1
|
González-Rodríguez L, González LM, García-Herráiz A, Mota-Zamorano S, Flores I, Gervasini G. Association of OPRD1 Gene Variants with Changes in Body Weight and Psychometric Indicators in Patients with Eating Disorders. J Clin Med 2024; 13:5189. [PMID: 39274402 PMCID: PMC11396092 DOI: 10.3390/jcm13175189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Objectives: This study aimed to investigate whether genetic variations in the OPRD1 gene affect psychopathological symptoms and personality dimensions in eating disorders (ED) patients and/or contribute to ED risk. Methods: The study involved 221 female patients with anorexia nervosa (AN), 88 with bulimia nervosa (BN), and 396 controls. Sixteen tag-single nucleotide polymorphisms (SNPs) in OPRD1 were identified. Psychometric evaluations were conducted using the Symptom Checklist 90 Revised (SCL-90R) and the Eating Disorders Inventory Test-2 (EDI-2). p-values obtained by regression models were corrected for multiple testing by the False Discovery Rate (FDR) method. Results: In AN patients, genotypes rs204077TT and rs169450TT were linked to lower body-mass index (BMI) values (FDR-q = 0.035 and 0.017, respectively), as was rs2234918 in a log-additive model (BMI: 18.0 ± 0.28, 17.22 ± 0.18 and 16.59 ± 0.39 for TT, TC and CC carriers, FDR-q = 0.012). Additionally, AN patients carrying the rs72665504AA genotype had higher scores in interpersonal distrust (FDR-q = 0.030), whilst BN carriers of rs513269TT and rs2873795TT showed lower scores in ineffectiveness (FDR-q = 0.041 and FDR-q = 0.021). In the AN group, BMI correlated with variability in a distal haplotype (rs508448/rs204077/rs223491, FDR-q = 0.028), which was also associated with the global positive symptom total (PST) index of SCL-90R (FDR-q = 0.048). Associations were more noticeable in BN patients; again, the distal region of the gene was linked to EDI-2 total scores (FDR-q = 0.004-0.048 for the four last haplotypes) and two global SCL-90R indices (GSI: FDR-q = 0.011 and positive symptom distress index (PSDI): FDR-q = 0.003 for the last s204077/rs2234918/rs169450 combination). No associations with ED risk were observed. Conclusions: Genetic variation in the OPRD1 gene, particularly in its distal region, is associated with BMI and psychopathological comorbidities in ED patients.
Collapse
Affiliation(s)
- Laura González-Rodríguez
- Department of Medical & Surgical Therapeutics, Medical School, University of Extremadura, 06006 Badajoz, Spain
| | - Luz María González
- Department of Medical & Surgical Therapeutics, Medical School, University of Extremadura, 06006 Badajoz, Spain
| | | | - Sonia Mota-Zamorano
- Department of Medical & Surgical Therapeutics, Medical School, University of Extremadura, 06006 Badajoz, Spain
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06010 Badajoz, Spain
| | - Isalud Flores
- Eating Disorders Unit, Health Service of Extremadura, 06010 Badajoz, Spain
| | - Guillermo Gervasini
- Department of Medical & Surgical Therapeutics, Medical School, University of Extremadura, 06006 Badajoz, Spain
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06010 Badajoz, Spain
| |
Collapse
|
2
|
Widjaja SS, Ichwan M, Chowbay B, Rusdiana, Mardani TH, Jayalie VF. Gene polymorphism impact on opioid analgesic usage. J Adv Pharm Technol Res 2024; 15:135-138. [PMID: 39290537 PMCID: PMC11404436 DOI: 10.4103/japtr.japtr_69_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 09/19/2024] Open
Abstract
Acute pain, moderate-to-severe cancer pain, and persistent malignant pain are all frequently treated with opioids. It is regarded as one of the main tenets of analgesic treatment. The relationship between human opioid sensitivity and genetic polymorphism differences has received little attention up to this point in research. Nonetheless, there is mounting proof that pharmacogenomic diversity could affect how each person reacts to opioids. Finding out how gene polymorphism affects analgesic use is the aim of this investigation, particularly opioids. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses standards were followed in the preparation of the systematic review approach used in this work. Oxycodone, fentanyl, raclopride, tramadol, ketorolac, morphine, ropivacaine, levobupivacaine, subfentanyl, remifentanil, and nortriptyline were the opioid medications used in the study, which was based on 13 publications. From those articles, we reviewed the impact of gene polymorphism on pain management and drug pharmacokinetics. Based on this systematic review, we concluded that gene polymorphism of gene affects analgesic, specifically opioid mechanisms.
Collapse
Affiliation(s)
- Sry Suryani Widjaja
- Department of Biochemistry, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Muhammad Ichwan
- Department of Pharmacology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | | | - Rusdiana
- Department of Biochemistry, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Tengku Helvi Mardani
- Department of Biochemistry, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | | |
Collapse
|
3
|
Yang J, Sun YZ, Li QF, Fu Z, Guan YY, Song C, Zheng L. Study on the association between adverse drug reactions to opioids and gene polymorphisms: a case-case-control study. BMC Pharmacol Toxicol 2023; 24:64. [PMID: 37990344 PMCID: PMC10662635 DOI: 10.1186/s40360-023-00708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023] Open
Abstract
OBJECTIVE Adverse drug reactions (ADRs) caused by opioid drugs show individual differences. Our objective was to explore the association between gene polymorphism and ADRs induced by opioid drugs. METHODS Evidence-based medical data analysis was conducted for genes related to ADRs induced by opioid drugs to select target genes. Sixty patients with cancer pain who had ADRs after taking opioid drugs (morphine, codeine, oxycodone) and 60 patients without ADRs after taking opioid drugs were used as the experimental group and control group, respectively. Then, we used polymerase chain reaction (PCR) or in situ hybridization to detect target genes. By combining with clinical data such as age, sex, dosage and duration of medication, the effect of gene polymorphism on the ADR of patients after taking opioid drugs was statistically analysed. RESULTS Based on a database search and evidence-based medical data, we identified CYP2D6*10, CYP3A5*3, ABCB1, and OPRM1 as target genes for detection. The results of statistical analysis showed no significant difference in genotype distribution between the experimental group and the control group (p > 0.05). However, if 32 patients with ADRs after taking oxycodone and 32 controls were selected for comparison, the SPSS22.0 and SNPStats genetic models showed that the ABCB1 (062rs1045642) CT and TT genotypes correlated with the occurrence of ADRs (p < 0.05): the total number of CT + TT genotypes in the experimental group was 29 (90.62%), with 11 (34.37%) CT + TT genotypes types in the control group. CONCLUSION Polymorphism of ABCB1 (062rs1045642) is related to ADRs caused by oxycodone, and the incidence of ADRs is higher with the allele T. Polymorphism of ABCB1 is expected to become a clinical predictor of ADRs to oxycodone, and attention should be given to the occurrence of serious ADRs in patients with ABCB1 (062rs1045642) CT and TT genotypes.
Collapse
Affiliation(s)
- Jing Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Department of Pharmacy, Shandong Medical College, Jinan, China
- Department of Pharmacy, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying-Zi Sun
- Department of Pharmacy, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qun-Fang Li
- Department of Pharmacy, Shandong Medical College, Jinan, China
| | - Zheng Fu
- Department of Pharmacy, Shandong Medical College, Jinan, China
| | - Yu-Yao Guan
- Department of Pharmacy, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Song
- Department of Pharmacy, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Lei Zheng
- Department of Pharmacy, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
4
|
Aruldhas BW, Quinney SK, Packiasabapathy S, Overholser BR, Raymond O, Sivam S, Sivam I, Velu S, Montelibano A, Sadhasivam S. Effects of oxycodone pharmacogenetics on postoperative analgesia and related clinical outcomes in children: a pilot prospective study. Pharmacogenomics 2023; 24:187-197. [PMID: 36946298 PMCID: PMC10061242 DOI: 10.2217/pgs-2022-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/19/2022] [Indexed: 03/23/2023] Open
Abstract
Background: Variability in the pharmacokinetics and pharmacodynamics of oxycodone in children undergoing surgery could be due to genetic polymorphisms. Materials & methods: The authors studied the association between clinical outcomes and pharmacogenes in children undergoing major surgery. A total of 89 children (35 undergoing pectus excavatum repair and 54 undergoing spinal fusion) were recruited. Results: OPRM1 SNP rs6902403 showed an association with maximum pain score and total morphine equivalent dose (p < 0.05). Other polymorphisms in OPRM1 SNP, PXR, COMT and ABCB1 were also shown to be associated with average morphine equivalent dose, length of hospital stay and maximum surgical pain (p < 0.05). Conclusion: This study demonstrates novel associations between the above pharmacogenes and oxycodone's pharmacokinetics as well as postoperative outcomes in children. Clinical trial registration: NCT03495388 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Blessed W Aruldhas
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology & Clinical Pharmacology, Christian Medical College, Vellore, India
| | - Sara K Quinney
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Obstetrics & Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology & Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Brian R Overholser
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology & Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacy Practice, Purdue University College of Pharmacy, Indianapolis, IN, USA
| | - Olivia Raymond
- Department of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Sahana Sivam
- North Allegheny Intermediate High School, Pittsburgh, PA 15237, USA
| | - Inesh Sivam
- North Allegheny Intermediate High School, Pittsburgh, PA 15237, USA
| | | | - Antoinette Montelibano
- Department of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Senthilkumar Sadhasivam
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Howes S, Cloutet AR, Kweon J, Powell TL, Raza D, Cornett EM, Kaye AD. Pharmacogenomics of Opioid Treatment for Pain Management. Methods Mol Biol 2022; 2547:491-504. [PMID: 36068474 DOI: 10.1007/978-1-0716-2573-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pain affects approximately 100 million Americans. Pain harms quality of life and costs patients billions of dollars per year. Clinically, nonpharmacologic and pharmacologic therapies can alleviate acute and chronic pain suffering. Opioids are one type of medication used to manage pain. However, opioids can potentially create dependence and substance abuse, and the effects are not consistent in all patients. Pharmacogenomics is the study of the genome to understand the effects of drugs on individual patients based on their genetic information. Through pharmacogenomics, researchers can investigate genetic polymorphisms related to pain that maximize individual patient drug responses and minimize toxicity. This chapter discusses the pharmacogenomics of opioids to treat pain, including individual genetic differences to opioid treatments, opioid pharmacokinetics and pharmacodynamics, and the genetic polymorphisms associated with individual opioid medications.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Raza
- Tulane School of Medicine, New Orleans, LA, USA
| | - Elyse M Cornett
- Department of Anesthesiology, LSU Health Shreveport, Shreveport, LA, USA.
| | - Alan D Kaye
- Departments of Anesthesiology and Pharmacology, Toxicology and Neurosciences, LSU Health Shreveport, Shreveport, LA, USA
| |
Collapse
|
6
|
Tanaka R, Sato J, Ishikawa H, Sato T, Shino M, Ohde Y, Sato T, Mori K, Notsu A, Ohnami S, Mizuguchi M, Nagashima T, Yamaguchi K. Influence of genetic variants of opioid-related genes on opioid-induced adverse effects in patients with lung cancer: A STROBE-compliant observational study. Medicine (Baltimore) 2021; 100:e27565. [PMID: 34871222 PMCID: PMC8568420 DOI: 10.1097/md.0000000000027565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/02/2021] [Indexed: 01/05/2023] Open
Abstract
Despite the dramatic advancement of cancer chemotherapy and immunotherapy, the insufficient progress has been made in basic or translational research on personalization of opioid therapy. Predicting the effectiveness of opioid analgesic therapy and the risk of adverse effects prior to therapy are expected to enable safer and more appropriate opioid therapy for cancer patients. In this study, we compared the incidence of opioid-induced adverse effects between patients with different variants of the genes related to responsiveness to opioid analgesics.Participants were 88 patients with lung cancer who provided general consent for exome sequencing and were treated with morphine or oxycodone at Shizuoka Cancer Center Hospital between April 2014 and August 2018. Incidence rates for 6 adverse effects of opioid therapy (somnolence, nausea, constipation, delirium, urinary retention, and pruritus) were determined and the influence of single nucleotide polymorphisms in coding regions of the opioid μ receptor 1 (OPRM1) (rs1799971), opioid δ receptor 1 (rs2234918), opioid κ receptor 1 (rs1051660), catechol-O-methyltransferase (COMT) (rs4680), dopamine receptor D2 (rs6275), adenosine triphosphate binding cassette B1 (rs1045642), G-protein regulated inward rectifier potassium channel 2 (rs2070995), and fatty acid amide hydrolase (rs324420) genes on those adverse effects were analyzed.Analysis of OPRM1 gene variant status (Asn133Asp A > G) showed that G/G homozygotes were at significantly lower risk of somnolence compared with A allele carriers (0% vs 28.4%; Fisher exact test, P = .005; OR, 0; 95% CI, 0-0.6), and analysis of COMT gene variant status (Val158Met, G > A) showed that G/G homozygotes were at significantly higher risk of somnolence compared with A allele carriers (35.0% vs 10.4%; Fisher exact test, P = .008; OR, 4.5; 95% CI, 1.4-18.1). No relationship between variant status and adverse effects was found for the other genes.These findings demonstrate that OPRM1 and COMT gene variants influence the risk of somnolence as an adverse effect of opioid analgesic therapy.
Collapse
Affiliation(s)
- Rei Tanaka
- Department of Pharmacy, Shizuoka Cancer Center Hospital, Shizuoka, Japan
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Junya Sato
- Department of Pharmacy, Shizuoka Cancer Center Hospital, Shizuoka, Japan
- Department of Pharmacy, International University of Health and Welfare Hospital, Tochigi, Japan
- Faculty of Pharmacy, International University of Health and Welfare, Tochigi, Japan
| | - Hiroshi Ishikawa
- Department of Pharmacy, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Tetsu Sato
- Department of Pharmacy, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Michihiro Shino
- Department of Pharmacy, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yasuhisa Ohde
- Division of Thoracic Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Tetsumi Sato
- Division of Palliative Medicine, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Keita Mori
- Clinical Research Center, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Akifumi Notsu
- Clinical Research Center, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Sumiko Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Maki Mizuguchi
- Office of the Project HOPE, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Takeshi Nagashima
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
- SRL Inc, Tokyo, Japan
| | | |
Collapse
|
7
|
Magarbeh L, Gorbovskaya I, Le Foll B, Jhirad R, Müller DJ. Reviewing pharmacogenetics to advance precision medicine for opioids. Biomed Pharmacother 2021; 142:112060. [PMID: 34523422 DOI: 10.1016/j.biopha.2021.112060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Adequate opioid prescribing is critical for therapeutic success of pain management. Despite the widespread use of opioids, optimized opioid therapy remains unresolved with risk of accidental lethal overdosing. With the emergence of accumulating evidence linking genetic variation to opioid response, pharmacogenetic based treatment recommendations have been proposed. OBJECTIVE The aim of this review is to evaluate pharmacogenetic evidence and provide an overview on genes involved in the pharmacokinetics and pharmacodynamics of opioids. METHODS For this review, a systematic literature search of published articles was used in PubMed®, with no language restriction and between the time period of January 2000 to December 2020. We reviewed randomized clinical studies, study cohorts and case reports that investigated the influence of genetic variants on selected opioid pharmacokinetics and pharmacodynamics. In addition, we reviewed current CPIC clinical recommendations for pharmacogenetic testing. RESULTS Results of this review indicate consistent evidence supporting the association between selected genetic variants of CYP2D6 for opioid metabolism. CPIC guidelines include recommendations that indicate the avoidance of tramadol use, in addition to codeine, in CYP2D6 poor metabolizers and ultrarapid metabolizers, and to monitor intermediate metabolizers for less-than-optimal response. While there is consistent evidence for OPRM1 suggesting increased postoperative morphine dosing requirements in A118G G-allele carriers, the clinical relevance remains limited. CONCLUSION There is emerging evidence of clinical relevance of CYP2D6 and, to a lesser extent, OPRM1 polymorphism in personalized opioid drug dosing. As a result, first clinics have started to implement pharmacogenetic guidelines for CYP2D6 and codeine.
Collapse
Affiliation(s)
- Leen Magarbeh
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Ilona Gorbovskaya
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Bernard Le Foll
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Family and Community Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada; Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Acute Care Program, Centre for Addiction and Mental Health, Toronto, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Reuven Jhirad
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada; Office of the Chief Coroner and Ontario Forensic Pathology Service, Toronto, ON, Canada
| | - Daniel J Müller
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada.
| |
Collapse
|
8
|
Deodhar M, Turgeon J, Michaud V. Contribution of CYP2D6 Functional Activity to Oxycodone Efficacy in Pain Management: Genetic Polymorphisms, Phenoconversion, and Tissue-Selective Metabolism. Pharmaceutics 2021; 13:1466. [PMID: 34575542 PMCID: PMC8468517 DOI: 10.3390/pharmaceutics13091466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 02/01/2023] Open
Abstract
Oxycodone is a widely used opioid for the management of chronic pain. Analgesic effects observed following the administration of oxycodone are mediated mostly by agonistic effects on the μ-opioid receptor. Wide inter-subject variability observed in oxycodone efficacy could be explained by polymorphisms in the gene coding for the μ-opioid receptor (OPRM1). In humans, oxycodone is converted into several metabolites, particularly into oxymorphone, an active metabolite with potent μ-opioid receptor agonist activity. The CYP2D6 enzyme is principally responsible for the conversion of oxycodone to oxymorphone. The CYP2D6 gene is highly polymorphic with encoded protein activities, ranging from non-functioning to high-functioning enzymes. Several pharmacogenetic studies have shown the importance of CYP2D6-mediated conversion of oxycodone to oxymorphone for analgesic efficacy. Pharmacogenetic testing could optimize oxycodone therapy and help achieve adequate pain control, avoiding harmful side effects. However, the most recent Clinical Pharmacogenetics Implementation Consortium guidelines fell short of recommending pharmacogenomic testing for oxycodone treatment. In this review, we (1) analyze pharmacogenomic and drug-interaction studies to delineate the association between CYP2D6 activity and oxycodone efficacy, (2) review evidence from CYP3A4 drug-interaction studies to untangle the nature of oxycodone metabolism and its efficacy, (3) report on the current knowledge linking the efficacy of oxycodone to OPRM1 variants, and (4) discuss the potential role of CYP2D6 brain expression on the local formation of oxymorphone. In conclusion, we opine that pharmacogenetic testing, especially for CYP2D6 with considerations of phenoconversion due to concomitant drug administration, should be appraised to improve oxycodone efficacy.
Collapse
Affiliation(s)
- Malavika Deodhar
- Precision Pharmacotherapy Research and Development Institute, Tabula Rasa HealthCare, Orlando, FL 32827, USA; (M.D.); (J.T.)
| | - Jacques Turgeon
- Precision Pharmacotherapy Research and Development Institute, Tabula Rasa HealthCare, Orlando, FL 32827, USA; (M.D.); (J.T.)
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Veronique Michaud
- Precision Pharmacotherapy Research and Development Institute, Tabula Rasa HealthCare, Orlando, FL 32827, USA; (M.D.); (J.T.)
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
9
|
Levran O, Randesi M, Adelson M, Kreek MJ. OPRD1 SNPs associated with opioid addiction are cis-eQTLs for the phosphatase and actin regulator 4 gene, PHACTR4, a mediator of cytoskeletal dynamics. Transl Psychiatry 2021; 11:316. [PMID: 34031368 PMCID: PMC8144180 DOI: 10.1038/s41398-021-01439-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
Several OPRD1 intronic variants were associated with opioid addiction (OD) in a population-specific manner. This follow-up study aims to further characterize the OPRD1 haplotype pattern of the risk variants in different populations and apply in silico analysis to identify potential causal variants. A population-specific haplotype pattern was revealed based on six OPRD1 eQTL SNPs and five common haplotypes were identified in a sample of European ancestry (CEU). A European-specific haplotype ('Hap 3') that includes SNPs previously associated with OD and is tagged by SNP rs2236861 is more common in subjects with OD. It is quite common (10%) in CEU but is absent in the African sample (YRI) and extends upstream of OPRD1. SNP rs2236857 is most probably a non-causal variant in LD with the causal SNP/s in a population-specific manner. The study provides an explanation for the lack of association in African Americans, despite its high frequency in this population. OD samples homozygous for 'Hap 3' were reanalyzed using a denser coverage of the region and revealed at least 25 potentially regulatory SNPs in high LD. Notably, GTEx data indicate that some of the SNPs are eQTLs for the upstream phosphatase and actin regulator 4 (PHACTR4), in the cortex, and others are eQTLs for OPRD1 and the upstream lncRNA ENSG00000270605, in the cerebellum. The study highlights the limitation of single SNP analysis and the sensitivity of association studies of OPRD1 to a genetic background. It proposes a long-range functional connection between OPRD1 and PHACTR4. PHACTR4, a mediator of cytoskeletal dynamics, may contribute to drug addiction by modulating synaptic plasticity.
Collapse
Affiliation(s)
- Orna Levran
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA.
| | - Matthew Randesi
- grid.134907.80000 0001 2166 1519The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY USA
| | - Miriam Adelson
- grid.134907.80000 0001 2166 1519The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY USA ,Dr. Miriam and Sheldon G. Adelson Clinic for Drug Abuse Treatment and Research, Las Vegas, NV USA
| | - Mary Jeanne Kreek
- grid.134907.80000 0001 2166 1519The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY USA
| |
Collapse
|
10
|
Umukoro NN, Aruldhas BW, Rossos R, Pawale D, Renschler JS, Sadhasivam S. Pharmacogenomics of oxycodone: a narrative literature review. Pharmacogenomics 2021; 22:275-290. [PMID: 33728947 DOI: 10.2217/pgs-2020-0143] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxycodone is a semisynthetic μ- and κ-opioid receptor with agonist with a broad scope of use including postoperative analgesia as well as control of neuropathic and cancer pain. Advantages over other opioids include prolonged duration of action, greater potency than morphine and lack of histamine release or ceiling effect. Individual responses to oxycodone can vary due to genetic differences. This review article aims to summarize the oxycodone literature and provide context on its pharmacogenomics and pharmacokinetics. The evidence for clinical effect of genetic polymorphisms on oxycodone is conflicting. There is stronger evidence linking polymorphic genetic enzymes CYP2D6 and CYP3A with therapeutic outcomes. Further, research is needed to discern all of oxycodone's metabolites and their contribution to the overall analgesic effect.
Collapse
Affiliation(s)
- Nelly N Umukoro
- Department of Anesthesia, Riley Hospital for Children at Indiana University Health, Indianapolis, IN 46202, USA
| | - Blessed W Aruldhas
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Pharmacology & Clinical Pharmacology, Christian Medical College, Vellore, India
| | - Ryan Rossos
- Department of Anesthesia, Riley Hospital for Children at Indiana University Health, Indianapolis, IN 46202, USA.,Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dhanashri Pawale
- Department of Anesthesia, Riley Hospital for Children at Indiana University Health, Indianapolis, IN 46202, USA.,Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Janelle S Renschler
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Senthilkumar Sadhasivam
- Department of Anesthesia, Riley Hospital for Children at Indiana University Health, Indianapolis, IN 46202, USA.,Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
11
|
Singh A, Zai C, Mohiuddin AG, Kennedy JL. The pharmacogenetics of opioid treatment for pain management. J Psychopharmacol 2020; 34:1200-1209. [PMID: 32715846 DOI: 10.1177/0269881120944162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Opioids are widely used as an analgesic for the treatment of moderate to severe pain. However, there are interindividual variabilities in opioid response. Current evidence suggests that these variabilities can be attributed to single nucleotide polymorphisms in genes involved in opioid pharmacodynamics and pharmacokinetics. Knowledge of these genetic factors through pharamacogenetic (PGx) testing can help clinicians to more consistently prescribe opioids that can provide patients with maximal clinical benefit and minimal risk of adverse effects. AIM The research outlined in this literature review identifies variants involved in opioid PGx, which may be an important tool to achieving the goal of personalized pain management. RESULTS Cytochrome P450 (CYP) 2D6, CYP3A4, CYP3A5, catechol-o-methyltransferase (COMT), adenosine triphosphate binding cassette transporter B1 (ABCB1), opioid receptor mu 1 (OPRM1), and opioid receptor delta 1 (OPRD1) are all important genes involved in opioid drug response, side effect profile and risk of dependence; these are important genetic factors that should be included in potential opioid PGx tests for pain management. CONCLUSIONS Employing a PGx-guided strategy for prescribing opioids can improve response rate, reduce side effects and increase adherence to treatment plans for pain; more research is needed to explore opioid-related PGx factors for the development and validation of an opioid genetic panel. Optimal prescriptions could also provide healthcare payers with beneficial savings, while reducing the risk of propagating the current opioid crisis.
Collapse
Affiliation(s)
- Ashley Singh
- Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Clement Zai
- Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Ayeshah G Mohiuddin
- Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - James L Kennedy
- Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Ho KWD, Wallace MR, Staud R, Fillingim RB. OPRM1, OPRK1, and COMT genetic polymorphisms associated with opioid effects on experimental pain: a randomized, double-blind, placebo-controlled study. THE PHARMACOGENOMICS JOURNAL 2020; 20:471-481. [PMID: 31806881 PMCID: PMC7260086 DOI: 10.1038/s41397-019-0131-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 11/11/2019] [Accepted: 11/20/2019] [Indexed: 01/13/2023]
Abstract
Genetic polymorphisms have been shown to affect opioid requirement for pain relief. However, true genetic effect is often difficult to assess due to underlying pain conditions and placebo effects. The goal of this study was to understand how common polymorphisms affect opioid effects while controlling for these factors. A randomized, double-blind, placebo-controlled study was implemented to assess how opioid effects are modulated by COMT (rs6269, rs4633, rs4848, rs4680), OPRM1 (A118G), and OPRK1 (rs1051660, rs702764, rs16918875). One hundred and eight healthy subjects underwent experimental pain testing before and after morphine, butorphanol, and placebo (saline). Association analysis was performed between polymorphisms/haplotypes and opioid response, while correcting for race, gender, placebo effects, and multiple comparisons. Pressure pain was significantly associated with rs6269 and rs4633 following butorphanol. The AA genotype of rs4680 or A_T_C_A/ A_T_C_A (rs6269_rs4633_ rs4818_rs4680) diplotype of COMT, combined with the AG genotype of OPRM1 A118G, showed significantly increased pressure pain threshold from butorphanol. Opioid effects on pressure, ischemic, heat pain, and side effects were nominally associated with several SNPs and haplotypes. Effects were often present in one opioid but not the other. This indicates that these polymorphisms affect pain relief from opioids, and that their effects are opioid and pain modality specific.
Collapse
Affiliation(s)
- Kwo Wei David Ho
- Department of Anesthesiology, Perioperative and Pain Medicine, Division of Pain Medicine, Stanford University, Redwood City, CA, USA.
- Department of Neurology, University of Florida, Gainesville, FL, USA.
| | - Margaret R Wallace
- Department of Molecular Genetics & Microbiology, and UF Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Roland Staud
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Roger B Fillingim
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Tolami HF, Sharafshah A, Tolami LF, Keshavarz P. Haplotype-Based Association and In Silico Studies of OPRM1 Gene Variants with Susceptibility to Opioid Dependence Among Addicted Iranians Undergoing Methadone Treatment. J Mol Neurosci 2019; 70:504-513. [PMID: 31853823 DOI: 10.1007/s12031-019-01443-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022]
Abstract
The associations of OPRM1 gene variants with opioid dependence have been demonstrated. This study investigated the association of rs495491, rs1799971 (A118G), rs589046, and rs10457090 variants of OPRM1 gene with opium dependence and their haplotypes among addicted individuals undergoing methadone treatment. Moreover, we investigated whether any of these variants were associated with libido dysfunction or insomnia among addicted people. A total of 404 individuals were genotyped by amplification refractory mutation system (ARMS) PCR. In silico studies were designed through homology modeling of A118G structures (N40 and D40) and docked with 41 FDA-approved drugs of OPRM1 protein by SWISS-MODEL, COACH, MolProbity, ProSA, Errat, Glide XP, and Autodock 4. Results revealed that rs495491, A118G, rs589046, and rs10457090 were significantly associated with opium dependence under recessive (P = 6.66E-10), dominant (P = 0.017), co-dominant (P = 0.001), and recessive (P = 9.28E-6) models of inheritance, respectively. Further analyses indicated three significant haplotypes including A-A-A-C (P-permutation < 1E-9), G-G-A-C (P-permutation = 0.04), and G-A-G-C (P-permutation = 8.69E-4). Genotype-phenotype associations of OPRM1 variants with insomnia and libido dysfunction showed no significant association. Docking showed the higher binding affinity of N40 rather than D40 model; however, methadone and morphine were bonded with D40 structure more powerful. Consequently, rs495491, A118G, rs589046, and rs10457090 were associated with opioid dependence among Iranians; also, A118G might be the most remarkable marker of OPRM1 owing to its vital structural roles.
Collapse
Affiliation(s)
- Hedyeh Fazel Tolami
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Alireza Sharafshah
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Laleh Fazel Tolami
- Medical and Emergency Management Center of Guilan, Guilan University of Medical Sciences, Rasht, Iran
| | - Parvaneh Keshavarz
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
14
|
Kafshdooz L, Kahroba H, Kafshdooz T, Roghayeh Sheervalilou, Pourfathi H. Labour analgesia; Molecular pathway and the role of nanocarriers: a systematic review. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:927-932. [PMID: 30873885 DOI: 10.1080/21691401.2019.1573736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Labour is considered to be one of the most painful procedures in human experience. The most effective technique for pain relief during labour is neuraxial labour analgesia which provides analgesia without maternal or fetal sedation. Genetic predisposition may be of importance for pain perception and women experience varying degrees of pain in labour. Genetic variations in opioid receptor (OPR) genes may influence the response to epidural opioid analgesia during labour. The single-nucleotide polymorphism, A118G of the mu opioid receptor gene (oprm1), has been associated with altered pain perception. Targeted drug delivery reduces toxic side effects. Liposomes, nano-particles, nanofibres hydrogel, have been suggested to deliver anaesthetic drugs.
Collapse
Affiliation(s)
- Leila Kafshdooz
- a Womens Reproductive Health Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,b Molecular Medicine Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Houman Kahroba
- b Molecular Medicine Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Molecular Medicine, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Tayebeh Kafshdooz
- c Department of Molecular Medicine, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Roghayeh Sheervalilou
- c Department of Molecular Medicine, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Hojjat Pourfathi
- d Department of Anesthesiology, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
15
|
|
16
|
Kaski SW, Brooks S, Wen S, Haut MW, Siderovski DP, Berry JH, Lander LR, Setola V. Four single nucleotide polymorphisms in genes involved in neuronal signaling are associated with Opioid Use Disorder in West Virginia. J Opioid Manag 2019; 15:103-109. [PMID: 31057342 DOI: 10.5055/jom.2019.0491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective Pilot study to assess utility in opioid use disorder (OUD) of a panel of single nucleotide polymorphisms in genes previously related to substance use disorder (SUD) and/or phenotypes that predispose individuals to OUD/SUD. Design Genetic association study. Setting West Virginia University's Chestnut Ridge Center Comprehensive Opioid Abuse Treatment (COAT) clinic for individuals diagnosed with OUD. Patients Sixty patients 18 years of age or older with OUD undergoing medication (buprenorphine/naloxone)-assisted treatment (MAT); all sixty patients recruited contributed samples for genetic analysis. Outcome Measures Minor allele frequencies for single nucleotide polymorphisms. Results Four of the fourteen single nucleotide polymorphisms examined were present at frequencies that are statistically significantly different than in a demographically-matched general population. Conclusions For the purposes of testing WV individuals via genetic means for predisposition to OUD, at least four single nucleotide polymorphisms in three genes are likely to have utility in predicting susceptibility. Additional studies with larger populations will need to be conducted to confirm these results before use in a clinical setting.
Collapse
Affiliation(s)
- Shane W Kaski
- Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, WV
| | | | - Sijin Wen
- Department of Biostatistics, West Virginia University School of Public Health, Morgantown, WV
| | - Marc W Haut
- Department of Behavioral Medicine & Psychiatry, West Virginia University School of Medicine, Morgantown, WV
| | - David P Siderovski
- Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, WV
| | - James H Berry
- Chestnut Ridge Center and Inpatient Acute Dual Diagnosis Program, West Virginia University School of Medicine, Morgantown, WV
| | - Laura R Lander
- West Virginia University School of Medicine, Morgantown, WV
| | - Vincent Setola
- Departments of Behavioral Medicine & Psychiatry, Neuroscience, and Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, WV
| |
Collapse
|
17
|
Garcia MM, Goicoechea C, Avellanal M, Traseira S, Martín MI, Sánchez-Robles EM. Comparison of the antinociceptive profiles of morphine and oxycodone in two models of inflammatory and osteoarthritic pain in rat. Eur J Pharmacol 2019; 854:109-118. [PMID: 30978319 DOI: 10.1016/j.ejphar.2019.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 01/19/2023]
Abstract
Oxycodone and morphine are two opioid drugs commonly used for the treatment of moderate to severe pain. However, their use in the management of noncancer pain remains a controversial issue and, in this respect, the evidence on their effectiveness and safety, particularly in osteoarthritis, is being questioned. In order to analyse their analgesic profile, two different pain models in rats were used: the formalin-induced inflammatory pain and the monosodium iodoacetate (MIA)-induced knee osteoarthritic pain. Drugs were administered systemically (i.p.) and their antinociceptive effect and potency were assessed. In the formalin test, both morphine and oxycodone produced a dose-dependent antinociceptive effect, but oxycodone outdid morphine in terms of effectiveness and potency (nearly two times) in the early (acute nociceptive) as in the late phase (inflammatory). In the osteoarthritis model, both drugs reduced movement-evoked pain (knee-bend test), mechanical allodynia (von Frey test) and heat hyperalgesia (Plantar test). Pretreatment with naloxone and naloxone methiodide reduced morphine and oxycodone effects. Peripheral mu-opioid receptors play a crucial role in the antinociceptive effect of both drugs on movement-evoked pain and heat hyperalgesia, but not on tactile allodynia. The main finding of our study is that oxycodone has a better antinociceptive profile in the inflammatory and osteoarthritic pain, being more effective than morphine at 14 days post-MIA injection (phase with neuropathic pain); it overcame the morphine effect by improving the movement-induced pain, tactile allodynia and heat hyperalgesia. Therefore, oxycodone could be an interesting option to treat patients suffering from knee osteoarthritis when opioids are required.
Collapse
Affiliation(s)
- Miguel M Garcia
- Área de Farmacología y Nutrición - Unidad Asociada I+D+i Al Instituto de Química Médica (CSIC), Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento Del Dolor (i+Dol), Dpto. Ciencias Básicas de La Salud, Facultad de Ciencias de La Salud, Universidad Rey Juan Carlos, Avda. Atenas, S/n. 28922 Alcorcón, Madrid, Spain
| | - Carlos Goicoechea
- Área de Farmacología y Nutrición - Unidad Asociada I+D+i Al Instituto de Química Médica (CSIC), Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento Del Dolor (i+Dol), Dpto. Ciencias Básicas de La Salud, Facultad de Ciencias de La Salud, Universidad Rey Juan Carlos, Avda. Atenas, S/n. 28922 Alcorcón, Madrid, Spain
| | - Martín Avellanal
- Unidad Del Dolor, Hospital Universitario La Moraleja, Avda. de Francisco Pi y Margall, 81, 28050, Madrid, Spain
| | - Susana Traseira
- Departamento Médico, Mundipharma Pharmaceuticals, S.L. C/ Bahía de Pollensa 11, 28042, Madrid, Spain
| | - Ma Isabel Martín
- Área de Farmacología y Nutrición - Unidad Asociada I+D+i Al Instituto de Química Médica (CSIC), Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento Del Dolor (i+Dol), Dpto. Ciencias Básicas de La Salud, Facultad de Ciencias de La Salud, Universidad Rey Juan Carlos, Avda. Atenas, S/n. 28922 Alcorcón, Madrid, Spain
| | - Eva Ma Sánchez-Robles
- Área de Farmacología y Nutrición - Unidad Asociada I+D+i Al Instituto de Química Médica (CSIC), Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento Del Dolor (i+Dol), Dpto. Ciencias Básicas de La Salud, Facultad de Ciencias de La Salud, Universidad Rey Juan Carlos, Avda. Atenas, S/n. 28922 Alcorcón, Madrid, Spain.
| |
Collapse
|
18
|
Knezevic NN, Tverdohleb T, Knezevic I, Candido KD. The Role of Genetic Polymorphisms in Chronic Pain Patients. Int J Mol Sci 2018; 19:E1707. [PMID: 29890676 PMCID: PMC6032204 DOI: 10.3390/ijms19061707] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/23/2018] [Accepted: 06/01/2018] [Indexed: 01/11/2023] Open
Abstract
It is estimated that the total annual financial cost for pain management in the U.S. exceeds 100 billion dollars. However, when indirect costs are included, such as functional disability and reduction in working hours, the cost can reach more than 300 billion dollars. In chronic pain patients, the role of pharmacogenetics is determined by genetic effects on various pain types, as well as the genetic effect on drug safety and efficacy. In this review article, we discuss genetic polymorphisms present in different types of chronic pain, such as fibromyalgia, low back pain, migraine, painful peripheral diabetic neuropathy and trigeminal neuralgia. Furthermore, we discuss the role of CYP450 enzymes involved in metabolism of drugs, which have been used for treatment of chronic pain (amitriptyline, duloxetine, opioids, etc.). We also discuss how pharmacogenetics can be applied towards improving drug efficacy, shortening the time required to achieve therapeutic outcomes, reducing risks of side effects, and reducing medical costs and reliance upon polypharmacy.
Collapse
Affiliation(s)
- Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA.
- Department of Anesthesiology, College of Medicine, University of Illinois, Chicago, IL 60612, USA.
- Department of Surgery, College of Medicine, University of Illinois, Chicago, IL 60612, USA.
| | - Tatiana Tverdohleb
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA.
| | - Ivana Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA.
| | - Kenneth D Candido
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA.
- Department of Anesthesiology, College of Medicine, University of Illinois, Chicago, IL 60612, USA.
- Department of Surgery, College of Medicine, University of Illinois, Chicago, IL 60612, USA.
| |
Collapse
|
19
|
Hilgemeier AT, Serna DM, Patel TP, Rambaran KA, Amin ZM, An J, Alzghari SK. Pain Perception and the Opioid Receptor Delta 1. Cureus 2018; 10:e2149. [PMID: 29637031 PMCID: PMC5884574 DOI: 10.7759/cureus.2149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genetic factors play an integral role in the perception of pain, and studies have only recently begun to explore the degree to which these factors affect clinical decisions. The process of prescribing opioids is greatly influenced by an individual's pain perception, which can vary based on several factors including genetic variation. Opioid receptor delta 1 (OPRD1) plays a significant role in the perception of both pain and its relief via opioids, and it shows significant variability between individuals. Herein, we discuss the nature of the OPRD1 receptor and the value of further research into its effects, particularly in the realm of pain management.
Collapse
Affiliation(s)
| | - David M Serna
- School of Pharmacy, Texas Tech University Health Sciences Center
| | - Tarak P Patel
- School of Pharmacy, Texas Tech University Health Sciences Center
| | | | - Zubair M Amin
- Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific
| | - Jie An
- Gulfstream Genomics, Gulfstream Diagnostics
| | | |
Collapse
|
20
|
Abstract
Pain is an increasing clinical challenge affecting about half the population, with a substantial number of people suffering daily intense pain. Such suffering can be linked to the dramatic rise in opioid use and associated deaths in the United States. There is a pressing need for new analgesics with limited side effects. Here, we summarize what we know about the genetics of pain and implications for drug development. We make the case that chronic pain is not one but a set of disease states, with peripheral drive a key element in most. We argue that understanding redundancy and plasticity, hallmarks of the nervous system, is critical in developing analgesic drug strategies. We describe the exploitation of monogenic pain syndromes and genetic association studies to define analgesic targets, as well as issues associated with animal models of pain. We appraise present-day screening technologies and describe recent approaches to pain treatment that hold promise.
Collapse
Affiliation(s)
- Jane E Sexton
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom;
| | - James J Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom;
| | - Jing Zhao
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom;
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom;
| |
Collapse
|
21
|
Hooten WM, Brummett CM, Sullivan MD, Goesling J, Tilburt JC, Merlin JS, St Sauver JL, Wasan AD, Clauw DJ, Warner DO. A Conceptual Framework for Understanding Unintended Prolonged Opioid Use. Mayo Clin Proc 2017; 92:1822-1830. [PMID: 29108841 DOI: 10.1016/j.mayocp.2017.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/22/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022]
Abstract
An urgent need exists to better understand the transition from short-term opioid use to unintended prolonged opioid use (UPOU). The purpose of this work is to propose a conceptual framework for understanding UPOU that posits the influence of 3 principal domains that include the characteristics of (1) individual patients, (2) the practice environment, and (3) opioid prescribers. Although no standardized method exists for developing a conceptual framework, the process often involves identifying corroborative evidence, leveraging expert opinion to identify factors for inclusion in the framework, and developing a graphic depiction of the relationships between the various factors and the clinical problem of interest. Key patient characteristics potentially associated with UPOU include (1) medical and mental health conditions; (2) pain etiology; (3) individual affective, behavioral, and neurophysiologic reactions to pain and opioids; and (4) sociodemographic factors. Also, UPOU could be influenced by structural and health care policy factors: (1) the practice environment, including the roles of prescribing clinicians, adoption of relevant practice guidelines, and clinician incentives or disincentives, and (2) the regulatory environment. Finally, characteristics inherent to clinicians that could influence prescribing practices include (1) training in pain management and opioid use; (2) personal attitudes, knowledge, and beliefs regarding the risks and benefits of opioids; and (3) professionalism. As the gatekeeper to opioid access, the behavior of prescribing clinicians directly mediates UPOU, with the 3 domains interacting to determine this behavior. This proposed conceptual framework could guide future research on the topic and allow plausible hypothesis-based interventions to reduce UPOU.
Collapse
Affiliation(s)
- W Michael Hooten
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN.
| | - Chad M Brummett
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor
| | - Mark D Sullivan
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle
| | - Jenna Goesling
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor
| | - Jon C Tilburt
- Department of General Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN
| | - Jessica S Merlin
- Division of Infectious Diseases, Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, University of Alabama at Birmingham
| | - Jennifer L St Sauver
- Division of Epidemiology, Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Ajay D Wasan
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA
| | - Daniel J Clauw
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor
| | - David O Warner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN
| |
Collapse
|
22
|
Olesen AE, Nielsen LM, Feddersen S, Erlenwein J, Petzke F, Przemeck M, Christrup LL, Drewes AM. Association Between Genetic Polymorphisms and Pain Sensitivity in Patients with Hip Osteoarthritis. Pain Pract 2017; 18:587-596. [DOI: 10.1111/papr.12648] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/27/2017] [Accepted: 10/13/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Anne E. Olesen
- Mech-Sense; Department of Gastroenterology and Hepatology; Aalborg University Hospital; Aalborg Denmark
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
- Department of Clinical Medicine; Aalborg University; Aalborg Denmark
| | - Lecia M. Nielsen
- Mech-Sense; Department of Gastroenterology and Hepatology; Aalborg University Hospital; Aalborg Denmark
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Søren Feddersen
- Department of Clinical Biochemistry and Pharmacology; Odense University Hospital; Odense Denmark
- Department of Clinical Research; University of Southern Denmark; Odense Denmark
| | - Joachim Erlenwein
- Department of Pain Medicine; Clinic for Anesthesiology; University Hospital; Georg-August-University of Göttingen; Göttingen Germany
| | - Frank Petzke
- Department of Pain Medicine; Clinic for Anesthesiology; University Hospital; Georg-August-University of Göttingen; Göttingen Germany
| | - Michael Przemeck
- Department of Anesthesiology and Intensive Care; Annastift; Hannover Germany
| | - Lona L. Christrup
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Asbjørn M. Drewes
- Mech-Sense; Department of Gastroenterology and Hepatology; Aalborg University Hospital; Aalborg Denmark
- Department of Clinical Medicine; Aalborg University; Aalborg Denmark
| |
Collapse
|
23
|
Nielsen LM, Christrup LL, Sato H, Drewes AM, Olesen AE. Genetic Influences of OPRM1, OPRD1 and COMT on Morphine Analgesia in a Multi-Modal, Multi-Tissue Human Experimental Pain Model. Basic Clin Pharmacol Toxicol 2017; 121:6-12. [PMID: 28084056 DOI: 10.1111/bcpt.12757] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 01/06/2017] [Indexed: 12/18/2022]
Abstract
Human studies on experimentally induced pain are of value to elucidate the genetic influence on morphine analgesia under controlled conditions. The aim of this study was to investigate whether genetic variants of mu-, kappa- and delta-opioid receptor genes (OPRM1, OPRK1 and OPRD1) and catechol-O-methyltransferase gene (COMT) are associated with the morphine analgesia. The study was a randomized, double-blind, two-way, crossover, single-dose study conducted in 40 healthy participants, where morphine was compared with placebo. Pain was induced by contact heat, muscle pressure, bone pressure, rectal stimulations (mechanical, electrical and thermal) and cold pressor test (immersion of the hand into ice water). Sixteen genetic polymorphisms of four candidate genes were explored. Variability in morphine analgesia to contact heat stimulation was associated with COMT rs4680 (p = 0.04), and rectal thermal stimulation was associated with OPRM1 rs9479757 (p = 0.03). Moreover, in males, variability in morphine analgesia to rectal thermal stimulation was associated with OPRD1 polymorphisms: rs2234918 (p = 0.01) and rs533123 (p = 0.046). The study was explorative and hypothesis-generating due to the relatively small study size. However, results suggest that genetic variants in the COMT and OPRM1 irrespective of gender, and OPRD1 in males may contribute to the variability in morphine analgesia in experimental pain models.
Collapse
Affiliation(s)
- Lecia M Nielsen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lona L Christrup
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hiroe Sato
- Interstitial Lung Disease Unit, Royal Brompton Hospital & National Heart and Lung Institute, Imperial College London, London, UK
| | - Asbjørn M Drewes
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Anne E Olesen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
24
|
Abstract
This paper is the thirty-eighth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2015 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
25
|
Nielsen LM, Sverrisdóttir E, Stage TB, Feddersen S, Brøsen K, Christrup LL, Drewes AM, Olesen AE. Lack of genetic association between OCT1, ABCB1, and UGT2B7 variants and morphine pharmacokinetics. Eur J Pharm Sci 2017; 99:337-342. [PMID: 28063968 DOI: 10.1016/j.ejps.2016.12.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/20/2016] [Accepted: 12/31/2016] [Indexed: 12/14/2022]
Abstract
AIM A high inter-individual variation in the pharmacokinetics and pharmacodynamics of morphine has been observed. Genetic polymorphisms in genes encoding the organic cation transporter isoform 1 (OCT1), the efflux transporter p-glycoprotein (ABCB1), and the UDP-glucuronosyltransferase-2B7 (UGT2B7) may influence morphine pharmacokinetics and thus, also pharmacodynamics. The aim of this study was to evaluate the association between OCT1, ABCB1, and UGT2B7 variants, and morphine pharmacokinetics and -dynamics in healthy volunteers. METHODS Pharmacokinetic and pharmacodynamic data were collected from a double-blinded, randomized, crossover trial in 37 healthy subjects. Pharmacokinetic data were analyzed in NONMEM®, and the time-concentration relationship of morphine, morphine-3-glucuronide, and morphine-6-glucuronide was parameterized as the transit compartment rate constant (ktr), clearance (CL), and volume of distribution (VD). The area under the plasma concentration-time curve (AUC0-150min) and the maximum plasma concentration (Cmax) were also calculated. Pharmacodynamic data were measured as pain tolerance thresholds to mechanical stimulation of the rectum and muscle, as well as tonic cold pain stimulation ("the cold pressor test" where hand was immersed in cold water). Six different single nucleotide polymorphisms in three different genes (OCT1 (n=22), ABCB1 (n=37), and UGT2B (n=22)) were examined. RESULTS Neither AUC0-150min, ktr, CL, nor VD were associated with genetic variants in OCT1, ABCB1, and UGT2B7 (all P>0.05). Similarly, the antinociceptive effects of morphine on rectal, muscle, and cold pressor tests were not associated with these genetic variants (all P>0.05). CONCLUSIONS In this experimental study in healthy volunteers, we found no association between different genotypes of OCT1, ABCB1, and UGT2B7, and morphine pharmacokinetics and pharmacodynamics. Nonetheless, due to methodological limitations we cannot exclude that associations exist.
Collapse
Affiliation(s)
- L M Nielsen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - E Sverrisdóttir
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - T B Stage
- Clinical Pharmacology, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - S Feddersen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - K Brøsen
- Clinical Pharmacology, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - L L Christrup
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A M Drewes
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - A E Olesen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
26
|
Olsen R, Foster DJ, Upton RN, Olesen AE, Ross JR, Droney J, Sato H, Drewes AM, Kreilgaard M. Modelling the PKPD of oxycodone in experimental pain — Impact of opioid receptor polymorphisms. Eur J Pharm Sci 2016; 86:41-9. [DOI: 10.1016/j.ejps.2016.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/08/2016] [Accepted: 02/29/2016] [Indexed: 11/26/2022]
|