1
|
Marinko M, Stojanovic I, Milojevic P, Nenezic D, Kanjuh V, Yang Q, He GW, Novakovic A. Involvement of different K + channel subtypes in hydrogen sulfide-induced vasorelaxation of human internal mammary artery. Fundam Clin Pharmacol 2024. [PMID: 39246043 DOI: 10.1111/fcp.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/19/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Changes in K+ channel expression/function are associated with disruption of vascular reactivity in several pathological conditions, including hypertension, diabetes, and atherosclerosis. Gasotransmitters achieve part of their effects in the organism by regulating ion channels, especially K+ channels. Their involvement in hydrogen sulfide (H2S)-mediated vasorelaxation is still unclear, and data about human vessels are limited. OBJECTIVE To determine the role of K+ channel subtypes in the vasorelaxant mechanism of H2S donor, sodium-hydrosulfide (NaHS), on isolated human internal mammary artery (HIMA). RESULTS NaHS (1 × 10-6-3 × 10-3 mol/L) induced a concentration-dependent relaxation of HIMA pre-contracted by phenylephrine and high K+. Among K+ channel blockers, iberiotoxin, glibenclamide, 4-aminopyridine (4-AP), and margatoxin significantly inhibited NaHS-induced relaxation of phenylephrine-contracted HIMA (P < 0.01), whereas in the presence of apamin/1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34) combination, the HIMA relaxation was partially reduced (P < 0.05). The effect of NaHS was antagonized by NO pathway inhibitors, L-NAME and KT5823, and by cyclo-oxygenase inhibitor, indomethacin (P < 0.01). Under conditions of blocked NO/prostacyclin synthesis and release, apamin/TRAM-34 and glibenclamide caused further decrease in NaHS-induced vasorelaxation (P < 0.01), while iberiotoxin, 4-AP, and margatoxin were without additional effect (P > 0.05). In the presence of nifedipine, NaHS induced partial relaxation of HIMA (P < 0.01). CONCLUSION Our results demonstrated that H2S donor, NaHS, induced concentration-dependent relaxation of isolated HIMA. Vasorelaxant mechanisms of H2S included direct or indirect opening of different K+ channel subtypes, KATP, BKCa, SKCa/IKCa, and KV (subtype KV1.3), in addition to NO pathway activation and interference with extracellular Ca2+ influx.
Collapse
Affiliation(s)
- Marija Marinko
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Ivan Stojanovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | - Predrag Milojevic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | - Dragoslav Nenezic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | | | - Qin Yang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin, China
| | - Guo-Wei He
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin, China
- Department of Surgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Aleksandra Novakovic
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Faleye OS, Boya BR, Lee JH, Choi I, Lee J. Halogenated Antimicrobial Agents to Combat Drug-Resistant Pathogens. Pharmacol Rev 2023; 76:90-141. [PMID: 37845080 DOI: 10.1124/pharmrev.123.000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/07/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
Antimicrobial resistance presents us with a potential global crisis as it undermines the abilities of conventional antibiotics to combat pathogenic microbes. The history of antimicrobial agents is replete with examples of scaffolds containing halogens. In this review, we discuss the impacts of halogen atoms in various antibiotic types and antimicrobial scaffolds and their modes of action, structure-activity relationships, and the contributions of halogen atoms in antimicrobial activity and drug resistance. Other halogenated molecules, including carbohydrates, peptides, lipids, and polymeric complexes, are also reviewed, and the effects of halogenated scaffolds on pharmacokinetics, pharmacodynamics, and factors affecting antimicrobial and antivirulence activities are presented. Furthermore, the potential of halogenation to circumvent antimicrobial resistance and rejuvenate impotent antibiotics is addressed. This review provides an overview of the significance of halogenation, the abilities of halogens to interact in biomolecular settings and enhance pharmacological properties, and their potential therapeutic usages in preventing a postantibiotic era. SIGNIFICANCE STATEMENT: Antimicrobial resistance and the increasing impotence of antibiotics are critical threats to global health. The roles and importance of halogen atoms in antimicrobial drug scaffolds have been established, but comparatively little is known of their pharmacological impacts on drug resistance and antivirulence activities. This review is the first to extensively evaluate the roles of halogen atoms in various antibiotic classes and pharmacological scaffolds and to provide an overview of their ability to overcome antimicrobial resistance.
Collapse
Affiliation(s)
- Olajide Sunday Faleye
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Bharath Reddy Boya
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Inho Choi
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
3
|
Tanrıverdi LH, Özhan O, Ulu A, Yıldız A, Ateş B, Vardı N, Acet HA, Parlakpinar H. Activation of the Mas receptors by AVE0991 and MrgD receptor using alamandine to limit the deleterious effects of Ang II-induced hypertension. Fundam Clin Pharmacol 2023; 37:60-74. [PMID: 36117326 DOI: 10.1111/fcp.12829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 01/27/2023]
Abstract
The MrgD receptor agonist, alamandine (ALA) and Mas receptor agonist, AVE0991 have recently been identified as protective components of the renin-angiotensin system. We evaluated the effects of ALA and AVE0991 on cardiovascular function and remodeling in angiotensin (Ang) II-induced hypertension in rats. Sprague Dawley rats were subject to 4-week subcutaneous infusions of Ang II (80 ng/kg/min) or saline after which they were treated with ALA (50 μg/kg), AVE0991 (576 μg/kg), or ALA+AVE0991 during the last 2 weeks. Systolic blood pressure (SBP) and heart rate (HR) values were recorded with tail-cuff plethysmography at 1, 15, and 29 days post-treatment. After euthanization, the heart and thoracic aorta were removed for further analysis and vascular responses. SBP significantly increased in the Ang II group when compared to the control group. Furthermore, Ang II also caused an increase in cardiac and aortic cyclophilin-A (CYP-A), monocyte chemoattractant protein-1 (MCP-1), and cardiomyocyte degeneration but produced a decrease in vascular relaxation. HR, matrix metalloproteinase-2 and -9, NADPH oxidase-4, and lysyl oxidase levels were comparable among groups. ALA, AVE0991, and the drug combination produced antihypertensive effects and alleviated vascular responses. The inflammatory and oxidative stress related to cardiac MCP-1 and CYP-A levels decreased in the Ang II+ALA+AVE0991 group. Vascular but not cardiac angiotensin-converting enzyme-2 levels decreased with Ang II administration but were similar to the Ang II+ALA+AVE0991 group. Our experimental data showed the combination of ALA and AVE0991 was found beneficial in Ang II-induced hypertension in rats by reducing SBP, oxidative stress, inflammation, and improving vascular responses.
Collapse
Affiliation(s)
| | - Onural Özhan
- Department of Medical Pharmacology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Ahmet Ulu
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Science, İnönü University, Malatya, Türkiye
| | - Azibe Yıldız
- Department of Histology and Medical Embryology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Burhan Ateş
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Science, İnönü University, Malatya, Türkiye
| | - Nigar Vardı
- Department of Histology and Medical Embryology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Hacı Ahmet Acet
- Department of Medical Pharmacology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Hakan Parlakpinar
- Department of Medical Pharmacology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| |
Collapse
|
4
|
Jiang L, Shen M, Bao Y, Qian Z. Verapamil downregulates iron uptake and upregulates divalent metal transporter 1 expression in H9C2 cardiomyocytes. Fundam Clin Pharmacol 2022; 36:985-991. [DOI: 10.1111/fcp.12793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Li‐Rong Jiang
- Laboratory of Neuropharmacology Fudan University School of Pharmacy Shanghai China
| | - Meng‐Qi Shen
- Institute of Translational and Precision Medicine Nantong University Nantong China
| | - Yu‐Xin Bao
- Research Center for Medicine and Biology Zunyi Medical University Zunyi China
| | - Zhong‐Ming Qian
- Laboratory of Neuropharmacology Fudan University School of Pharmacy Shanghai China
- Institute of Translational and Precision Medicine Nantong University Nantong China
| |
Collapse
|
5
|
Totoson P, Peyronnel C, Quirié A, Pédard M, Cefis M, Bermont L, Prigent-Tessier A, Prati C, Tournier M, Wendling D, Marie C, Demougeot C. Tofacitinib improved peripheral endothelial dysfunction and brain-derived neurotrophic factor levels in the rat adjuvant-induced arthritis model. Fundam Clin Pharmacol 2021; 36:363-374. [PMID: 34661311 DOI: 10.1111/fcp.12731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/12/2021] [Indexed: 01/10/2023]
Abstract
This study aimed to explore the effect of Tofacitinib on endothelial dysfunction and cerebral levels of brain-derived neurotrophic factor (BDNF) in the adjuvant-induced arthritis (AIA) rat model. Tofacitinib (10 mg/kg twice a day) or vehicle was administered from the first signs of inflammation. Arthritis scores were daily monitored while other parameters including endothelial function assessed from aortic rings, radiographic scores, blood pressure, heart rate, circulating levels of triglycerides, cholesterol, and interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), IL-17A, and cerebral BDNF levels were determined after 3 weeks of treatment. A group of non-AIA rats served as controls. In AIA rats, as compared with vehicle, Tofacitinib significantly reduced arthritis and radiographic scores, decreased total cholesterol and low-density lipoprotein cholesterol (LDL-C), but changed neither blood pressure nor heart rate and proinflammatory cytokines levels. It also fully restored acetylcholine (Ach)-induced relaxation (p < 0.05) through increased nitric oxide (NO) synthase activity, reduced BH4 deficiency and O2 -° production, decreased cyclo-oxygenase-2 (COX-2)/arginase activities, and enhanced endothelium-derived hyperpolarizing factor (EDHF) production. These effects translated into a decrease in atherogenic index and an elevation of BDNF levels in the prefrontal cortex (p < 0.05) and hippocampus (p < 0.001). The present study identified Tofacitinib as an efficient therapeutic option to reduce cardiovascular risk and improve BDNF-dependent cognition in arthritis.
Collapse
Affiliation(s)
- Perle Totoson
- PEPITE EA4267, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France
| | - Célian Peyronnel
- PEPITE EA4267, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France
| | - Aurore Quirié
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR Sciences de Santé, Dijon, France
| | - Martin Pédard
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR Sciences de Santé, Dijon, France
| | - Marina Cefis
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR Sciences de Santé, Dijon, France
| | - Laurent Bermont
- Service de Biochimie médicale, CHRU Besançon, Besançon, France
| | - Anne Prigent-Tessier
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR Sciences de Santé, Dijon, France
| | - Clément Prati
- PEPITE EA4267, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France.,Service de Rhumatologie, CHRU Besançon, Besançon, France
| | - Maude Tournier
- PEPITE EA4267, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France
| | - Daniel Wendling
- Service de Rhumatologie, CHRU Besançon, Besançon, France.,EA 4266 "Agents Pathogènes et Inflammation", EPILAB, Université Bourgogne Franche-Comté, Besançon, France
| | - Christine Marie
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR Sciences de Santé, Dijon, France
| | - Céline Demougeot
- PEPITE EA4267, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
6
|
Marinko M, Hou HT, Stojanovic I, Milojevic P, Nenezic D, Kanjuh V, Yang Q, He GW, Novakovic A. Mechanisms underlying the vasorelaxant effect of hydrogen sulfide on human saphenous vein. Fundam Clin Pharmacol 2021; 35:906-918. [PMID: 33523557 DOI: 10.1111/fcp.12658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/08/2021] [Accepted: 01/27/2021] [Indexed: 11/30/2022]
Abstract
Hydrogen sulfide (H2 S) represents the third and the youngest member of the gaseous transmitters family. The dominant effect of H2 S on isolated vessels is vasodilation. As the mechanism of H2 S-induced relaxation in human vessels remains unclear, the present study aimed to investigate the effects of H2 S donor, sodium hydrosulfide (NaHS), on isolated human saphenous vein (HSV) and to determine the mechanism of action. Our results showed that NaHS (1 µM-3 mM) induced a concentration-dependent relaxation of endothelium-intact HSV rings pre-contracted by phenylephrine. Pre-treatment with L-NAME, ODQ and KT5823 significantly inhibited NaHS-induced relaxation, while indomethacin induced partial inhibition. Among K+ channel blockers, the combination of apamin and TRAM-34 significantly affected the relaxation produced by NaHS, while iberiotoxin and glibenclamide only reduced maximal relaxation of HSV. NaHS partially relaxed endothelium-intact rings pre-contracted by high K+ , as well as phenylephrine-contracted rings in the presence of nifedipine. Additionally, the incubation of HSV rings with NaHS increased NO production. These results demonstrate that NaHS produces the concentration- and endothelium-dependent relaxation of isolated HSV. Vasorelaxation to NaHS probably involves activation of NO/cGMP/PKG pathway and partially prostacyclin. In addition, different K+ channels subtypes, especially SKCa and IKCa , as well as BKCa and KATP channels in high concentrations of NaHS, probably participate in the NaHS-induced vasorelaxation.
Collapse
Affiliation(s)
- Marija Marinko
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Hai-Tao Hou
- Department of Cardiovascular Surgery, Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Tianjin, China
| | - Ivan Stojanovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | - Predrag Milojevic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | - Dragoslav Nenezic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | | | - Qin Yang
- Department of Cardiovascular Surgery, Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Tianjin, China
| | - Guo-Wei He
- Department of Cardiovascular Surgery, Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Tianjin, China.,Department of Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Aleksandra Novakovic
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|