1
|
Choi Y, Kim N. Sex Difference of Colon Adenoma Pathway and Colorectal Carcinogenesis. World J Mens Health 2024; 42:256-282. [PMID: 37652658 PMCID: PMC10949019 DOI: 10.5534/wjmh.230085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/09/2023] [Indexed: 09/02/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common causes of cancer morbidity in both sexes but shows sex differences. First, sex-specific differences in tumor recurrence and survival rates have been reported. For example, the development of CRC is found about 1.5 times higher and 4-8 years earlier in males compared to females, suggesting the protective role of estrogen in the disease. Furthermore, female patients have a higher risk of developing right-sided (proximal) colon cancer than male patients, which is known to have more aggressive clinical character compared to left-sided (distal) colon cancer. That is, left and right CRCs show differences in carcinogenic mechanism, that the chromosomal instability pathway is more common in left colon cancer while the microsatellite instability and serrated pathways are more common in right colon cancer. It is thought that there are sex-based differences on the background of carcinogenesis of CRC. Sex differences of CRC have two aspects, sexual dimorphism (biological differences in hormones and genes) and gender differences (non-biological differences in societal attitudes and behavior). Recently, sex difference of colon adenoma pathway and sexual dimorphism in the biology of gene and protein expression, and in endocrine cellular signaling in the CRC carcinogenesis have been accumulated. In addition, behavioral patterns can lead to differences in exposure to risk factors such as drinking or smoking, diet and physical activity. Therefore, understanding sex/gender-related biological and sociocultural differences in CRC risk will help in providing strategies for screening, treatment and prevention protocols to reduce the mortality and improve the quality of life. In this review, sex/gender differences in colon adenoma pathway and various aspects such as clinicopathological, biological, molecular, and socio-cultural aspects of CRC were described.
Collapse
Affiliation(s)
- Yonghoon Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
2
|
Ethier R, Krishnamurthy A, Jeffrey M, Tompkins TA. Profiling of Metabolites in a Fermented Soy Dietary Supplement Reinforces its Role in the Management of Intestinal Inflammation. Mol Nutr Food Res 2024; 68:e2300770. [PMID: 38522032 DOI: 10.1002/mnfr.202300770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/19/2024] [Indexed: 03/25/2024]
Abstract
SCOPE Gastro-AD (GAD) is a soy flour derived product that undergoes an industrial fermentation with Lactobacillus delbrueckii R0187 and has demonstrated clinical effects in gastroesophageal reflux and peptic ulcer symptom resolution. The aim of this study is to describe and link GAD's metabolomic profile to plausible mechanisms that manifest and explain the documented clinical outcomes. METHODS AND RESULTS 1H NMR spectroscopy with multivariate statistical analysis is used to characterize the prefermented soy flour and GAD products. The acquired spectra are screened using various resources and the molecular assignments are confirmed using total correlation spectroscopy (TOCSY). Peaks corresponding to different metabolites are integrated and compared between the two products for relative changes. HPLC and GC are used to quantify some specific molecules. NMR analyses demonstrate significant changes in the composition of various assigned bioactive moieties. HPLC and GC analysis demonstrate deglycation of isoflavones after fermentation, resulting in estrogenically active secondary metabolites that have been previously shown to help to reduce inflammation. CONCLUSION The identification of bioactive molecules, such as genistein and SCFAs, capable of modulating anti-inflammatory signaling cascades in the stomach's gastric and neuroendocrine tissues can explain the reported biological effects in GAD and is supported by in vivo data.
Collapse
Affiliation(s)
- Richard Ethier
- Richard Ethier Consulting, Montreal, Quebec, H4C 2J9, Canada
| | - Arun Krishnamurthy
- Purity-IQ Inc., Suite# 102, 150 Research Lane, Guelph, Ontario, N1G 4T2, Canada
| | - Michael Jeffrey
- Faculty of Science, Engineering & Information Technology, Durham College, Oshawa, Ontario, L1G 0C5, Canada
| | - Thomas A Tompkins
- Lallemand Bio-Ingredients, 1620 rue Prefontaine, Montreal, Quebec, H1W 2N8, Canada
| |
Collapse
|
3
|
Liu H, Ma L, Fu J, Ma X, Gao Y, Xie Y, Yuan X, Wang Y, Yang W, Jiang S. Effect of zearalenone on the jejunum of weaned gilts through the Epac1/Rap1/JNK pathway. J Anim Sci 2024; 102:skae208. [PMID: 39051732 PMCID: PMC11367561 DOI: 10.1093/jas/skae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024] Open
Abstract
Zearalenone (ZEN) is a nonsteroidal estrogenic mycotoxin produced by Fusarium strains that is harmful to the intestinal health of animals and is widely present in contaminated crops. The objective of this study was to investigate the potential therapeutic target of ZEN-induced jejunal damage in weaned gilts. Sixteen weaned gilts either received a basal diet or a basal diet supplemented with 3.0 mg/kg ZEN in a 32-d experiment. The results showed that ZEN at the concentration of 3.0 mg/kg diet activated the inflammatory response and caused oxidative stress of gilts (P < 0.05). ZEN exposure resulted in the upregulation (P < 0.05) of the Exchange protein directly activated by the cAMP 1/Ras-related protein1/c-Jun N-terminal kinase (Epac1/Rap1/JNK) signaling pathway in the jejunum of gilts in vivo and in the intestinal porcine epithelial cells in vitro. The cell viability, EdU-positive cells, and the mRNA expression of B-cell lymphoma-2 (Bcl-2) were decreased, whereas the reactive oxygen species production and the mRNA expressions of Bcl-2-associated X (Bax) and Cysteine-aspartic acid protease 3 (Caspase3) were increased (P < 0.05) by ZEN. However, ZEN increased the mRNA expression of Bcl-2 and decreased the mRNA expressions of Bax and caspase3 (P < 0.05) after the Epac1 was blocked. These results collectively indicated that a 3.0 mg ZEN /kg diet induced jejunal damage via the Epac1/Rap1/JNK signaling pathway.
Collapse
Affiliation(s)
- Heng Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Lulu Ma
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiawei Fu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Xiangyu Ma
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Yufei Gao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Yiping Xie
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Xuejun Yuan
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Yuxi Wang
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Weiren Yang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Shuzhen Jiang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
4
|
Kim N. Colorectal Diseases and Gut Microbiome. SEX/GENDER-SPECIFIC MEDICINE IN CLINICAL AREAS 2024:137-208. [DOI: 10.1007/978-981-97-0130-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Jouffre B, Acramel A, Jacquot Y, Daulhac L, Mallet C. GPER involvement in inflammatory pain. Steroids 2023; 200:109311. [PMID: 37734514 DOI: 10.1016/j.steroids.2023.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Chronic pain is a worldwide refractory health disease that causes major financial and emotional burdens and that is devastating for individuals and society. One primary source of pain is inflammation. Current treatments for inflammatory pain are weakly effective, although they usually replace analgesics, such as opioids and non-steroidal anti-inflammatory drugs, which display serious side effects. Emerging evidence indicates that the membrane G protein-coupled estrogen receptor (GPER) may play an important role in the regulation of inflammation and pain. Herein, we focus on the consequences of pharmacological and genetic GPER modulation in different animal models of inflammatory pain. We also provide a brief overview of the putative mechanisms including the direct action of GPER on pain transmission and inflammation.
Collapse
Affiliation(s)
- Baptiste Jouffre
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France; ANALGESIA Institute, Faculty of Medicine, 63000 Clermont-Ferrand, France
| | - Alexandre Acramel
- CiTCoM, CNRS - UMR 8038, INSERM U1268, Faculty of Pharmacy of Paris, University Paris Cité, 75270 Paris Cedex 06, France; Department of Pharmacy, Institut Curie, 75248 Paris Cedex 06, France
| | - Yves Jacquot
- CiTCoM, CNRS - UMR 8038, INSERM U1268, Faculty of Pharmacy of Paris, University Paris Cité, 75270 Paris Cedex 06, France
| | - Laurence Daulhac
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France; ANALGESIA Institute, Faculty of Medicine, 63000 Clermont-Ferrand, France
| | - Christophe Mallet
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France; ANALGESIA Institute, Faculty of Medicine, 63000 Clermont-Ferrand, France.
| |
Collapse
|
6
|
Xu X, Wang J, Guo X, Chen Y, Ding S, Zou G, Zhu L, Li T, Zhang X. GPR30-mediated non-classic estrogen pathway in mast cells participates in endometriosis pain via the production of FGF2. Front Immunol 2023; 14:1106771. [PMID: 36845134 PMCID: PMC9945179 DOI: 10.3389/fimmu.2023.1106771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Pain is one of the main clinical symptoms of endometriosis, but its underlying mechanism is still not clear. Recent studies have shown that the secretory mediators of mast cells activated by estrogen are involved in the pathogenesis of endometriosis-related pain, but how estrogen-induced mast cell mediators are involved in endometriosis-related pain remains unclear. Here, mast cells were found to be increased in the ovarian endometriotic lesions of patients. They were also closely located closely to the nerve fibers in the ovarian endometriotic lesions from of patients with pain symptoms. Moreover, fibroblast growth factor 2 (FGF2)-positive mast cells were upregulated in endometriotic lesions. The concentration of FGF2 in ascites and the protein level of fibroblast growth factor receptor 1 (FGFR1) were higher in patients with endometriosis than in those without endometriosis, and they were correlated with pain symptoms. In vitro, estrogen could promote the secretion of FGF2 through G-protein-coupled estrogen receptor 30 (GPR30) via the MEK/ERK pathway in rodent mast cells. Estrogen-stimulated mast cells enhanced the concentration of FGF2 in endometriotic lesions and aggravated endometriosis-related pain in vivo. Targeted inhibition of the FGF2 receptor significantly restrained the neurite outgrowth and calcium influx in dorsal root ganglion (DRG) cells. Administration of FGFR1 inhibitor remarkably elevated the mechanical pain threshold (MPT) and prolonged the heat source latency (HSL) in a rat model of endometriosis. These results suggested that the up-regulated production of FGF2 by mast cells through non-classic estrogen receptor GPR30 plays a vital role in the pathogenesis of endometriosis-related pain.
Collapse
Affiliation(s)
- Xinxin Xu
- Department of Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Zhejiang Province Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianzhang Wang
- Department of Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Zhejiang Province Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinyue Guo
- Department of Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Zhejiang Province Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yichen Chen
- Department of Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Zhejiang Province Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Gyneclogy, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Shaojie Ding
- Department of Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Zhejiang Province Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Gen Zou
- Department of Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Zhejiang Province Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Libo Zhu
- Department of Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Zhejiang Province Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tiantian Li
- Department of Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Zhejiang Province Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinmei Zhang
- Department of Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Zhejiang Province Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,*Correspondence: Xinmei Zhang,
| |
Collapse
|
7
|
Sawane K, Nagatake T, Hosomi K, Kunisawa J. Anti-allergic property of dietary phytoestrogen secoisolariciresinol diglucoside through microbial and β-glucuronidase-mediated metabolism. J Nutr Biochem 2023; 112:109219. [PMID: 36375731 DOI: 10.1016/j.jnutbio.2022.109219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/03/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022]
Abstract
Phytoestrogens play pivotal roles in controlling not only the endocrine system but also inflammatory metabolic disorders. However, the effects of dietary phytoestrogens on allergic diseases and underlying mechanisms remain unclear. In this study, we revealed the unique metabolic conversion of phytoestrogen to exert anti-allergic properties, using an ovalbumin-induced allergic rhinitis mouse model. We found that dietary secoisolariciresinol diglucoside (SDG), a phytoestrogen abundantly present in flaxseed, alleviated allergic rhinitis by the microbial conversion to enterodiol (ED). We also found that ED circulated mainly in the glucuronide form (EDGlu) in blood, and deconjugation of EDGlu to ED aglycone occurred in the nasal passage; this activity was enhanced after the induction of allergic rhinitis, which was mediated by β-glucuronidase. We further found that IgE-mediated degranulation was inhibited by ED aglycone, but not by EDGlu, in a G protein-coupled receptor 30 (GPR30)-dependent manner. These results provide new insights into the anti-allergic properties of phytoestrogens and their metabolism in vivo for the development of novel therapeutic strategies against allergic rhinitis.
Collapse
Affiliation(s)
- Kento Sawane
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Laboratory of Functional Anatomy, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan; Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, NIBIOHN
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, NIBIOHN
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, NIBIOHN; Graduate School of Medicine, Graduate School of Science and Graduate School of Dentistry, Osaka University, Osaka, Japan; Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
8
|
Chronic GPER activation prompted the proliferation of ileal stem cell in ovariectomized mice depending on Paneth cell-derived Wnt3. Clin Sci (Lond) 2023; 137:109-127. [PMID: 36503938 DOI: 10.1042/cs20220392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Menopausal women often face long-term estrogen treatment. G protein-coupled estrogen receptor (GPER) expressed in intestinal crypt was activated by estrogen therapy, but it was unclear whether chronic GPER activation during menopause had an effect on intestinal stem cells (ISCs). We tested the effect of chronic GPER activation on ISCs of ovariectomized (OVX) mice by injection of the selective GPER agonist G-1 for 28 days, or G-1 stimulation of organoids derived from crypts of OVX mice. G-1 up-regulated crypt depth, the number of Ki67+, bromodeoxyuridine+ cells and Olfm4+ ISCs, and the expression of ISCs marker genes (Lgr5, Olfm4 and Axin2). G-1 administration promoted organoid growth, increased the number of EdU+ cells per organoid and protein expression of Cyclin D1 and cyclin B1 in organoids. After G-1 treatment in vivo or in vitro, Paneth cell-derived Wnt3, Wnt3 effector β-catenin and Wnt target genes c-Myc and Cyclin D1 increased in ileum or organoids. Once blocking the secretion of Wnt3 from Paneth cells, the effects of G-1 on organoids growth, ISCs marker genes and Wnt/β-catenin signaling were abolished. G-1 did not affect the number of Paneth cells in ex vivo organoids, while activated Mmp7/cryptdin program in Paneth cells, promoted their maturation, and increased the expression of lysozyme protein. G-1 pretreatment in OVX mice inhibited radiation-induced ISCs proliferation injury and enhanced the resistance of mice to intestinal injury. In conclusion, chronic GPER activation prompted the Wnt3 synthesis in Paneth cells, thus increased the proliferation of ISCs via activation of Wnt3/β-catenin signaling in OVX mice.
Collapse
|
9
|
Ge L, Liu S, Li S, Yang J, Hu G, Xu C, Song W. Psychological stress in inflammatory bowel disease: Psychoneuroimmunological insights into bidirectional gut–brain communications. Front Immunol 2022; 13:1016578. [PMID: 36275694 PMCID: PMC9583867 DOI: 10.3389/fimmu.2022.1016578] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel disease (IBD), mainly including ulcerative colitis (UC) and Crohn’s disease (CD), is an autoimmune gastrointestinal disease characterized by chronic inflammation and frequent recurrence. Accumulating evidence has confirmed that chronic psychological stress is considered to trigger IBD deterioration and relapse. Moreover, studies have demonstrated that patients with IBD have a higher risk of developing symptoms of anxiety and depression than healthy individuals. However, the underlying mechanism of the link between psychological stress and IBD remains poorly understood. This review used a psychoneuroimmunology perspective to assess possible neuro-visceral integration, immune modulation, and crucial intestinal microbiome changes in IBD. Furthermore, the bidirectionality of the brain–gut axis was emphasized in the context, indicating that IBD pathophysiology increases the inflammatory response in the central nervous system and further contributes to anxiety- and depression-like behavioral comorbidities. This information will help accurately characterize the link between psychological stress and IBD disease activity. Additionally, the clinical application of functional brain imaging, microbiota-targeted treatment, psychotherapy and antidepressants should be considered during the treatment and diagnosis of IBD with behavioral comorbidities. This review elucidates the significance of more high-quality research combined with large clinical sample sizes and multiple diagnostic methods and psychotherapy, which may help to achieve personalized therapeutic strategies for IBD patients based on stress relief.
Collapse
Affiliation(s)
- Li Ge
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shuman Liu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Sha Li
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jing Yang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Guangran Hu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Changqing Xu
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Wengang Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Wengang Song,
| |
Collapse
|
10
|
Mackey E, Moeser AJ. Sex Differences in Mast Cell-Associated Disorders: A Life Span Perspective. Cold Spring Harb Perspect Biol 2022; 14:a039172. [PMID: 35817512 PMCID: PMC9524281 DOI: 10.1101/cshperspect.a039172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mast cells are critical innate immune effectors located throughout the body that are crucial for host defense mechanisms via orchestrating immune responses to a variety of host and environmental stimuli necessary for survival. The role of mast cells in brain development and behavior, meningeal function, and stress-related disorders has also been increasingly recognized. While critical for survival and development, excessive mast cell activation has been linked with an increasing number of inflammatory, stress-associated, and neuroimmune disorders including allergy/anaphylaxis, autoimmune diseases, migraine headache, and chronic pain disorders. Further, a strong sex bias exists for mast cell-associated diseases with females often at increased risk. Here we review sex differences in human mast cell-associated diseases and animal models, and the underlying biological mechanisms driving these sex differences, which include adult gonadal sex hormones as well the emerging organizational role of perinatal gonadal hormones on mast cell activity and development.
Collapse
Affiliation(s)
- Emily Mackey
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48864, USA
- Comparative Biomedical Sciences Program, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina 27603, USA
| | - Adam J Moeser
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48864, USA
| |
Collapse
|
11
|
Hasler WL, Grabauskas G, Singh P, Owyang C. Mast cell mediation of visceral sensation and permeability in irritable bowel syndrome. Neurogastroenterol Motil 2022; 34:e14339. [PMID: 35315179 PMCID: PMC9286860 DOI: 10.1111/nmo.14339] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/09/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022]
Abstract
Abnormalities of mast cell structure or function may play prominent roles in irritable bowel syndrome (IBS) symptom genesis. Mast cells show close apposition to sensory nerves and release bioactive substances in response to varied stimuli including infection, stress, and other neuroendocrine factors. Most studies focus on patients who develop IBS after enteric infection or who report diarrhea-predominant symptoms. Three topics underlying IBS pathogenesis have been emphasized in recent investigations. Visceral hypersensitivity to luminal stimulation is found in most IBS patients and may contribute to abdominal pain. Mast cell dysfunction also may disrupt epithelial barrier function which alters mucosal permeability potentially leading to altered bowel function and pain. Mast cell products including histamine, proteases, prostaglandins, and cytokines may participate in hypersensitivity and permeability defects, especially with diarrhea-predominant IBS. Recent experimental evidence indicates that the pronociceptive effects of histamine and proteases are mediated by the generation of prostaglandins in the mast cell. Enteric microbiome interactions including increased mucosal bacterial translocation may activate mast cells to elicit inflammatory responses underlying some of these pathogenic effects. Therapies to alter mast cell activity (mast cell stabilizers) or function (histamine antagonists) have shown modest benefits in IBS. Future investigations will seek to define patient subsets with greater potential to respond to therapies that address visceral hypersensitivity, epithelial permeability defects, and microbiome alterations secondary to mast cell dysfunction in IBS.
Collapse
Affiliation(s)
- William L. Hasler
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Gintautas Grabauskas
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Prashant Singh
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Chung Owyang
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| |
Collapse
|
12
|
Accarie A, Toth J, Wauters L, Farré R, Tack J, Vanuytsel T. Estrogens Play a Critical Role in Stress-Related Gastrointestinal Dysfunction in a Spontaneous Model of Disorders of Gut-Brain Interaction. Cells 2022; 11:cells11071214. [PMID: 35406778 PMCID: PMC8997409 DOI: 10.3390/cells11071214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Disorders of the gut-brain interaction (DGBI), such as irritable bowel syndrome and functional dyspepsia, are more prevalent in women than in men, with a ratio of 2:1. Furthermore, stressful life events have been reported as one of the triggers for symptoms in DGBI patients. METHODS Here, we studied the effect of an early-life stressor (maternal separation (MS)) on jejunal and colonic alterations, including colonic sensitivity and immune cells infiltration and activation in a validated spontaneous model of DGBI (BBDP-N), and investigated the involvement of β-estradiol on stress-worsened intestinal alterations. RESULTS We found that maternal separation exacerbated colonic sensitivity and mast cell and eosinophil infiltration and activation in females only. Ovariectomy partially rescued the stress phenotype by decreasing colonic sensitivity, which was restored by β-estradiol injections and did not impact immune cells infiltration and activation. Stressed males exposed to β-estradiol demonstrated similar intestinal alterations as MS females. CONCLUSION Estrogen plays a direct critical role in colonic hypersensitivity in a spontaneous animal model of DGBI, while for immune activation, estrogen seems to be involved in the first step of their recruitment and activation. Our data point towards a complex interaction between stress and β-estradiol in DGBI.
Collapse
Affiliation(s)
- Alison Accarie
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMetA), KU Leuven, 3000 Leuven, Belgium; (A.A.); (J.T.); (L.W.); (R.F.); (J.T.)
| | - Joran Toth
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMetA), KU Leuven, 3000 Leuven, Belgium; (A.A.); (J.T.); (L.W.); (R.F.); (J.T.)
| | - Lucas Wauters
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMetA), KU Leuven, 3000 Leuven, Belgium; (A.A.); (J.T.); (L.W.); (R.F.); (J.T.)
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ricard Farré
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMetA), KU Leuven, 3000 Leuven, Belgium; (A.A.); (J.T.); (L.W.); (R.F.); (J.T.)
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMetA), KU Leuven, 3000 Leuven, Belgium; (A.A.); (J.T.); (L.W.); (R.F.); (J.T.)
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMetA), KU Leuven, 3000 Leuven, Belgium; (A.A.); (J.T.); (L.W.); (R.F.); (J.T.)
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
13
|
Attah AF, Akindele OO, Nnamani PO, Jonah UJ, Sonibare MA, Moody JO. Moringa oleifera Seed at the Interface of Food and Medicine: Effect of Extracts on Some Reproductive Parameters, Hepatic and Renal Histology. Front Pharmacol 2022; 13:816498. [PMID: 35350756 PMCID: PMC8958002 DOI: 10.3389/fphar.2022.816498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
The lipid-rich Seed of Moringa oleifera has been promoted as an effective water clarifier. Aside its vital nutritional application as an emerging food additive, the seed has continued to gain a wider acceptance in various global ethnomedicines for managing several communicable and lifestyle diseases, howbeit, its potential toxic effect, particularly on fertility and pregnancy outcomes has remained uninvestigated; the effect of Moringa oleifera seed (MOSE) aqueous-methanol extracts on fertility and pregnancy outcome, was investigated in vivo using female Wistar rats that were divided into 50, 100, 300 and 500 mg per kilogram body weight. Group six was given Moringa oleifera seed treated water ad-libitum (ad-libitum group). Organs harvested for histological assessment included ovary, uterus, liver and kidney. In addition to HPLC fingerprint and a preliminary peptide detection, we determined the physico-chemical characteristics and mineral content of MOSE using standard methods. Data were analyzed with significance at p ≤ 0.05. There was no significant difference in the estrus cycle, mating index, gestation survival index, gestation index, fertility index and sex ratio among all groups. Gestation length was reduced in some groups. While the male pup birth weight was comparable among the different groups, female pups birth weights were significantly reduced in 50 and 100 mg groups. Anogenital distance indices of female pups in ad libitum group were significantly increased. Pathologies were observed in liver and kidneys of dams while kidneys of pups presented a dose dependent reduction in the number of glomeruli. There were no observed pathological changes in the ovary and uterus. This study showed for the first time in rodents, that the lipid-rich MOSE is unsafe to the kidney of rodents while the lipid-free MOSE appears to be safe at doses up to 300 mg/kg body weight. Findings from this study suggested that the female pups were masculinized. In conclusion, the lipid-rich seed extracts of MOSE appear to be unsafe during pregnancy, induce hepatic and renal toxicity while the lipid-free MOSE excludes inherent toxicity as the hydrophobic part has been linked to toxicity as observed in this study due to the developmental programming effect on female offspring in rodents.
Collapse
Affiliation(s)
- Alfred F Attah
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria.,Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Opeyemi O Akindele
- Laboratory for Reproductive Physiology and Developmental Programming, Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Petra O Nnamani
- Drug Delivery and Nanomedicines Research Unit/Public Health and Environmental Sustainability (PHES) Research Group, Department of Pharmaceutics, University of Nigeria, Nsukka, Nigeria
| | | | - Mubo A Sonibare
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Jones O Moody
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
14
|
Scuderi SA, Casili G, Lanza M, Ardizzone A, Pantaleo L, Campolo M, Paterniti I, Cucinotta L, Cuzzocrea S, Esposito E. Efficacy of a Product Containing Xyloglucan and Pea Protein on Intestinal Barrier Function in a Partial Restraint Stress Animal Model. Int J Mol Sci 2022; 23:ijms23042269. [PMID: 35216383 PMCID: PMC8875977 DOI: 10.3390/ijms23042269] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Functional abdominal bloating and distension (FABD) are common and frequent symptoms in patients with pre-existing gastrointestinal (GI) disorders. FABD is characterized by recurrent abdominal fullness and bloating. The pathophysiology of FABD is still unclear. However, the plausible mechanisms involved are small intestinal bacterial overgrowth (SIBO), imbalance of gut microbiota, visceral hypersensitivity, intestinal permeability alteration, and disruption of intestinal barrier function. Thus, the creation of a barrier on the wall of the intestine could represent an alternative therapeutic strategy to prevent FABD. This study aimed to investigate the effect of two natural substances, Xyloglucan (XG) and Pea-protein (PP), known for their mucosal-protective properties, in an in vivo model of Partial restraint-stress (PRS). Our results showed that the pre-treatment with a product containing XG and PP in stressed-rats was able to reduce the number of abdominal contractions and visceral hypersensitivity. Moreover, XG and PP were able to reduce intestinal permeability alteration, restoring tight-junctions (TJs) expression and decreased the lactulose–mannitol ratio, a quantitative marker used to measure intestinal permeability, compared to PRS-group. In conclusion, the data obtained revealed that the product containing XG and PP was able to restore the normal intestinal-barrier function; therefore, it could be considered a therapeutic strategy to manage FABD.
Collapse
|
15
|
Li R, Chen S, Gu X, An S, Wang Z. Role of the nuclear receptor subfamily 4a in mast cells in the development of irritable bowel syndrome. Comput Struct Biotechnol J 2022; 20:1198-1207. [PMID: 35317226 PMCID: PMC8907967 DOI: 10.1016/j.csbj.2022.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 11/15/2022] Open
Abstract
The activation of mast cells (MCs) and mediator release are closely related to the pathophysiology of irritable bowel syndrome (IBS). However, the exact underlying mechanisms are still not completely understood. The nuclear receptor subfamily 4a (Nr4a) is a family of orphan nuclear receptors implicated in regulating MC activation, degranulation, cytokine/chemokine synthesis and release. Acute and chronic stress trigger hypothalamic–pituitaryadrenal axis (HPA) activation to induce the release of corticotropin-releasing hormone (CRH), resulting in MC activation and induction of the Nr4a family. Our newest data showed that Nr4a members were specially over-expressed in colonic MCs of the chronic water-avoidance stress (WAS)-induced visceral hyperalgesia mice, suggesting that Nr4a members might be involved in the pathophysiology of visceral hypersensitivity. In this review, we highlight the present knowledge on roles of Nr4a members in the activation of MCs and the pathophysiology of IBS, and discuss signaling pathways that modulate the activation of Nr4a family members. We propose that a better understanding of Nr4a members and their modulators may facilitate the development of more selective and effective therapies to treat IBS patients.
Collapse
Affiliation(s)
| | | | | | - Shuhong An
- Corresponding authors at: Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, 2 Ying Sheng Dong Lu, Taian 271000, China.
| | - Zhaojin Wang
- Corresponding authors at: Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, 2 Ying Sheng Dong Lu, Taian 271000, China.
| |
Collapse
|
16
|
Kim N. Sex Difference of Colorectal Cancer. SEX/GENDER-SPECIFIC MEDICINE IN THE GASTROINTESTINAL DISEASES 2022:301-339. [DOI: 10.1007/978-981-19-0120-1_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Pham L, Baiocchi L, Kennedy L, Sato K, Meadows V, Meng F, Huang CK, Kundu D, Zhou T, Chen L, Alpini G, Francis H. The interplay between mast cells, pineal gland, and circadian rhythm: Links between histamine, melatonin, and inflammatory mediators. J Pineal Res 2021; 70:e12699. [PMID: 33020940 PMCID: PMC9275476 DOI: 10.1111/jpi.12699] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022]
Abstract
Our daily rhythmicity is controlled by a circadian clock with a specific set of genes located in the suprachiasmatic nucleus in the hypothalamus. Mast cells (MCs) are major effector cells that play a protective role against pathogens and inflammation. MC distribution and activation are associated with the circadian rhythm via two major pathways, IgE/FcεRI- and IL-33/ST2-mediated signaling. Furthermore, there is a robust oscillation between clock genes and MC-specific genes. Melatonin is a hormone derived from the amino acid tryptophan and is produced primarily in the pineal gland near the center of the brain, and histamine is a biologically active amine synthesized from the decarboxylation of the amino acid histidine by the L-histidine decarboxylase enzyme. Melatonin and histamine are previously reported to modulate circadian rhythms by pathways incorporating various modulators in which the nuclear factor-binding near the κ light-chain gene in B cells, NF-κB, is the common key factor. NF-κB interacts with the core clock genes and disrupts the production of pro-inflammatory cytokine mediators such as IL-6, IL-13, and TNF-α. Currently, there has been no study evaluating the interdependence between melatonin and histamine with respect to circadian oscillations in MCs. Accumulating evidence suggests that restoring circadian rhythms in MCs by targeting melatonin and histamine via NF-κB may be promising therapeutic strategy for MC-mediated inflammatory diseases. This review summarizes recent findings for circadian-mediated MC functional roles and activation paradigms, as well as the therapeutic potentials of targeting circadian-mediated melatonin and histamine signaling in MC-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Linh Pham
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Science and Mathematics, Texas A&M University – Central Texas, Killeen, TX, USA
| | | | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vik Meadows
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chiung-Kuei Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
18
|
Mallet C, Boudieu L, Lamoine S, Coudert C, Jacquot Y, Eschalier A. The Antitumor Peptide ERα17p Exerts Anti-Hyperalgesic and Anti-Inflammatory Actions Through GPER in Mice. Front Endocrinol (Lausanne) 2021; 12:578250. [PMID: 33815268 PMCID: PMC8011567 DOI: 10.3389/fendo.2021.578250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Persistent inflammation and persistent pain are major medical, social and economic burdens. As such, related pharmacotherapy needs to be continuously improved. The peptide ERα17p, which originates from a part of the hinge region/AF2 domain of the human estrogen receptor α (ERα), exerts anti-proliferative effects in breast cancer cells through a mechanism involving the hepta-transmembrane G protein-coupled estrogen receptor (GPER). It is able to decrease the size of xenografted human breast tumors, in mice. As GPER has been reported to participate in pain and inflammation, we were interested in exploring the potential of ERα17p in this respect. We observed that the peptide promoted anti-hyperalgesic effects from 2.5 mg/kg in a chronic mice model of paw inflammation induced by the pro-inflammatory complete Freund's adjuvant (CFA). This action was abrogated by the specific GPER antagonist G-15, leading to the conclusion that a GPER-dependent mechanism was involved. A systemic administration of a Cy5-labeled version of the peptide allowed its detection in both, the spinal cord and brain. However, ERα17p-induced anti-hyperalgesia was detected at the supraspinal level, exclusively. In the second part of the study, we have assessed the anti-inflammatory action of ERα17p in mice using a carrageenan-evoked hind-paw inflammation model. A systemic administration of ERα17p at a dose of 2.5 mg/kg was responsible for reduced paw swelling. Overall, our work strongly suggests that GPER inverse agonists, including ERα17p, could be used to control hyperalgesia and inflammation.
Collapse
Affiliation(s)
- Christophe Mallet
- Université Clermont Auvergne, INSERM, NEURO-DOL Basics & Clinical Pharmacology of Pain, Clermont-Ferrand, France
- ANALGESIA Institute, Faculty of Medicine, Clermont-Ferrand, France
- *Correspondence: Christophe Mallet,
| | - Ludivine Boudieu
- Université Clermont Auvergne, INSERM, NEURO-DOL Basics & Clinical Pharmacology of Pain, Clermont-Ferrand, France
- ANALGESIA Institute, Faculty of Medicine, Clermont-Ferrand, France
| | - Sylvain Lamoine
- Université Clermont Auvergne, INSERM, NEURO-DOL Basics & Clinical Pharmacology of Pain, Clermont-Ferrand, France
- ANALGESIA Institute, Faculty of Medicine, Clermont-Ferrand, France
| | - Catherine Coudert
- Université Clermont Auvergne, INSERM, NEURO-DOL Basics & Clinical Pharmacology of Pain, Clermont-Ferrand, France
- ANALGESIA Institute, Faculty of Medicine, Clermont-Ferrand, France
| | - Yves Jacquot
- Université de Paris, Faculté de Pharmacie de Paris, CiTCoM, CNRS UMR 8038, INSERM U1268, Paris, France
| | - Alain Eschalier
- Université Clermont Auvergne, INSERM, NEURO-DOL Basics & Clinical Pharmacology of Pain, Clermont-Ferrand, France
- ANALGESIA Institute, Faculty of Medicine, Clermont-Ferrand, France
| |
Collapse
|
19
|
Abancens M, Bustos V, Harvey H, McBryan J, Harvey BJ. Sexual Dimorphism in Colon Cancer. Front Oncol 2020; 10:607909. [PMID: 33363037 PMCID: PMC7759153 DOI: 10.3389/fonc.2020.607909] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
A higher incidence of colorectal cancer (CRC) is found in males compared to females. Young women (18-44 years) with CRC have a better survival outcome compared to men of the same age or compared to older women (over 50 years), indicating a global incidence of sexual dimorphism in CRC rates and survival. This suggests a protective role for the sex steroid hormone estrogen in CRC development. Key proliferative pathways in CRC tumorigenesis exhibit sexual dimorphism, which confer better survival in females through estrogen regulated genes and cell signaling. Estrogen regulates the activity of a class of Kv channels (KCNQ1:KCNE3), which control fundamental ion transport functions of the colon and epithelial mesenchymal transition through bi-directional interactions with the Wnt/β-catenin signalling pathway. Estrogen also modulates CRC proliferative responses in hypoxia via the novel membrane estrogen receptor GPER and HIF1A and VEGF signaling. Here we critically review recent clinical and molecular insights into sexual dimorphism of CRC biology modulated by the tumor microenvironment, estrogen, Wnt/β-catenin signalling, ion channels, and X-linked genes.
Collapse
Affiliation(s)
- Maria Abancens
- Department of Molecular Medicine, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
- Department of Surgery, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - Viviana Bustos
- Departamento de Acuicultura y Recursos Agroalimentarios, Programa Fitogen, Universidad de Los Lagos, Osorno, Chile
| | - Harry Harvey
- Department of Medical Oncology, Cork University Hospital, Cork, Ireland
| | - Jean McBryan
- Department of Molecular Medicine, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
- Department of Surgery, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - Brian J. Harvey
- Department of Molecular Medicine, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
- Centro de Estudios Cientificos CECs, Valdivia, Chile
| |
Collapse
|
20
|
Parisio C, Lucarini E, Micheli L, Toti A, Khatib M, Mulinacci N, Calosi L, Bani D, Di Cesare Mannelli L, Ghelardini C. Pomegranate Mesocarp against Colitis-Induced Visceral Pain in Rats: Effects of a Decoction and Its Fractions. Int J Mol Sci 2020; 21:E4304. [PMID: 32560291 PMCID: PMC7353021 DOI: 10.3390/ijms21124304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
The management of chronic visceral pain related to Inflammatory Bowel Diseases or Irritable Bowel Syndrome is still a clinical problem and new therapeutic strategies continue to be investigated. In the present study, the efficacy of a pomegranate decoction and of its polysaccharide and ellagitannin components in preventing the development of colitis-induced abdominal pain in rats was evaluated. After colitis induction by 2,4-dinitrobenzenesulfonic acid (DNBS), the pomegranate decoction (300 mg kg-1), polysaccharides (300 mg kg-1), and ellagitannins (45 mg kg-1) were orally administered for 14 days. Repeated treatment with decoction reduced visceral hypersensitivity in the colitic animals both at 7 and 14 days. Similar efficacy was shown by polysaccharides, but with lower potency. Ellagitannins administered at dose equivalent to decoction content showed higher efficacy in reducing the development of visceral pain. Macroscopic and microscopic evaluations performed on the colon 14 days after the damage showed that all three preparations reduced the overall amount of mast cells, the number of degranulated mast cells, and the density of collagen fibers in the mucosal stroma. Although ellagitannins seem to be responsible for most of the beneficial effects of pomegranate on DNBS-induced colitis, the polysaccharides support and enhance its effect. Therefore, pomegranate mesocarp preparations could represent a complementary approach to conventional therapies for promoting abdominal pain relief.
Collapse
Affiliation(s)
- Carmen Parisio
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Mohamad Khatib
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmaceutical and Nutraceutical Division, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (M.K.); (N.M.)
| | - Nadia Mulinacci
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmaceutical and Nutraceutical Division, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (M.K.); (N.M.)
| | - Laura Calosi
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology & Research Unit of Histology & Embryology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (L.C.); (D.B.)
| | - Daniele Bani
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology & Research Unit of Histology & Embryology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (L.C.); (D.B.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| |
Collapse
|
21
|
Jacenik D, Krajewska WM. Significance of G Protein-Coupled Estrogen Receptor in the Pathophysiology of Irritable Bowel Syndrome, Inflammatory Bowel Diseases and Colorectal Cancer. Front Endocrinol (Lausanne) 2020; 11:390. [PMID: 32595606 PMCID: PMC7303275 DOI: 10.3389/fendo.2020.00390] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
The regulatory role of estrogens and nuclear estrogen receptors, i. e., estrogen receptor α and β has been reported in gastrointestinal diseases. However, the contribution of G protein-coupled estrogen receptor, the membrane-bound estrogen receptor, is still poorly understood. Unlike nuclear estrogen receptors, which are responsible for the genomic activity of estrogens, the G protein-coupled estrogen receptor affects the "rapid" non-genomic activity of estrogens, leading to modulation of many signaling pathways and ultimately changing gene expression. Recently, the crucial role of G protein-coupled estrogen receptor in intestinal pathogenesis has been documented. It has been shown that the G protein-coupled estrogen receptor can modulate the progression of irritable bowel syndrome, inflammatory bowel diseases such as Crohn's disease and ulcerative colitis as well as colorectal cancer. The G protein-coupled estrogen receptor appears to be a potent factor regulating abdominal sensitivity and pain, intestinal peristalsis, colitis development, proliferation and migration potential of colorectal cancer cells and seems to be a useful target in gastrointestinal diseases. In this review, we present the current state of knowledge about the contribution of the G protein-coupled estrogen receptor to irritable bowel syndrome, inflammatory bowel diseases and colorectal cancer.
Collapse
|