1
|
Peng B, Dai Q, Liu X, Jiang S. Fraxin alleviates oral lichen planus by suppressing OCT3-mediated activation of FGF2/NF-κB pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:10125-10141. [PMID: 38980409 DOI: 10.1007/s00210-024-03270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Oral lichen planus (OLP) is a carcinogenic chronic inflammatory oral disease, which lacks effective treatments. Fraxin is an active ingredient of the traditional Chinese medicine Qin Pi, which has an anti-inflammatory effect, but its effect on OLP is unclear. The aim of this study was to investigate the therapeutic effect of fraxin on OLP and the underlying mechanism. Human immortalized keratinocytes (HaCat) were incubated with fraxin (10, 20, or 40 µM) for 48 h and then treated with 10 µg/mL LPS for 24 h. Cell viability and apoptosis were detected. Next, the interaction between OCT3 and FGF2 was predicted by online database and verified by Co-IP analysis. Fraxin, Ad-OCT3, sh-OCT3, and sh-FGF2 were, respectively, applied to treat LPS-incubated HaCat cells, and cell viability, apoptosis, and secretion of inflammatory factors were detected with MTT, flow cytometry, and ELISA assays. Then, the involvement of OCT3 and FGF2 in the prevention of fraxin on HaCat cells from LPS-induced cell apoptosis and inflammation was investigated through multiple rescue experiments. In addition, OLP models were constructed in VDR-/- mice and NOD/SCID mice by injecting with human OLP pathological tissue homogenates to verify the therapeutic effect of fraxin on OLP. Fraxin treatment increased cell viability and reduced cell apoptosis and the secretion of IL-6 and TNF-α in a dose-dependent manner. OCT3 was significantly upregulated in oral mucosa tissues of OLP mice. OCT3 silencing inhibited LPS-induced cell apoptosis and secretion of inflammatory factors. Fraxin incubation reduced the expression of OCT3, and OCT3 interacted with FGF2 to upregulate FGF2 protein. FGF2 silencing reduced the expression of p-p65/NF-κB protein and improved LPS-induced cell apoptosis and secretion of inflammatory factors. OCT3 overexpression increased the expression of FGF2 and p-p65/NF-κB proteins, rh-FGF2 aggravated this effect, while FGF2-Neu-Ab reversed this effect. The results of in vivo experiments showed that fraxin alleviated cell apoptosis and inflammation in oral buccal mucosa tissues of OLP mice. Fraxin inhibited cell apoptosis and inflammation by suppressing OCT3-mediated activation of the FGF2/NF-κB pathway, alleviating the progression of OLP.
Collapse
Affiliation(s)
- Bo Peng
- Department of Stomatology, Zhumadian Central Hospital, 747 West Zhonghua Road, Zhumadian, 463000, Henan, China.
| | - Quanhong Dai
- Department of Stomatology, Zhumadian Central Hospital, 747 West Zhonghua Road, Zhumadian, 463000, Henan, China
| | - Xiaodong Liu
- Department of Stomatology, Zhumadian Central Hospital, 747 West Zhonghua Road, Zhumadian, 463000, Henan, China
| | - Songyang Jiang
- Department of Stomatology, Zhumadian Central Hospital, 747 West Zhonghua Road, Zhumadian, 463000, Henan, China
| |
Collapse
|
2
|
Martínez-Pineda M, Juan T, Antoniewska-Krzeska A, Vercet A, Abenoza M, Yagüe-Ruiz C, Rutkowska J. Exploring the Potential of Yellow Mealworm ( Tenebrio molitor) Oil as a Nutraceutical Ingredient. Foods 2024; 13:3867. [PMID: 39682939 DOI: 10.3390/foods13233867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
During defatted Tenebrio molitor (TM) larvae powder production, oil is obtained as a by-product, mainly intended for feed enrichment or as a biofuel component. In 2021, EFSA authorized TM as the first insect to be a novel food. Thus, the study aimed to assess the composition, including fatty acids (FAs), tocopherols, carotenoids, phenolics, volatiles, antioxidant capacity, sensory aroma attributes, physical properties, and oxidative and hydrolytic stability of TM oil. The FAs profile was dominated by oleic-C18:19c (36.8%) and linoleic-C18:29c12c (32,4%) acids, resulting in a PUFA/SFA ratio similar to vegetable oils. Thus, TM oil was characterized by a beneficial Health Promoting Index (HPI) (2.42), which was 10-fold higher than the HPI of common animal fats. TM oil contained bioactive compounds such as carotenoids (13.65 mg/kg), tocopherols (105.8 mg/kg), and phenolic compounds (74 mg GAE/kg). A noticeable amount of apigenin was also noted among nine detected phenolic compounds. The substantial presence of lipophilic and phenolic compounds contributed to antioxidative potential. Sensory estimation revealed the dominance of fried and nutty aromas, probably because of the abundance of Strecker aldehydes and pyrazines in their volatile profile. The results indicated that the technological process needs modification to limit the formation of lipid oxidation volatile compounds such as aldehydes and eliminate some differences between batches. This preliminary study on the composition and properties of TM oil encourages its use as an ingredient for food, pharmaceutical, and cosmetics purposes.
Collapse
Affiliation(s)
- Montserrat Martínez-Pineda
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50013 Zaragoza, Spain
- Faculty of Health and Sports Science, Universidad de Zaragoza, Plaza Universidad 3, 22002 Huesca, Spain
| | - Teresa Juan
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50013 Zaragoza, Spain
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Av. de Montañana, 930, 50059 Zaragoza, Spain
| | - Agata Antoniewska-Krzeska
- Institute of Human Nutrition Sciences, Faculty of Human Nutrition, Warsaw University of Life Sciences, Nowoursynowska St. 159c, 02-776 Warsaw, Poland
| | - Antonio Vercet
- Faculty of Health and Sports Science, Universidad de Zaragoza, Plaza Universidad 3, 22002 Huesca, Spain
| | - María Abenoza
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50013 Zaragoza, Spain
- Faculty of Veterinary, Universidad de Zaragoza, C/Miguel Servet, 177, 50013 Zaragoza, Spain
| | - Cristina Yagüe-Ruiz
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50013 Zaragoza, Spain
- Faculty of Health and Sports Science, Universidad de Zaragoza, Plaza Universidad 3, 22002 Huesca, Spain
| | - Jarosława Rutkowska
- Institute of Human Nutrition Sciences, Faculty of Human Nutrition, Warsaw University of Life Sciences, Nowoursynowska St. 159c, 02-776 Warsaw, Poland
| |
Collapse
|
3
|
Zheng X, Ye FC, Sun T, Liu FJ, Wu MJ, Zheng WH, Wu LF. Delay the progression of glucocorticoid-induced osteoporosis: Fraxin targets ferroptosis via the Nrf2/GPX4 pathway. Phytother Res 2024; 38:5203-5224. [PMID: 39192711 DOI: 10.1002/ptr.8310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Glucocorticoid-induced osteoporosis (GIOP) commonly accelerates bone loss, increasing the risk of fractures and osteonecrosis more significantly than traditional menopausal osteoporosis. The extracellular environment influenced by glucocorticoids heightens fracture and osteonecrosis risks. Fraxin (Fra), a key component of the traditional Chinese herbal remedy Cortex Fraxini, is known for its wide-ranging pharmacological effects, but its impact on GIOP remains unexplored. This investigation aims to delineate the effects and underlying mechanisms of Fra in combating dexamethasone (Dex)-induced ferroptosis and GIOP. We established a mouse model of GIOP via intraperitoneal injections of Dex and cultured osteoblasts with Dex treatment for in vitro analysis. We evaluated the impact of Fra on Dex-treated osteoblasts through assays such as C11-BODIPY and FerroOrange staining, mitochondrial functionality tests, and protein expression analyses via Western blot and immunofluorescence. The influence of Fra on bone microarchitecture of GIOP in mice was assessed using microcomputerized tomography, hematoxylin and eosin staining, double-labeling with Calcein-Alizarin Red S, and immunohistochemistry at imaging and histological levels. Based on our data, Fra prevented Dex-induced ferroptosis and bone loss. In vitro, glutathione levels increased and malondialdehyde, lipid peroxidation, and mitochondrial reactive oxygen species decreased. Fra treatment also increases nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione peroxidase 4 (GPX4), and COL1A1 expression and promotes bone formation. To delve deeper into the mechanism, the findings revealed that Fra triggered the activation of Nrf2/GPX4 signaling. Moreover, the use of siRNA-Nrf2 blocked the beneficial effect of Fra in osteoblasts cultivated with Dex. Fra effectively combats GIOP by activating the Nrf2/GPX4 signaling pathway to inhibit ferroptosis.
Collapse
Affiliation(s)
- Xiang Zheng
- Department of Orthopedics, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
- Department of Orthopedics, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Fang-Chen Ye
- The First School of Medicine, Nanfang Medical University, Guangzhou, China
| | - Tao Sun
- Department of Orthopedics, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
- Department of Orthopedics, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Fei-Jun Liu
- Department of Orthopedics, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
- Department of Orthopedics, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Ming-Jian Wu
- Department of Orthopedics, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
- Department of Orthopedics, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Wen-Hao Zheng
- Department of Orthopaedic, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ling-Feng Wu
- Department of Orthopedics, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
- Department of Orthopedics, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| |
Collapse
|
4
|
Fang T, Liu L, Liu W. Exploring the mechanism of fraxetin against acute myeloid leukemia through cell experiments and network pharmacology. BMC Complement Med Ther 2024; 24:226. [PMID: 38858650 PMCID: PMC11163689 DOI: 10.1186/s12906-024-04529-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/30/2024] [Indexed: 06/12/2024] Open
Abstract
OBJECTIVE Previous studies have shown that fraxetin has antitumor activity in a variety of tumors, but its role in acute myeloid leukemia (AML) remains unclear. In this study, we aimed to evaluate the anti-AML effect of fraxetin through cell experiments and network pharmacology analysis. METHODS The inhibitory and apoptotic effects of fraxetin on AML cells were determined by CCK-8 and flow cytometry experiments. Potential targets of fraxetin and AML-related targets were screened using public databases. PPI network, GO functional enrichment and KEGG pathway enrichment analyses were performed to predict the hub targets and signaling pathways by which fraxetin alleviates AML. Molecular docking was used to determine the fraxetin binding sites on hub targets. Using the GEPIA database, the expression of hub targets was analyzed in relation to the overall survival of AML patients. RESULTS Cell experiments showed that fraxetin inhibits AML cell proliferation and induces apoptosis. To explore the potential mechanism of fraxetin, 29 shared targets of fraxetin and AML were obtained through screening online public databases. Among them, AKT1, TNF, SRC, etc., are related to AML cell apoptosis. The expression levels of SRC, NOS3, VAV1, LYN, and PTGS1 were associated with the overall survival of AML patients (p value < 0.05). The enrichment analysis results identified the main pathways, namely, focal adhesion and the PI3K-AKT signaling pathway, that affected the proliferation and apoptosis of AML cells. The analysis of hub targets of the PPI network showed that AKT1, TNF, CTNNB1, etc., were hub targets, which were related to the proliferation and apoptosis of AML cells. The results of molecular docking showed that the hub targets had good binding with fraxetin. CONCLUSION Fraxetin may inhibit AML cell proliferation and induce AML cell apoptosis through multiple targets, such as AKT1, SRC, and EGFR, and multiple pathways, such as focal adhesion and the PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Tingting Fang
- Department of Pediatrics (Children Hematological Oncology), Children Hematological Oncology and Birth Defects Laboratory, Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Lanqin Liu
- Department of Pediatrics (Children Hematological Oncology), Children Hematological Oncology and Birth Defects Laboratory, Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Wenjun Liu
- Department of Pediatrics (Children Hematological Oncology), Children Hematological Oncology and Birth Defects Laboratory, Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
5
|
Mailänder LK, Nosrati Gazafroudi K, Greiß M, Lorenz P, Nicolay S, Gründemann C, Stintzing FC, Daniels R, Kammerer DR. Impact of Fermentation on the Phytochemical Profile and Bioactivity Characteristics of Aqueous Matricaria recutita L. Root Extracts. Chem Biodivers 2024; 21:e202400159. [PMID: 38563619 DOI: 10.1002/cbdv.202400159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
While the flowers of Matricaria recutita L., German chamomile, are widely used for medicinal and cosmetic purposes, little is known about its roots, which are used in complementary medicine for the preparation of aqueous fermented extracts for the treatment of cramps and anxiety. To broaden the understanding of the active principles involved, a model fermentation approach was developed and fermentates were compared to commercially manufactured tinctures. Coumarins and hydroxycinnamates were among the major secondary metabolites characterized using HPLC-MSn. After six months of fermentation and storage, low-molecular organic acids were detected by GC-MS. Fermentation contributed to the stabilization of antioxidant and radical scavenging activities, which were in a range of about 8-10 mg gallic acid equivalents/g dry weight and 20-24 mg trolox equivalents/g dry weight, determined by Folin-Ciocalteu and DPPH assays, respectively. In addition, antibacterial activities of the extracts against Gram-positive and -negative bacteria increased during the first week of fermentation. Fermentates were neither cytotoxic nor pro- or anti-inflammatory. Thus, fermentation of chamomile roots is a suitable method for the safe production of biofunctional aqueous chamomile root extracts that remain stable without the addition of synthetic preservatives.
Collapse
Affiliation(s)
- Lilo K Mailänder
- Department of Analytical, Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087, Bad Boll/Eckwälden, Germany
- Department of Pharmaceutical Technology, University of Tübingen, Auf der Morgenstelle 8, DE-72076, Tübingen, Germany
| | - Khadijeh Nosrati Gazafroudi
- Department of Analytical, Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087, Bad Boll/Eckwälden, Germany
- Department of Pharmaceutical Technology, University of Tübingen, Auf der Morgenstelle 8, DE-72076, Tübingen, Germany
| | - Marit Greiß
- Institute of Food Chemistry, University of Hohenheim, Garbenstr. 28, DE-70599, Stuttgart, Germany
| | - Peter Lorenz
- Department of Analytical, Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087, Bad Boll/Eckwälden, Germany
| | - Sven Nicolay
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Mattenstraße 22, CH-4058, Basel, Switzerland
| | - Carsten Gründemann
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Mattenstraße 22, CH-4058, Basel, Switzerland
| | - Florian C Stintzing
- Department of Analytical, Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087, Bad Boll/Eckwälden, Germany
| | - Rolf Daniels
- Department of Pharmaceutical Technology, University of Tübingen, Auf der Morgenstelle 8, DE-72076, Tübingen, Germany
| | - Dietmar R Kammerer
- Department of Analytical, Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087, Bad Boll/Eckwälden, Germany
| |
Collapse
|
6
|
Zheng Z, Sun C, Zhong Y, Shi Y, Zhuang L, Liu B, Liu Z. Fraxini cortex: Progresses in phytochemistry, pharmacology and ethnomedicinal uses. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117849. [PMID: 38301981 DOI: 10.1016/j.jep.2024.117849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fraxini cortex, which has been widely used as a traditional Chinese medicine for 2000 years, is made from the dried bark of four plant species: Fraxinus chinensis subsp. rhynchophylla (Hance) A.E.Murray, Fraxinus chinensis Roxb., Fraxinus chinensis subsp. chinensis and Fraxinus stylosa Lingelsh.. In Chinese traditional medicine, it possesses the properties of heat-clearing and dampness-drying, asthma relief and cough suppression, as well as vision improvement. It is utilized for treating bacterial disorders, enteritis, leukorrhea, chronic bronitis, painful red eyes with swelling, lacrimation due to windward exposure, psoriasis, and other diseases or related symptoms. AIM OF THE STUDY Fraxini cortex is abundant in chemical constituents and has garnered significant attention from plant chemists, particularly regarding coumarins, as evidenced by the recently identified three coumarin compounds. Considering the current dearth of systematic reporting on studies pertaining to Fraxini cortex, herein we provide a comprehensive summary of the advancements in phytochemistry, pharmacology, detection methods, and ethnomedicinal applications of Fraxini cortex. MATERIALS AND METHODS We conducted a comprehensive search across online data sources (Web of Science, Public Medicine (PubMed), China National Knowledge Infrastructure (CNKI), as well as Chinese dissertations) and traditional Chinese medicine classics to gather the necessary literature resources for this review. RESULTS Briefly, The Fraxini cortex yielded a total of 132 phytochemicals, including coumarins, lignans, secoiridoids, phenylethanol glycosides, flavonoids, triterpenoids, and other compounds. Among them, the main active ingredients are coumarins which possess a diverse range of pharmacological activities such as anti-inflammatory effects, anti-tumor properties, prevention of tissue fibrosis and oxidation damage as well as cardioprotective effects. CONCLUSIONS All types of research conducted on Fraxini cortex, particularly in the field of ethnopharmacology, phytochemistry, and pharmacology, have been thoroughly reviewed. However, certain traditional applications and pharmacological activities of Fraxini cortex lack scientific evaluation or convincing evidence due to incomplete methodologies and ambiguous results, as well as a lack of clinical data. To validate its pharmacological activity, clinical efficacy, and safety profile, a systematic and comprehensive research evaluation is imperative. As an important traditional Chinese medicine, Fraxini cortex should be further explored to facilitate the development of novel drugs and therapeutics for various diseases. Greater attention should be given to how it can be better utilized.
Collapse
Affiliation(s)
- Zuoliang Zheng
- School of Life Science, Jiaying University, Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, China.
| | - Chaoyue Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China.
| | - Yuping Zhong
- School of Life Science, Jiaying University, Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, China.
| | - Yufei Shi
- School of Life Science, Jiaying University, Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, China.
| | - Likai Zhuang
- School of Life Science, Jiaying University, Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, China.
| | - Bo Liu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhiwei Liu
- School of Life Science, Jiaying University, Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, China.
| |
Collapse
|
7
|
Ferdous J, Bhuia MS, Chowdhury R, Rakib AI, Aktar MA, Al Hasan MS, Melo Coutinho HD, Islam MT. Pharmacological Activities of Plant-Derived Fraxin with Molecular Mechanisms: A Comprehensive Review. Chem Biodivers 2024; 21:e202301615. [PMID: 38506600 DOI: 10.1002/cbdv.202301615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/21/2024]
Abstract
Fruits and vegetables serve not only as sources of nutrition but also as medicinal agents for the treatment of diverse diseases and maladies. These dietary components are significant resources of phytochemicals that demonstrate therapeutic properties against many illnesses. Fraxin is a naturally occurring coumarin glycoside mainly present in various species of Fraxinus genera, having a multitude of therapeutic uses against various diseases and disorders. This study focuses to investigate the pharmacological activities, botanical sources, and biopharmaceutical profile of the phytochemical fraxin based on different preclinical and non-clinical studies to show the scientific evidence and to evaluate the underlying molecular mechanisms of the therapeutic effects against various ailments. For this, data was searched and collected (as of February 15, 2024) in a variety of credible electronic databases, including PubMed/Medline, Scopus, Springer Link, ScienceDirect, Wiley Online, Web of Science, and Google Scholar. The findings demonstrated favorable outcomes in relation to a range of diseases or medical conditions, including inflammation, neurodegenerative disorders such as cerebral ischemia-reperfusion (I/R) and depression, viral infection, as well as diabetic nephropathy. The phytochemical also showed protective effects such as osteoprotective, renoprotective, pulmoprotective, hepatoprotective, and gastroprotective effects due to its antioxidant capacity. Fraxin has a great capability to diminish oxidative stress-related damage in different organs by stimulating the antioxidant enzymes, downregulating nuclear factor kappa B and NLRP3, and triggering the Nrf2/ARE signaling pathways. Fraxin exhibited poor oral bioavailability because of reduced absorption and a wide distribution into tissues of different organs. However, extensive research is required to decipher the biopharmaceutical profiles, and clinical studies are necessary to establish the efficacy of the natural compound as a reliable therapeutic agent.
Collapse
Affiliation(s)
- Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- BioLuster Research Center, Gopalganj, 8100, Dhaka, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- BioLuster Research Center, Gopalganj, 8100, Dhaka, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Asraful Islam Rakib
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Mst Asma Aktar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- BioLuster Research Center, Gopalganj, 8100, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
8
|
Lou J, Wang Q, Wan X, Cheng J. Changes and correlation analysis of intestinal microflora composition, inflammatory index, and skeletal muscle mass in elderly patients with sarcopenia. Geriatr Gerontol Int 2024; 24:140-146. [PMID: 37974378 DOI: 10.1111/ggi.14661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/06/2023] [Accepted: 08/22/2023] [Indexed: 11/19/2023]
Abstract
AIM This study aimed to explore the alterations in characteristics of intestinal flora, inflammatory factors and skeletal muscle mass in elderly patients affected by sarcopenia, as well as the correlation among the three, in order to provide a reference for the early identification, intervention, and treatment of sarcopenia in elderly patients. METHOD A total of 206 elderly patients (≥60 years old) admitted to the Geriatric Outpatient Department of China Resources Wugang General Hospital were included in this study as the research participants. The differences in the general data, laboratory examination and intestinal flora in patients between the two groups were statistically analyzed, and the correlation between intestinal flora composition and skeletal muscle mass index, grip and inflammatory factors was also determined. RESULTS The normal group and sarcopenia group exhibited a significant difference in the composition of the intestinal flora (P < 0.05). The abundance of Escherichia-Shigella between the two groups was negatively correlated with the patient's relative skeletal muscle mass index and positively correlated with the interleukin-6 (IL-6) level; moreover, Lacchnospira abundance was positively correlated with relative skeletal muscle mass index; Lactobacillus and Roseburia abundance were negatively correlated with IL-6; and Lactobacillus, Lachnospira, and Eubacterium_rectale_group were positively correlated with grip, and the differences were statistically significant (P < 0.05). CONCLUSION Overall, it was found that elderly patients with sarcopenia have intestinal flora disorders, and the abundance of such flora was negatively correlated with the relative skeletal muscle mass index, which was positively correlated with the IL-6 level. Geriatr Gerontol Int 2024; 24: 140-146.
Collapse
Affiliation(s)
- Junhao Lou
- CR & WISCO General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Qiang Wang
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Xiongfei Wan
- CR & WISCO General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jingping Cheng
- CR & WISCO General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Ghosh P, Singh R, Chatterjee C, Kumar A, Singh SK. Computational screening of coumarin derivatives as inhibitors of the NACHT domain of NLRP3 inflammasome for the treatment of Alzheimer's disease. J Biomol Struct Dyn 2023:1-17. [PMID: 38116751 DOI: 10.1080/07391102.2023.2294173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR), leucine-rich-repeat (LRR), and pyrin domain containing 3 (NLRP3) is one of the key players in neuroinflammation, which is a major pathological hallmark of Alzheimer's Disease (AD). Activated NLRP3 causes release of pro-inflammatory molecules that aggravate neurodegeneration. Thus, pharmacologically inhibiting the NLRP3 inflammasome has the potential to alleviate the inflammatory injury to the neurons. Coumarin is a multifunctional nucleus with potent anti-inflammatory properties and can be utilized to develop novel drugs for the treatment and management of AD. In the present study, we have explored the NLRP3-inhibitory activities of a library of coumarin derivatives through a computational drug discovery approach. Drug-like, PAINS free, and potentially BBB permeable compounds were screened out and subjected to molecular docking and in silico ADMET studies, resulting in three virtual hits, i.e. MolPort-050-872-358, MolPort-050-884-068, and MolPort-051-135-630. The hits exhibited better NLRP3-binding affinity than MCC950, a selective inhibitor of NLRP3. Further, molecular dynamics (MD) simulations, post-MD simulation analyses, and binding free energy calculations of the hits established their potential as promising virtual leads with a common coumarin scaffold for the inhibition of NLRP3 inflammasome.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Powsali Ghosh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Chayanika Chatterjee
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
10
|
Shaker NS, Sahib HB. Fraxin in Combination with Dexamethasone Attenuates LPS-Induced Liver and Heart Injury and Their Anticytokine Activity in Mice. Adv Virol 2023; 2023:5536933. [PMID: 37727368 PMCID: PMC10506875 DOI: 10.1155/2023/5536933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
Background Cytokine storm syndrome (CSS) is a major cause of morbidity and mortality in people suffering from hyperinflammatory status, which diverse etiological factors, including pathogens, therapeutic interventions, malignancies, and autoimmune disorders, can instigate. Since there is limited research on the antioxidant properties of fraxin and no studies have investigated its potential as an anticytokine storm agent, it is important to note that most studies have primarily focused on proinflammatory cytokines such as IL-1β, IL-6, and TNFα during cytokine storm. However, little research discusses the role of chemokines, particularly IL-8, during cytokine storms. Therefore, further investigation is warranted into the role of fraxin as an anticytokine storm agent and the involvement of IL-8 in cytokine storms. The present study examines the preventive efficacy of fraxin and the combination of fraxin and dexamethasone (FD) in mitigating lipopolysaccharide-induced systemic inflammation in mice caused by Escherichia coli, 055: B5. Methods Five groups of ten mice were randomly assigned: LPS only group (5 mg/kg, intraperitoneally i.p.), control (normal saline N.S. 1 ml/kg, i.p.), concentrations were selected based on previous literature, fraxin (120 mg/kg, i.p.), dexamethasone (5 mg/kg, i.p.), fraxin + dexamethasone (FD) (60 mg/kg + 2.5 mg/kg, i.p.), administered one hour before LPS injection (5 mg/kg,i.p.), animals were euthanized next day, and interleukin-8 (IL-8) was quantified in serum using an enzyme-linked immunosorbent assay. The liver and heart tissues underwent histopathological analysis to assess morphological changes. For data analysis using ANOVA and Tukey post hoc tests, the Kruskal-Wallis and Mann-Whitney U tests were employed to analyze the histological results. Results A significant decline in IL-8 levels was recorded in the treatment groups almost to the same degree (p < 0.001), and the percentage of inhibition of IL-8 for fraxin, dexamethasone, and FD was 93%.92.4%, and 93%, respectively, compared to the LPS-only group. Histopathological scores were significantly reduced in liver and heart tissue (P < 0.05). Conclusions All interventions used in this study significantly reduced interleukin-8 (IL-8) levels and reduced LPS-induced liver and cardiac damage. The combination (FD) did not result in an evident superiority of either agent. More research is required to identify the possible usefulness of these agents in treating hyperinflammatory diseases, such as cytokine storms, in future clinical practice.
Collapse
Affiliation(s)
- Nada Sahib Shaker
- Al-Nahrain University, College of Medicine, Pharmacology Department, Baghdad, Iraq
| | | |
Collapse
|
11
|
Sidheeque Hassan V, Hanifa M, Navik U, Bali A. Exogenous fetuin-A protects against sepsis-induced myocardial injury by inhibiting oxidative stress and inflammation in mice. Fundam Clin Pharmacol 2023; 37:607-617. [PMID: 36647295 DOI: 10.1111/fcp.12870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
Sepsis-induced myocardial injury is a consequence of septicemia and is one of the major causes of death in intensive care units. A serum glycoprotein called fetuin-A is secreted largely by the liver, tongue, placenta, and adipose tissue. Fetuin-A has a variety of biological and pharmacological properties. The anti-inflammatory and antioxidant glycoprotein fetuin-A has shown its efficacy in a number of inflammatory disorders including sepsis. However, its protective role against sepsis-induced myocardial injury remains elusive. The purpose of this work is to explore the role of fetuin-A in mouse models of myocardial injury brought on by cecal ligation and puncture (CLP). CLP significantly induced the myocardial injury assessed in terms of elevated myocardial markers (serum CK-MB, cTnI levels), inflammatory markers (IL-6, TNF-α) in the serum, and oxidative stress markers (increased MDA levels and decreased reduced glutathione) in heart tissue homogenate following 24 h of ligation and puncture. Further, hematoxylin and eosin (H&E) staining showed considerable histological alterations in the myocardial tissue of sepsis-developed mice. Interestingly, fetuin-A pretreatment (50 and 100 mg/kg) for 4 days before the CLP procedure significantly improved the myocardial injury and was evaluated in perspective of a reduction in the CK-MB, cTnI levels, IL-6, and TNF-α in sepsis-developed animals. Fetuin-A pretreatment significantly attenuated the oxidative stress and improved the myocardial morphology in a dose-dependent manner. The present study provides preliminary evidence that fetuin-A exerts protection against sepsis-induced cardiac dysfunction in vivo via suppression of inflammation and oxidative damage.
Collapse
Affiliation(s)
- V Sidheeque Hassan
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Mohd Hanifa
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Anjana Bali
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
12
|
Wang T, Su X, Peng J, Tan X, Yang G, Zhang T, Chen F, Wang C, Ma K. Deciphering the pharmacological mechanisms of Fraxini Cortex for ulcerative colitis treatment based on network pharmacology and in vivo studies. BMC Complement Med Ther 2023; 23:152. [PMID: 37161415 PMCID: PMC10170718 DOI: 10.1186/s12906-023-03983-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 04/28/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a common type of inflammatory bowel disease. Due to the elusive pathogenesis, safe and effective treatment strategies are still lacking. Fraxini Cortex (FC) has been widely used as a medicinal herb to treat some diseases. However, the pharmacological mechanisms of FC for UC treatment are still unclear. METHODS An integrated platform combining network pharmacology and experimental studies was introduced to decipher the mechanism of FC against UC. The active compounds, therapeutic targets, and the molecular mechanism of action were acquired by network pharmacology, and the interaction between the compounds and target proteins were verified by molecular docking. Dextran sulfate sodium (DSS)-induced colitis model was employed to assess the therapeutic effect of FC on UC, and validate the molecular mechanisms of action predicted by network pharmacology. RESULTS A total of 20 bioactive compounds were retrieved, and 115 targets were predicted by using the online databases. Ursolic acid, fraxetin, beta-sitosterol, and esculetin were identified as the main active compounds of FC against UC. PPI network analysis identified 28 FC-UC hub genes that were mainly enriched in the IL-17 signaling pathway, the TNF signaling pathway, and pathways in cancer. Molecular docking confirmed that the active compounds had high binding affinities to the predicted target proteins. GEO dataset analysis showed that these target genes were highly expressed in the UC clinical samples compared with that in the healthy controls. Experimental studies showed that FC alleviated DSS-induced colitis symptoms, reduced inflammatory cytokines release, and suppressed the expression levels of IL1β, COX2, MMP3, IL-17 and RORγt in colon tissues. CONCLUSION FC exhibits anti-UC properties through regulating multi-targets and multi-pathways with multi-components. In vivo results demonstrated that FC alleviated DSS-induced colitis.
Collapse
Affiliation(s)
- Tianming Wang
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Xuyang Su
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Jing Peng
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Xiaofen Tan
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Guangshan Yang
- The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Hefei, 230001, People's Republic of China
| | - Tengyue Zhang
- The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Hefei, 230001, People's Republic of China
| | - Feng Chen
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Changzhong Wang
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Kelong Ma
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China.
| |
Collapse
|
13
|
Xiang Z, Chen Y, Qiu J. An integrated chemical analysis and network pharmacology approach to identify quality markers of Actinidia eriantha Benth radix on gastric cancer. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:851-868. [PMID: 35570754 DOI: 10.1002/pca.3134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Actinidia eriantha Benth radix (AEBR) is one of the most commonly used medicines by the She people in China, used primarily for the treatment of tumours of the digestive tract. There is currently limited to no data on the quality control of AEBR. OBJECTIVES The aim of this study was to identify quality markers of AEBR. MATERIAL AND METHODS An ultra-performance lquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) method was used to identify and analyse the components of AEBR from water extracts. An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was also established for the simultaneous determination of 13 active components in the water extracts. The network pharmacology method was used to screen for quality markers of AEBR in gastric cancer. RESULTS This study tentatively identified 199 chemical constituents and isomers, including 67 pentacyclic triterpenoids, 20 flavonoids, 39 phenolic acids, 18 coumarins, and other compounds. The 13 active components in the water extracts were successfully determined using a validated UPLC-MS/MS method. Based on the network pharmacology method, four compounds were selected as quality markers of AEBR. CONCLUSION This study provides an important reference for the quality control of AEBR. Chemical analysis combined with network pharmacology provides an effective strategy for the discovery of quality markers in traditional Chinese/herb medicine.
Collapse
Affiliation(s)
- Zheng Xiang
- Medical School, Zhejiang University City College, Hangzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jieying Qiu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Protective effects of fraxin on cerebral ischemia-reperfusion injury by mediating neuroinflammation and oxidative stress through PPAR-γ/NF-κB pathway. Brain Res Bull 2022; 187:49-62. [PMID: 35772607 DOI: 10.1016/j.brainresbull.2022.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/24/2022] [Accepted: 06/25/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Inflammation and oxidative stress are associated with the pathogenesis of cerebral ischemia-reperfusion (I/R) injury. Fraxin, one of the primary active ingredients of Cortex Fraxini, may have potent anti-inflammatory activity. This study intended to investigate the function and mechanism of fraxin in a middle cerebral artery occlusion (MCAO) model. METHODS A middle cerebral artery occlusion (MCAO) rat model was engineered. Both in-vivo and in-vitro models were dealt with Fraxin. The profiles of inflammation-concerned cytokines, proteins and oxidative stress factors were determined by RT-PCR, western blot, and enzyme-linked immunosorbent assay (ELISA), and neuronal apoptosis and reactive oxygen species (ROS) levels were measured. The neurological functions of rats were evaluated by Morris water maze and modified neurological severity scores (mNSS). RESULTS The data revealed that fraxin abated the OGD/R-mediated release of inflammatory and oxidative stress mediators, enhanced "M2″-like BV2 microglia polarization, and mitigated HT22 cell apoptosis. Mechanistically, fraxin boosted PPAR-γ expression, activated the Nrf2/HO-1 pathway, and suppressed NF-κB, IKK-β,p38 MAPK, ERK1/2 and Keap1 in a dose-dependent manner. Furthermore, attenuating PPAR-γ through pharmacological treatment with GW9662 (a PPAR-γ antagonist) mainly weakened the neuroprotective and anti-inflammatory functions of fraxin. CONCLUSION Fraxin could considerably ameliorate cerebral I/R damage by repressing oxidative stress, inflammatory response, and cell apoptosis through abrogating the PPARγ/ NF-κB pathway.
Collapse
|
15
|
Rostom B, Karaky R, Kassab I, Sylla-Iyarreta Veitia M. Coumarins derivatives and inflammation: Review of their effects on the inflammatory signaling pathways. Eur J Pharmacol 2022; 922:174867. [DOI: 10.1016/j.ejphar.2022.174867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 12/27/2022]
|
16
|
Qian Z, Ru X, Liu C, Huang X, Sun Q. Fraxin prevents knee osteoarthritis through inhibiting chondrocyte apoptosis in an experimental rat osteoarthritis model. Protein Pept Lett 2021; 28:1298-1302. [PMID: 34719360 DOI: 10.2174/0929866528666211022152556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Current treatments of osteoarthritis are unsatisfied, a new approach towards the treatment of osteoarthritis is urged considering the state at present. OBJECTIVES The objective of this study is to investigate the effect of fraxin on knee OA in a rat model and probe into the possible molecular mechanism. METHODS Primary Murine Chondrocytes were isolated and cell apoptosis analyses were performed. Rat OA models were established using meniscectomy method and allocated into three groups. Knee joint specimens were collected for qRT-PCR, western blotting and histological analysis. Statistical analyses were processed by using a SPSS. RESULTS The apoptosis rate of fraxin group is significantly reduced compared with the OA group or the control group. Fraxin remarkably down-regulated the expression of cleaved-Caspase-3 while significantly up-regulated the expression of Bcl-2, both on mRNA and protein levels. Toluidine blue stain results show relatively lighter articular cartilage damage compared with OA group. CONCLUSION Fraxin prevents knee osteoarthritis by inhibiting chondrocyte apoptosis, which makes it a potential candidate as an anti-OA drug for clinical use.
Collapse
Affiliation(s)
- Zhigang Qian
- Orthopedic Center, Zhejiang Hospital, Hangzhou, 310030. China
| | - Xuanliang Ru
- Orthopedic Center, Zhejiang Hospital, Hangzhou, 310030. China
| | - Chun Liu
- Orthopedic Center, Zhejiang Hospital, Hangzhou, 310030. China
| | - Xiaoqin Huang
- Orthopedic Center, Zhejiang Hospital, Hangzhou, 310030. China
| | - Qicai Sun
- Orthopedic Center, Zhejiang Hospital, Hangzhou, 310030. China
| |
Collapse
|
17
|
Coumarins as Modulators of the Keap1/Nrf2/ARE Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1675957. [PMID: 32377290 PMCID: PMC7196981 DOI: 10.1155/2020/1675957] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/14/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022]
Abstract
The Keap1/Nrf2/ARE system is a central defensive mechanism against oxidative stress which plays a key role in the pathogenesis and progression of many diseases. Nrf2 is a redox-sensitive transcription factor controlling a variety of downstream antioxidant and cytodefensive genes. Nrf2 has a powerful anti-inflammatory activity mediated via modulating NF-κB. Therefore, pharmacological activation of Nrf2 is a promising therapeutic strategy for the treatment/prevention of several diseases that are underlined by both oxidative stress and inflammation. Coumarins are natural products with promising pharmacological activities, including antioxidant, anticancer, antimicrobial, and anti-inflammatory efficacies. Coumarins are found in many plants, fungi, and bacteria and have been widely used as complementary and alternative medicines. Some coumarins have shown an ability to activate Nrf2 signaling in different cells and animal models. The present review compiles the research findings of seventeen coumarin derivatives of plant origin (imperatorin, visnagin, urolithin B, urolithin A, scopoletin, esculin, esculetin, umbelliferone, fraxetin, fraxin, daphnetin, anomalin, wedelolactone, glycycoumarin, osthole, hydrangenol, and isoimperatorin) as antioxidant and anti-inflammatory agents, emphasizing the role of Nrf2 activation in their pharmacological activities. Additionally, molecular docking simulations were utilized to investigate the potential binding mode of these coumarins with Keap1 as a strategy to disrupt Keap1/Nrf2 protein-protein interaction and activate Nrf2 signaling.
Collapse
|
18
|
Meng F, Yu W, Duan W, Wang T, Liu Y. Dexmedetomidine attenuates LPS‐mediated BV2 microglia cells inflammation via inhibition of glycolysis. Fundam Clin Pharmacol 2019; 34:313-320. [PMID: 31841245 DOI: 10.1111/fcp.12528] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/10/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Fufeng Meng
- Department of Anaesthesiology The third hospital Affiliated to the Xinjiang Medical University Urumqi Xinjiang 830011 China
| | - Wenhua Yu
- Department of Anaesthesiology The third hospital Affiliated to the Xinjiang Medical University Urumqi Xinjiang 830011 China
| | - Wenming Duan
- Department of Anaesthesiology The third hospital Affiliated to the Xinjiang Medical University Urumqi Xinjiang 830011 China
| | - Tianhai Wang
- Department of Anaesthesiology The third hospital Affiliated to the Xinjiang Medical University Urumqi Xinjiang 830011 China
| | - Yahua Liu
- Department of Anaesthesiology The third hospital Affiliated to the Xinjiang Medical University Urumqi Xinjiang 830011 China
| |
Collapse
|