1
|
Bi S, Kargeti M, Colin R, Farke N, Link H, Sourjik V. Dynamic fluctuations in a bacterial metabolic network. Nat Commun 2023; 14:2173. [PMID: 37061520 PMCID: PMC10105761 DOI: 10.1038/s41467-023-37957-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/06/2023] [Indexed: 04/17/2023] Open
Abstract
The operation of the central metabolism is typically assumed to be deterministic, but dynamics and high connectivity of the metabolic network make it potentially prone to generating fluctuations. However, time-resolved measurements of metabolite levels in individual cells that are required to characterize such fluctuations remained a challenge, particularly in small bacterial cells. Here we use single-cell metabolite measurements based on Förster resonance energy transfer, combined with computer simulations, to explore the real-time dynamics of the metabolic network of Escherichia coli. We observe that steplike exposure of starved E. coli to glycolytic carbon sources elicits large periodic fluctuations in the intracellular concentration of pyruvate in individual cells. These fluctuations are consistent with predicted oscillatory dynamics of E. coli metabolic network, and they are primarily controlled by biochemical reactions around the pyruvate node. Our results further indicate that fluctuations in glycolysis propagate to other cellular processes, possibly leading to temporal heterogeneity of cellular states within a population.
Collapse
Affiliation(s)
- Shuangyu Bi
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), D-35043, Marburg, Germany
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Manika Kargeti
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), D-35043, Marburg, Germany
| | - Remy Colin
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), D-35043, Marburg, Germany
| | - Niklas Farke
- University of Tübingen, D-72076, Tübingen, Germany
| | - Hannes Link
- University of Tübingen, D-72076, Tübingen, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), D-35043, Marburg, Germany.
| |
Collapse
|
2
|
Hauser MJB. Synchronisation of glycolytic activity in yeast cells. Curr Genet 2021; 68:69-81. [PMID: 34633492 DOI: 10.1007/s00294-021-01214-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022]
Abstract
Glycolysis is the central metabolic pathway of almost every cell and organism. Under appropriate conditions, glycolytic oscillations may occur in individual cells as well as in entire cell populations or tissues. In many biological systems, glycolytic oscillations drive coherent oscillations of other metabolites, for instance in cardiomyocytes near anorexia, or in pancreas where they lead to a pulsatile release of insulin. Oscillations at the population or tissue level require the cells to synchronize their metabolism. We review the progress achieved in studying a model organism for glycolytic oscillations, namely yeast. Oscillations may occur on the level of individual cells as well as on the level of the cell population. In yeast, the cell-to-cell interaction is realized by diffusion-mediated intercellular communication via a messenger molecule. The present mini-review focuses on the synchronisation of glycolytic oscillations in yeast. Synchronisation is a quorum-sensing phenomenon because the collective oscillatory behaviour of a yeast cell population ceases when the cell density falls below a threshold. We review the question, under which conditions individual cells in a sparse population continue or cease to oscillate. Furthermore, we provide an overview of the pathway leading to the onset of synchronized oscillations. We also address the effects of spatial inhomogeneities (e.g., the formation of spatial clusters) on the collective dynamics, and also review the emergence of travelling waves of glycolytic activity. Finally, we briefly review the approaches used in numerical modelling of synchronized cell populations.
Collapse
Affiliation(s)
- Marcus J B Hauser
- Faculty of Natural Science, Otto-Von-Guericke-Universität Magdeburg, 39106, Magdeburg, Germany.
| |
Collapse
|
3
|
Phosphofructokinase controls the acetaldehyde-induced phase shift in isolated yeast glycolytic oscillators. Biochem J 2019; 476:353-363. [PMID: 30482792 DOI: 10.1042/bcj20180757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 11/17/2022]
Abstract
The response of oscillatory systems to external perturbations is crucial for emergent properties such as synchronisation and phase locking and can be quantified in a phase response curve (PRC). In individual, oscillating yeast cells, we characterised experimentally the phase response of glycolytic oscillations for external acetaldehyde pulses and followed the transduction of the perturbation through the system. Subsequently, we analysed the control of the relevant system components in a detailed mechanistic model. The observed responses are interpreted in terms of the functional coupling and regulation in the reaction network. We find that our model quantitatively predicts the phase-dependent phase shift observed in the experimental data. The phase shift is in agreement with an adaptation leading to synchronisation with an external signal. Our model analysis establishes that phosphofructokinase plays a key role in the phase shift dynamics as shown in the PRC and adaptation time to external perturbations. Specific mechanism-based interventions, made possible through such analyses of detailed models, can improve upon standard trial and error methods, e.g. melatonin supplementation to overcome jet-lag, which are error-prone, specifically, since the effects are phase dependent and dose dependent. The models by Gustavsson and Goldbeter discussed in the text can be obtained from the JWS Online simulation database: (https://jjj.bio.vu.nl/models/gustavsson5 and https://jjj.bio.vu.nl/models/goldbeter1).
Collapse
|
4
|
A generative modeling approach to connectivity-Electrical conduction in vascular networks. J Theor Biol 2016; 399:1-12. [PMID: 27038666 DOI: 10.1016/j.jtbi.2016.03.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/07/2016] [Accepted: 03/18/2016] [Indexed: 12/26/2022]
Abstract
The physiology of biological structures is inherently dynamic and emerges from the interaction and assembly of large collections of small entities. The extent of coupled entities complicates modeling and increases computational load. Here, microvascular networks are used to present a novel generative approach to connectivity based on the observation that biological organization is hierarchical and composed of a limited set of building blocks, i.e. a vascular network consists of blood vessels which in turn are composed by one or more cell types. Fast electrical communication is crucial to synchronize vessel tone across the vast distances within a network. We hypothesize that electrical conduction capacity is delimited by the size of vascular structures and connectivity of the network. Generation and simulation of series of dynamical models of electrical spread within vascular networks of different size and composition showed that (1) Conduction is enhanced in models harboring long and thin endothelial cells that couple preferentially along the longitudinal axis. (2) Conduction across a branch point depends on endothelial connectivity between branches. (3) Low connectivity sub-networks are more sensitive to electrical perturbations. In summary, the capacity for electrical signaling in microvascular networks is strongly shaped by the morphology and connectivity of vascular (particularly endothelial) cells. While the presented software can be used by itself or as a starting point for more sophisticated models of vascular dynamics, the generative approach can be applied to other biological systems, e.g. nervous tissue, the lymphatics, or the biliary system.
Collapse
|
5
|
Bydlinski N, Harreither E, Baumann M. The 6th International Conference on Analysis of Microbial Cells at the Single Cell Level, Retz, Austria, 19-22 July 2015. N Biotechnol 2016; 34:S1871-6784(15)00277-0. [PMID: 26772727 DOI: 10.1016/j.nbt.2015.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 12/01/2022]
Abstract
The 6th International Conference on Analysis of Microbial Cells at the Single Cell Level, held in Retz, Austria from 19 to 22 July 2015, brought together experts from different areas working with bacterial, yeast and mammalian cell systems. The conference highlighted the importance of dissecting cell behaviour down to the single cell level, as analysis of mixed populations can obscure crucial cell-to-cell variations. The sessions covered advances in the fields of image analysis and microscopy, flow cytometry and cell sorting as well as bioinformatics, including recent developments and new applications of existing tools. In addition, a high speed poster slam session contributed to the lively discussions and exchange of expertise among academic and industrial researchers.
Collapse
Affiliation(s)
- Nina Bydlinski
- University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna 1190, Austria
| | - Eva Harreither
- University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna 1190, Austria
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 18, Vienna 1190, Austria.
| |
Collapse
|
6
|
Peña A, Sánchez NS, González-López O, Calahorra M. Mechanisms involved in the inhibition of glycolysis by cyanide and antimycin A in Candida albicans and its reversal by hydrogen peroxide. A common feature in Candida species. FEMS Yeast Res 2015; 15:fov083. [PMID: 26363023 DOI: 10.1093/femsyr/fov083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2015] [Indexed: 11/14/2022] Open
Abstract
In Candida albicans, cyanide and antimycin A inhibited K(+) transport, not only with ethanol-O2 as the substrate, but also with glucose. The reason for this was that they inhibited not only respiration, but also fermentation, decreasing ATP production. Measurements of oxygen levels in cell suspensions allowed identification of the electron pathways involved. NADH fluorescence levels increased in the presence of the inhibitors, indirectly indicating lower levels of NAD(+) and so pointing to glyceraldehyde-3-phosphate dehydrogenase as the limiting step responsible for the inhibition of glycolysis, which was confirmed by the levels of glycolytic intermediaries. The cyanide effect could be reversed by hydrogen peroxide, mainly due to an activity by which H2O2 can be reduced by electrons flowing from NADH through a pathway that can be inhibited by antimycin A, and appears to be a cytochrome c peroxidase. Therefore, the inhibition of glycolysis by the respiratory inhibitors seems to be due to the decreased availability of NAD(+), resulting in a decreased activity of glyceraldehyde-3-phosphate dehydrogenase. Compartmentalization of pyridine nucleotides in favor of the mitochondria can contribute to explaining the low fermentation capacity of C. albicans. Similar results were obtained with three C. albicans strains, Candida dubliniensis and, to a lower degree, Candida parapsilosis.
Collapse
Affiliation(s)
- Antonio Peña
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, DF, 04510, México, DF, México
| | - Norma Silvia Sánchez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, DF, 04510, México, DF, México
| | - Omar González-López
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, DF, 04510, México, DF, México
| | - Martha Calahorra
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, DF, 04510, México, DF, México
| |
Collapse
|
7
|
Amemiya T, Obase K, Hiramatsu N, Itoh K, Shibata K, Takinoue M, Yamamoto T, Yamaguchi T. Collective and individual glycolytic oscillations in yeast cells encapsulated in alginate microparticles. CHAOS (WOODBURY, N.Y.) 2015; 25:064606. [PMID: 26117131 DOI: 10.1063/1.4921692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Yeast cells were encapsulated into alginate microparticles of a few hundred micrometers diameter using a centrifuge-based droplet shooting device. We demonstrate the first experimental results of glycolytic oscillations in individual yeast cells immobilized in this way. We investigated both the individual and collective oscillatory behaviors at different cell densities. As the cell density increased, the amplitude of the individual oscillations increased while their period decreased, and the collective oscillations became more synchronized, with an order parameter close to 1 (indicating high synchrony). We also synthesized biphasic-Janus microparticles encapsulating yeast cells of different densities in each hemisphere. The cellular oscillations between the two hemispheres were entrained at both the individual and population levels. Such systems of cells encapsulated into microparticles are useful for investigating how cell-to-cell communication depends on the density and spatial distribution of cells.
Collapse
Affiliation(s)
- Takashi Amemiya
- Graduate School of Environment and Information Sciences, Yokohama National University (YNU), 79-7 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Kouhei Obase
- Graduate School of Environment and Information Sciences, Yokohama National University (YNU), 79-7 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Naoki Hiramatsu
- Graduate School of Environment and Information Sciences, Yokohama National University (YNU), 79-7 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Kiminori Itoh
- Graduate School of Environment and Information Sciences, Yokohama National University (YNU), 79-7 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Kenichi Shibata
- Research Center for Life and Environmental Sciences, Toyo University, 1-1-1 Izumino, Itakura, Ora, Gunma 374-0193, Japan
| | - Masahiro Takinoue
- Department of Computational Intelligence and Systems Science, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Tetsuya Yamamoto
- Tokyo Metropolitan College of Industrial Technology (TMCIT), 1-10-40 Higashinoshi, Shinagawa-ku, Tokyo 140-0011, Japan
| | - Tomohiko Yamaguchi
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
8
|
Cyanohydrin reactions enhance glycolytic oscillations in yeast. Biophys Chem 2015; 200-201:18-26. [PMID: 25863195 DOI: 10.1016/j.bpc.2015.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 11/21/2022]
Abstract
Synchronous metabolic oscillations can be induced in yeast by addition of glucose and removal of extracellular acetaldehyde (ACAx). Compared to other means of ACAx removal, cyanide robustly induces oscillations, indicating additional cyanide reactions besides ACA to lactonitrile conversion. Here, (13)C NMR is used to confirm our previous hypothesis, that cyanide directly affects glycolytic fluxes through reaction with carbonyl-containing compounds. Intracellularly, at least 3 cyanohydrins were identified. Extracellularly, all signals could be identified and lactonitrile was found to account for ~66% of total cyanide removal. Simulations of our updated computational model show that intracellular cyanide reactions increase the amplitude of oscillations and that cyanide addition lowers [ACA] instantaneously. We conclude that cyanide provides the following means of inducing global oscillations: a) by reducing [ACAx] relative to oscillation amplitude, b) by targeting multiple intracellular carbonyl compounds during fermentation, and c) by acting as a phase resetting stimulus.
Collapse
|
9
|
Gustavsson AK, Adiels CB, Mehlig B, Goksör M. Entrainment of heterogeneous glycolytic oscillations in single cells. Sci Rep 2015; 5:9404. [PMID: 25802053 PMCID: PMC4371117 DOI: 10.1038/srep09404] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/03/2015] [Indexed: 12/04/2022] Open
Abstract
Cell signaling, gene expression, and metabolism are affected by cell-cell heterogeneity and random changes in the environment. The effects of such fluctuations on cell signaling and gene expression have recently been studied intensively using single-cell experiments. In metabolism heterogeneity may be particularly important because it may affect synchronisation of metabolic oscillations, an important example of cell-cell communication. This synchronisation is notoriously difficult to describe theoretically as the example of glycolytic oscillations shows: neither is the mechanism of glycolytic synchronisation understood nor the role of cell-cell heterogeneity. To pin down the mechanism and to assess its robustness and universality we have experimentally investigated the entrainment of glycolytic oscillations in individual yeast cells by periodic external perturbations. We find that oscillatory cells synchronise through phase shifts and that the mechanism is insensitive to cell heterogeneity (robustness) and similar for different types of external perturbations (universality).
Collapse
Affiliation(s)
| | - Caroline B Adiels
- Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - Bernhard Mehlig
- Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - Mattias Goksör
- Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden
| |
Collapse
|
10
|
Gustavsson AK, van Niekerk DD, Adiels CB, Kooi B, Goksör M, Snoep JL. Allosteric regulation of phosphofructokinase controls the emergence of glycolytic oscillations in isolated yeast cells. FEBS J 2014; 281:2784-93. [PMID: 24751218 DOI: 10.1111/febs.12820] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/25/2014] [Accepted: 04/10/2014] [Indexed: 11/28/2022]
Abstract
UNLABELLED Oscillations are widely distributed in nature and synchronization of oscillators has been described at the cellular level (e.g. heart cells) and at the population level (e.g. fireflies). Yeast glycolysis is the best known oscillatory system, although it has been studied almost exclusively at the population level (i.e. limited to observations of average behaviour in synchronized cultures). We studied individual yeast cells that were positioned with optical tweezers in a microfluidic chamber to determine the precise conditions for autonomous glycolytic oscillations. Hopf bifurcation points were determined experimentally in individual cells as a function of glucose and cyanide concentrations. The experiments were analyzed in a detailed mathematical model and could be interpreted in terms of an oscillatory manifold in a three-dimensional state-space; crossing the boundaries of the manifold coincides with the onset of oscillations and positioning along the longitudinal axis of the volume sets the period. The oscillatory manifold could be approximated by allosteric control values of phosphofructokinase for ATP and AMP. DATABASE The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.mib.ac.uk/webMathematica/UItester.jsp?modelName=gustavsson5. [Database section added 14 May 2014 after original online publication].
Collapse
|
11
|
Heterogeneity of glycolytic oscillatory behaviour in individual yeast cells. FEBS Lett 2013; 588:3-7. [PMID: 24291821 DOI: 10.1016/j.febslet.2013.11.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 11/23/2022]
Abstract
There are many examples of oscillations in biological systems and one of the most investigated is glycolytic oscillations in yeast. These oscillations have been studied since the 1950s in dense, synchronized populations and in cell-free extracts, but it has for long been unknown whether a high cell density is a requirement for oscillations to be induced, or if individual cells can oscillate also in isolation without synchronization. Here we present an experimental method and a detailed kinetic model for studying glycolytic oscillations in individual, isolated yeast cells and compare them to previously reported studies of single-cell oscillations. The importance of single-cell studies of this phenomenon and relevant future research questions are also discussed.
Collapse
|
12
|
Schrøder TD, Özalp VC, Lunding A, Jernshøj KD, Olsen LF. An experimental study of the regulation of glycolytic oscillations in yeast. FEBS J 2013; 280:6033-44. [PMID: 24028352 DOI: 10.1111/febs.12522] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/31/2013] [Accepted: 09/06/2013] [Indexed: 12/20/2022]
Abstract
We have studied oscillating glycolysis in the strain BY4743 and isogenic strains with deletions of genes encoding enzymes in glycolysis, mitochondrial electron transport and ATP synthesis. We found that deletion of the gene encoding the hexokinase 1 isoform does not affect the oscillations while deletion of the gene encoding the hexokinase 2 isoform results in oscillations with smaller amplitude. The latter is associated with an almost 50% decrease in hexokinase activity. Deletions in the genes encoding the α- and β-subunits of phosphofructokinase abolish the oscillations entirely. This loss in oscillatory activity is associated with a fourfold decrease in phosphofructokinase activity. Deletions of genes encoding subunits of the F1F0 ATPase also inhibit the oscillations in accordance with earlier studies using for example inhibitors. Finally, we identified an apparently new control point involving the mitochondrial cytochrome c oxidase. The latter is difficult to explain as oscillatory activity entails 100% inhibition of this enzyme. The mitochondria of this strain seem to have normal F1F0 ATPase activity. Overall these results support earlier experimental and model studies suggesting that in addition to processes within glycolysis also processes outside this pathway contribute to the control of the oscillatory behaviour.
Collapse
Affiliation(s)
- Tine D Schrøder
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | | | | | | |
Collapse
|