAMP, may mediate their suppressive function by transferring cAMP to Teff through gap junctions, which we speculate could also be regulated by PKA/AKAP complexes. In this review, we present an updated overview on the influence of cAMP-mediated immunoregulatory mechanisms acting through localized cAMP signaling and the therapeutical increasing prospects of AKAPs disruptors in T-cell immune function.
Collapse
Affiliation(s)
- Vanessa L. Wehbi
- Nordic EMBL Partnership, Centre for Molecular Medicine Norway, Oslo University Hospital, University of Oslo, Oslo, Norway
- Jebsen Inflammation Research Centre, Oslo University Hospital, Oslo, Norway
- Biotechnology Centre, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Kjetil Taskén
- Nordic EMBL Partnership, Centre for Molecular Medicine Norway, Oslo University Hospital, University of Oslo, Oslo, Norway
- Jebsen Inflammation Research Centre, Oslo University Hospital, Oslo, Norway
- Biotechnology Centre, Oslo University Hospital, University of Oslo, Oslo, Norway
- Jebsen Centre for Cancer Immunotherapy, Oslo University Hospital, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
11
|
Richards M, Lomas O, Jalink K, Ford KL, Vaughan-Jones RD, Lefkimmiatis K, Swietach P. Intracellular tortuosity underlies slow cAMP diffusion in adult ventricular myocytes. Cardiovasc Res 2016; 110:395-407. [PMID: 27089919 PMCID: PMC4872880 DOI: 10.1093/cvr/cvw080] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/11/2016] [Indexed: 12/20/2022] Open
Abstract
Aims 3′,5′-Cyclic adenosine monophosphate (cAMP) signals in the heart are often confined to concentration microdomains shaped by cAMP diffusion and enzymatic degradation. While the importance of phosphodiesterases (degradative enzymes) in sculpting cAMP microdomains is well established in cardiomyocytes, less is known about cAMP diffusivity (DcAMP) and factors affecting it. Many earlier studies have reported fast diffusivity, which argues against sharply defined microdomains. Methods and results [cAMP] dynamics in the cytoplasm of adult rat ventricular myocytes were imaged using a fourth generation genetically encoded FRET-based sensor. The [cAMP]-response to the addition and removal of isoproterenol (β-adrenoceptor agonist) quantified the rates of cAMP synthesis and degradation. To obtain a read out of DcAMP, a stable [cAMP] gradient was generated using a microfluidic device which delivered agonist to one half of the myocyte only. After accounting for phosphodiesterase activity, DcAMP was calculated to be 32 µm2/s; an order of magnitude lower than in water. Diffusivity was independent of the amount of cAMP produced. Saturating cAMP-binding sites with the analogue 6-Bnz-cAMP did not accelerate DcAMP, arguing against a role of buffering in restricting cAMP mobility. cAMP diffused at a comparable rate to chemically unrelated but similar sized molecules, arguing for a common physical cause of restricted diffusivity. Lower mitochondrial density and order in neonatal cardiac myocytes allowed for faster diffusion, demonstrating the importance of mitochondria as physical barriers to cAMP mobility. Conclusion In adult cardiac myocytes, tortuosity due to physical barriers, notably mitochondria, restricts cAMP diffusion to levels that are more compatible with microdomain signalling.
Collapse
Affiliation(s)
- Mark Richards
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Oliver Lomas
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Kees Jalink
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Kerrie L Ford
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Richard D Vaughan-Jones
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Konstantinos Lefkimmiatis
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK BHF Centre of Research Excellence, Oxford
| | - Pawel Swietach
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
12
|
da Motta NAV, de Brito FCF. Cilostazol exerts antiplatelet and anti-inflammatory effects through AMPK activation and NF-kB inhibition on hypercholesterolemic rats. Fundam Clin Pharmacol 2016; 30:327-37. [PMID: 26950185 DOI: 10.1111/fcp.12195] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 03/01/2016] [Accepted: 03/04/2016] [Indexed: 12/16/2022]
Abstract
This work presents a model of rats fed a high-cholesterol diet, receiving a long-term oral administration of cilostazol, a PDE3-inhibitor. The aim of this study was to evaluate the molecular mechanisms by which cilostazol interferes with platelets signaling pathways to avoid atherosclerosis early development. Male Wistar rats were divided into 3 groups: Control group received standard rat chow (C), hypercholesterolemic group (HCD), and HCD+CIL (cilostazol group) received hypercholesterolemic diet for 45 days. HCD+CIL group received cilostazol (30 mg/kg/p.o.) once daily in the last 15 days. Platelet aggregation, lipid profile, lipid peroxidation, and cytokine serum levels were assessed. Expression of P-selectin, CD40L, PKC-α, IkB-α, and iNOS and activation of AMPK, NF-κB, and eNOS in the platelets were assessed using Western blot analysis. Cilostazol reduced the levels of total cholesterol (361.0 ± 12.8 vs. 111.5 ± 1.6 mg/dL), triglycerides (186.9 ± 17.7 vs. 55.4 ±3.1 mg/dL), cLDL (330.9 ± 9.7 vs. 61.5 ± 3.5 mg/dL), cVLDL (45.0 ± 4.6 vs. 11.1 ± 0.6 mg/dL), and malondialdehyde (9.4 ± 0.5 vs. 3.2 ± 0.3 nmol/mL) compared to the HCD group. Cilostazol presented antiplatelet properties and decreased inflammatory markers levels. These effects seem to be related to AMPK activation, NF-kB inhibition, and eNOS activation.
Collapse
Affiliation(s)
- Nadia Alice Vieira da Motta
- Departamento de Fisiologia e Farmacologia, Laboratório de Farmacologia Experimental (LAFE), Instituto Biomédico, Universidade Federal Fluminense (UFF), Sala 204-A, 24230-210, Niterói, Rio de Janeiro, Brazil
| | - Fernanda Carla Ferreira de Brito
- Departamento de Fisiologia e Farmacologia, Laboratório de Farmacologia Experimental (LAFE), Instituto Biomédico, Universidade Federal Fluminense (UFF), Sala 204-A, 24230-210, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Ertuna E, Turkseven S, Amanvermez D, Ayik F, Yagdi T, Yasa M. Effects of levosimendan on isolated human internal mammary artery and saphenous vein: concurrent use with conventional vasodilators. Fundam Clin Pharmacol 2016; 30:226-34. [PMID: 26839979 DOI: 10.1111/fcp.12185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 11/30/2022]
Abstract
Graft spasm is a common problem in coronary artery bypass grafting (CABG). In this study, we aimed to investigate the interaction of levosimendan, a novel inodilator, with vasodilator agents that are clinically used for the treatment of graft spasm and with endogenous vasoconstrictors that are thought to play a role in graft vasospasm, in human internal mammary artery (IMA) and saphenous vein (SV). Isolated human IMA and SV segments derived from patients undergoing CABG were suspended in an organ bath. Responses to cumulative concentrations of noradrenaline (NA), serotonin (5-HT), papaverine, nitroglycerin (NG), and diltiazem were recorded before and after 10(-5) m levosimendan incubation (30 min). In addition, cumulative levosimendan responses were taken in vessels precontracted with NA or 5-HT. 10(-5) m levosimendan reduced NA Emax and sensitivity in IMA and SV, and 5-HT Emax responses in IMA. Moreover, levosimendan caused concentration-dependent relaxation in both grafts. Papaverine Emax or sensitivity was not altered by levosimendan neither in IMA nor in SV. Levosimendan diminished NG sensitivity in IMA and Emax responses in SV and decreased diltiazem Emax responses both in IMA and SV. Our results suggest that levosimendan may be used alone for prevention or treatment of graft spasm in IMA or in combination with papaverine in IMA and SV grafts. However, as concurrent administration with diltiazem or NG causes a reduction in relaxation in vitro, we suggest caution should be exercised when using levosimendan in combination with these agents.
Collapse
Affiliation(s)
- Elif Ertuna
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Bornova-Izmir, 35100, Turkey
| | - Saadet Turkseven
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Bornova-Izmir, 35100, Turkey
| | - Dilsad Amanvermez
- Department of Cardiovascular Surgery, Faculty of Medicine, Ege University, Bornova-Izmir, 35100, Turkey
| | - Fatih Ayik
- Department of Cardiovascular Surgery, Faculty of Medicine, Ege University, Bornova-Izmir, 35100, Turkey
| | - Tahir Yagdi
- Department of Cardiovascular Surgery, Faculty of Medicine, Ege University, Bornova-Izmir, 35100, Turkey
| | - Mukadder Yasa
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Bornova-Izmir, 35100, Turkey
| |
Collapse
|
14
|
Moon C, Zhang W, Sundaram N, Yarlagadda S, Reddy VS, Arora K, Helmrath MA, Naren AP. Drug-induced secretory diarrhea: A role for CFTR. Pharmacol Res 2015; 102:107-112. [PMID: 26429773 DOI: 10.1016/j.phrs.2015.08.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 08/31/2015] [Indexed: 12/29/2022]
Abstract
Many medications induce diarrhea as a side effect, which can be a major obstacle to therapeutic efficacy and also a life-threatening condition. Secretory diarrhea can be caused by excessive fluid secretion in the intestine under pathological conditions. The cAMP/cGMP-regulated cystic fibrosis transmembrane conductance regulator (CFTR) is the primary chloride channel at the apical membrane of intestinal epithelial cells and plays a major role in intestinal fluid secretion and homeostasis. CFTR forms macromolecular complexes at discreet microdomains at the plasma membrane, and its chloride channel function is regulated spatiotemporally through protein-protein interactions and cAMP/cGMP-mediated signaling. Drugs that perturb CFTR-containing macromolecular complexes in the intestinal epithelium and upregulate intracellular cAMP and/or cGMP levels can hyperactivate the CFTR channel, causing excessive fluid secretion and secretory diarrhea. Inhibition of CFTR chloride-channel activity may represent a novel approach to the management of drug-induced secretory diarrhea.
Collapse
Affiliation(s)
- Changsuk Moon
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Weiqiang Zhang
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Nambirajan Sundaram
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sunitha Yarlagadda
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Vadde Sudhakar Reddy
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kavisha Arora
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael A Helmrath
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of General Surgery, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Anjaparavanda P Naren
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
15
|
Clauss F, Charloux A, Piquard F, Doutreleau S, Talha S, Zoll J, Lugnier C, Geny B. Angiotensin-converting enzyme inhibition prevents myocardial infarction-induced increase in renal cortical cGMP and cAMP phosphodiesterase activities. Fundam Clin Pharmacol 2015; 29:352-61. [PMID: 25939307 DOI: 10.1111/fcp.12124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/05/2015] [Accepted: 04/16/2015] [Indexed: 12/28/2022]
Abstract
We investigated whether myocardial infarction (MI) enhances renal phosphodiesterases (PDE) activities, investigating particularly the relative contribution of PDE1-5 isozymes in total PDE activity involved in both cGMP and cAMP pathways, and whether angiotensin-converting enzyme inhibition (ACEi) decreases such renal PDE hyperactivities. We also investigated whether ACEi might thereby improve atrial natriuretic peptide (ANP) efficiency. We studied renal cortical PDE1-5 isozyme activities in sham (SH)-operated, MI rats and in MI rats treated with perindopril (ACEi) 1 month after coronary artery ligation. Circulating atrial natriuretic peptide (ANP), its second intracellular messenger cyclic guanosine monophosphate (cGMP) and cGMP/ANP ratio were also determined. Cortical cGMP-PDE2 (80.3 vs. 65.1 pmol/min/mg) and cGMP-PDE1 (50.7 vs. 30.1 pmol/min/mg), and cAMP-PDE2 (161 vs. 104.1 pmol/min/mg) and cAMP-PDE4 (307.5 vs. 197.2 pmol/min/mg) activities were higher in MI than in SH rats. Despite increased ANP plasma level, ANP efficiency tended to be decreased in MI compared to SH rats. Perindopril restored PDE activities and tended to improve ANP efficiency in MI rats. One month after coronary ligation, perindopril treatment of MI rats prevents the increase in renal cortical PDE activities. This may contribute to increase renal ANP efficiency in MI rats.
Collapse
Affiliation(s)
- François Clauss
- EA3072, Translational Medicine Federation, Institute of Physiology, University of Strasbourg, 67000, Strasbourg, France
| | - Anne Charloux
- EA3072, Translational Medicine Federation, Institute of Physiology, University of Strasbourg, 67000, Strasbourg, France.,Department of Physiology and Functional Explorations, Pôle de Pathologie thoracique, CHRU Hôpitaux Universitaires, BP 426, 67091, Strasbourg Cedex, France
| | - François Piquard
- EA3072, Translational Medicine Federation, Institute of Physiology, University of Strasbourg, 67000, Strasbourg, France.,Department of Physiology and Functional Explorations, Pôle de Pathologie thoracique, CHRU Hôpitaux Universitaires, BP 426, 67091, Strasbourg Cedex, France
| | - Stéphane Doutreleau
- EA3072, Translational Medicine Federation, Institute of Physiology, University of Strasbourg, 67000, Strasbourg, France.,Department of Physiology and Functional Explorations, Pôle de Pathologie thoracique, CHRU Hôpitaux Universitaires, BP 426, 67091, Strasbourg Cedex, France
| | - Samy Talha
- EA3072, Translational Medicine Federation, Institute of Physiology, University of Strasbourg, 67000, Strasbourg, France.,Department of Physiology and Functional Explorations, Pôle de Pathologie thoracique, CHRU Hôpitaux Universitaires, BP 426, 67091, Strasbourg Cedex, France
| | - Joffrey Zoll
- EA3072, Translational Medicine Federation, Institute of Physiology, University of Strasbourg, 67000, Strasbourg, France.,Department of Physiology and Functional Explorations, Pôle de Pathologie thoracique, CHRU Hôpitaux Universitaires, BP 426, 67091, Strasbourg Cedex, France
| | - Claire Lugnier
- CNRS-UMR 7213 Biophotonic and Pharmacology, 74 route du Rhin, BP 24, 67401, Illkirch, France
| | - Bernard Geny
- EA3072, Translational Medicine Federation, Institute of Physiology, University of Strasbourg, 67000, Strasbourg, France.,Department of Physiology and Functional Explorations, Pôle de Pathologie thoracique, CHRU Hôpitaux Universitaires, BP 426, 67091, Strasbourg Cedex, France
| |
Collapse
|
16
|
Phosphoproteomic analysis of the highly-metastatic hepatocellular carcinoma cell line, MHCC97-H. Int J Mol Sci 2015; 16:4209-25. [PMID: 25690035 PMCID: PMC4346953 DOI: 10.3390/ijms16024209] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 11/29/2022] Open
Abstract
Invasion and metastasis of hepatocellular carcinoma (HCC) is a major cause for lethal liver cancer. Signaling pathways associated with cancer progression are frequently reconfigured by aberrant phosphorylation of key proteins. To capture the key phosphorylation events in HCC metastasis, we established a methodology by an off-line high-pH HPLC separation strategy combined with multi-step IMAC and LC–MS/MS to study the phosphoproteome of a metastatic HCC cell line, MHCC97-H (high metastasis). In total, 6593 phosphopeptides with 6420 phosphorylation sites (p-sites) of 2930 phosphoproteins were identified. Statistical analysis of gene ontology (GO) categories for the identified phosphoproteins showed that several of the biological processes, such as transcriptional regulation, mRNA processing and RNA splicing, were over-represented. Further analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations demonstrated that phosphoproteins in multiple pathways, such as spliceosome, the insulin signaling pathway and the cell cycle, were significantly enriched. In particular, we compared our dataset with a previously published phosphoproteome in a normal liver sample, and the results revealed that a number of proteins in the spliceosome pathway, such as U2 small nuclear RNA Auxiliary Factor 2 (U2AF2), Eukaryotic Initiation Factor 4A-III (EIF4A3), Cell Division Cycle 5-Like (CDC5L) and Survival Motor Neuron Domain Containing 1 (SMNDC1), were exclusively identified as phosphoproteins only in the MHCC97-H cell line. These results indicated that the phosphorylation of spliceosome proteins may participate in the metastasis of HCC by regulating mRNA processing and RNA splicing.
Collapse
|
17
|
Zhao F, Xie Q, Xu M, Wang S, Zhou J, Liu F. RNA aptamer based electrochemical biosensor for sensitive and selective detection of cAMP. Biosens Bioelectron 2014; 66:238-43. [PMID: 25437358 DOI: 10.1016/j.bios.2014.11.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/11/2014] [Accepted: 11/14/2014] [Indexed: 01/26/2023]
Abstract
Cyclic adenosine monophosphate (cAMP) is an important small biological molecule associated with the healthy state of living organism. In order to realize highly sensitive and specific detection of cAMP, here an RNA aptamer and electrochemical impedance spectroscopy (EIS) based biosensor enhanced by gold nanoparticles electrodeposited on the surface of gold electrode is designed. The designed aptasensor has a wide effective measuring range from 50pM to 250pM with a detection limit of 50pM in PBS buffer, and an effective measuring range from 50nM to 1μM with a detection limit of 50nM in serum. The designed biosensor is also able to detect cAMP with high sensitivity, specificity, and stability. Since the biosensor can be easily fabricated with low cost and repeatedly used for at least two times, it owns great potential in wide application fields such as clinical test and food inspection, etc.
Collapse
Affiliation(s)
- Fulin Zhao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qingyun Xie
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Mingfei Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shouyu Wang
- Department of Information Physics and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Jiyong Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Fei Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|