1
|
Verma H, Kaur J, Thakur V, Dhingra GG, Lal R. Comprehensive review on Haloalkane dehalogenase (LinB): a β-hexachlorocyclohexane (HCH) degrading enzyme. Arch Microbiol 2024; 206:380. [PMID: 39143366 DOI: 10.1007/s00203-024-04105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Haloalkane dehalogenase, LinB, is a member of the α/β hydrolase family of enzymes. It has a wide range of halogenated substrates, but, has been mostly studied in context of degradation of hexachlorocyclohexane (HCH) isomers, especially β-HCH (5-12% of total HCH isomers), which is the most recalcitrant and persistent among all the HCH isomers. LinB was identified to directly act on β-HCH in a one or two step transformation which decreases its toxicity manifold. Thereafter, many studies focused on LinB including its structure determination using X-ray crystallographic studies, structure comparison with other haloalkane dehalogenases, substrate specificity and kinetic studies, protein engineering and site-directed mutagenesis studies in search of better catalytic activity of the enzyme. LinB was mainly identified and characterized in bacteria belonging to sphingomonads. Detailed sequence comparison of LinB from different sphingomonads further revealed the residues critical for its activity and ability to catalyze either one or two step transformation of β-HCH. Association of LinB with IS6100 elements is also being discussed in detail in sphingomonads. In this review, we summarized vigorous efforts done by different research groups on LinB for developing better bioremediation strategies against HCH contamination. Also, kinetic studies, protein engineering and site directed mutagenesis studies discussed here forms the basis of further exploration of LinB's role as an efficient enzyme in bioremediation projects.
Collapse
Affiliation(s)
| | - Jasvinder Kaur
- Gargi College, University of Delhi, Delhi, 110007, India
| | | | | | - Rup Lal
- INSA, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India.
| |
Collapse
|
2
|
Bzówka M, Mitusińska K, Raczyńska A, Skalski T, Samol A, Bagrowska W, Magdziarz T, Góra A. Evolution of tunnels in α/β-hydrolase fold proteins—What can we learn from studying epoxide hydrolases? PLoS Comput Biol 2022; 18:e1010119. [PMID: 35580137 PMCID: PMC9140254 DOI: 10.1371/journal.pcbi.1010119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 05/27/2022] [Accepted: 04/19/2022] [Indexed: 12/27/2022] Open
Abstract
The evolutionary variability of a protein’s residues is highly dependent on protein region and function. Solvent-exposed residues, excluding those at interaction interfaces, are more variable than buried residues whereas active site residues are considered to be conserved. The abovementioned rules apply also to α/β-hydrolase fold proteins—one of the oldest and the biggest superfamily of enzymes with buried active sites equipped with tunnels linking the reaction site with the exterior. We selected soluble epoxide hydrolases as representative of this family to conduct the first systematic study on the evolution of tunnels. We hypothesised that tunnels are lined by mostly conserved residues, and are equipped with a number of specific variable residues that are able to respond to evolutionary pressure. The hypothesis was confirmed, and we suggested a general and detailed way of the tunnels’ evolution analysis based on entropy values calculated for tunnels’ residues. We also found three different cases of entropy distribution among tunnel-lining residues. These observations can be applied for protein reengineering mimicking the natural evolution process. We propose a ‘perforation’ mechanism for new tunnels design via the merging of internal cavities or protein surface perforation. Based on the literature data, such a strategy of new tunnel design could significantly improve the enzyme’s performance and can be applied widely for enzymes with buried active sites. So far very little is known about proteins tunnels evolution. The goal of this study is to evaluate the evolution of tunnels in the family of soluble epoxide hydrolases—representatives of numerous α/β-hydrolase fold enzymes. As a result two types of tunnels evolution analysis were proposed (a general and a detailed approach), as well as a ‘perforation’ mechanism which can mimic native evolution in proteins and can be used as an additional strategy for enzymes redesign.
Collapse
Affiliation(s)
- Maria Bzówka
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Karolina Mitusińska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Agata Raczyńska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Tomasz Skalski
- Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Aleksandra Samol
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Weronika Bagrowska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Tomasz Magdziarz
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Artur Góra
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
- * E-mail:
| |
Collapse
|
3
|
Deetz A, Meyer GJ. Resolving Halide Ion Stabilization through Kinetically Competitive Electron Transfers. JACS AU 2022; 2:985-995. [PMID: 35557754 PMCID: PMC9088780 DOI: 10.1021/jacsau.2c00088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Stabilization of ions and radicals often determines reaction kinetics and thermodynamics, but experimental determination of the stabilization magnitude remains difficult, especially when the species is short-lived. Herein, a competitive kinetic approach to quantify the stabilization of a halide ion toward oxidation imparted by specific stabilizing groups relative to a solvated halide ion is reported. This approach provides the increase in the formal reduction potential, ΔE°'(Χ•/-), where X = Br and I, that results from the noncovalent interaction with stabilizing groups. The [Ir(dF-(CF3)-ppy)2(tmam)]3+ photocatalyst features a dicationic ligand tmam [4,4'-bis[(trimethylamino)methyl]-2,2'-bipyridine]2+ that is shown by 1H NMR spectroscopy to associate a single halide ion, K eq = 7 × 104 M-1 (Br-) and K eq = 1 × 104 M-1 (I-). Light excitation of the photocatalyst in halide-containing acetonitrile solutions results in competitive quenching by the stabilized halide and the more easily oxidized diffusing halide ion. Marcus theory is used to relate the rate constants to the electron-transfer driving forces for oxidation of the stabilized and unstabilized halide, the difference of which provides the increase in reduction potentials of ΔE°'(Br•/-) = 150 ± 24 meV and ΔE°'(I•/-) = 67 ± 13 meV. The data reveal that K eq is a poor indicator of these reduction potential shifts. Furthermore, the historic and widely used assumption that Coulombic interactions alone are responsible for stabilization must be reconsidered, at least for polarizable halogens.
Collapse
|
4
|
Schuiten ED, Badenhorst CPS, Palm GJ, Berndt L, Lammers M, Mican J, Bednar D, Damborsky J, Bornscheuer UT. Promiscuous Dehalogenase Activity of the Epoxide Hydrolase CorEH from Corynebacterium sp. C12. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Eva D. Schuiten
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Gottfried J. Palm
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Leona Berndt
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Michael Lammers
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Jan Mican
- Loschmidt Laboratories, Department of Experimental Biology RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Clinical Research Centre, St. Anne’s Hospital, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Clinical Research Centre, St. Anne’s Hospital, 656 91 Brno, Czech Republic
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| |
Collapse
|
5
|
Banach M, Piotr F, Katarzyna S, Leszek K, Roterman I. Identification of tunnels as in potato hydrolases. Bioinformation 2020; 16:21-25. [PMID: 32025157 PMCID: PMC6986939 DOI: 10.6026/97320630016021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 11/29/2022] Open
Abstract
Enzymes with an active center hidden in the middle of the molecule in a tunnel-like cavity constitute an interesting object of analysis due to the highly specialized environment for the course of the catalytic reaction. Identifying the tunnel is a challenge in itself. Moreover, the structural conditioning for the course of the reaction provides information on the diversity of the environment, which must necessarily meet the conditions of high specificity. The use of a fuzzy oil drop model to identify residues constituting the walls of the tunnel located in the center of the protein seems highly justified. The fuzzy oil drop model, which assumes the highest concentration of hydrophobicity in the center of the molecule, in these enzymes shows a significant hydrophobicity deficit resulting from the absence of any residues in the central part of the molecule. Comparison of the expected distribution in consistent with the 3D Gaussian distribution where the observed distribution resulting from the interaction of residues in the protein shows significant differences precisely in the positions of residues located near the center of the molecule. The inside characteristics of the tunnel are the background for the enzymatic reaction. This environment additionally constitutes an external force field, which creates favorable conditions for carrying out the catalytic process. The use of fuzzy oil drop model has been verified using the potato (solanum tuberosum) epoxide hydrolase I. This forms the preliminary basis for testing the fuzzy oil drop model. The data presented here provides an impetus for a large scale analysis of all proteins containing tunnels in enzyme structures available in the Protein Data Bank (PDB).
Collapse
Affiliation(s)
- Mateusz Banach
- Department of bioinformatics and Telemedicine, Jagiellonian University - Medical College, Lazarza 16, 31-530 Krakow, Poland
| | - Fabian Piotr
- Silesian Technical University, Institute of Computer Science, 44-100 Gliwice, Akademicka 16 Poland
| | - Stapor Katarzyna
- Silesian Technical University, Institute of Computer Science, 44-100 Gliwice, Akademicka 16 Poland
| | - Konieczny Leszek
- Chair of Medical Biochemistry, Jagiellonian University - Medical College 31-034 Kraków Kopernika 7, Poland
| | - Irena Roterman
- Department of bioinformatics and Telemedicine, Jagiellonian University - Medical College, Lazarza 16, 31-530 Krakow, Poland
| |
Collapse
|
6
|
Chrast L, Tratsiak K, Planas-Iglesias J, Daniel L, Prudnikova T, Brezovsky J, Bednar D, Kuta Smatanova I, Chaloupkova R, Damborsky J. Deciphering the Structural Basis of High Thermostability of Dehalogenase from Psychrophilic Bacterium Marinobacter sp. ELB17. Microorganisms 2019; 7:E498. [PMID: 31661858 PMCID: PMC6920932 DOI: 10.3390/microorganisms7110498] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022] Open
Abstract
Haloalkane dehalogenases are enzymes with a broad application potential in biocatalysis, bioremediation, biosensing and cell imaging. The new haloalkane dehalogenase DmxA originating from the psychrophilic bacterium Marinobacter sp. ELB17 surprisingly possesses the highest thermal stability (apparent melting temperature Tm,app = 65.9 °C) of all biochemically characterized wild type haloalkane dehalogenases belonging to subfamily II. The enzyme was successfully expressed and its crystal structure was solved at 1.45 Å resolution. DmxA structure contains several features distinct from known members of haloalkane dehalogenase family: (i) a unique composition of catalytic residues; (ii) a dimeric state mediated by a disulfide bridge; and (iii) narrow tunnels connecting the enzyme active site with the surrounding solvent. The importance of narrow tunnels in such paradoxically high stability of DmxA enzyme was confirmed by computational protein design and mutagenesis experiments.
Collapse
Affiliation(s)
- Lukas Chrast
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
| | - Katsiaryna Tratsiak
- Institute of Chemistry and Biochemistry, Faculty of Science, University of South Bohemia Ceske Budejovice and Institute of Microbiology Academy of Sciences of the Czech Republic, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic.
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic.
| | - Joan Planas-Iglesias
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
| | - Lukas Daniel
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
| | - Tatyana Prudnikova
- Institute of Chemistry and Biochemistry, Faculty of Science, University of South Bohemia Ceske Budejovice and Institute of Microbiology Academy of Sciences of the Czech Republic, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic.
| | - Jan Brezovsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic.
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic.
| | - Ivana Kuta Smatanova
- Institute of Chemistry and Biochemistry, Faculty of Science, University of South Bohemia Ceske Budejovice and Institute of Microbiology Academy of Sciences of the Czech Republic, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic.
| | - Radka Chaloupkova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
- Enantis Ltd., Biotechnology Incubator INBIT, Kamenice 771/34, 625 00 Brno, Czech Republic.
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic.
| |
Collapse
|
7
|
Płuciennik A, Stolarczyk M, Bzówka M, Raczyńska A, Magdziarz T, Góra A. BALCONY: an R package for MSA and functional compartments of protein variability analysis. BMC Bioinformatics 2018; 19:300. [PMID: 30107777 PMCID: PMC6092823 DOI: 10.1186/s12859-018-2294-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Here, we present an R package for entropy/variability analysis that facilitates prompt and convenient data extraction, manipulation and visualization of protein features from multiple sequence alignments. BALCONY can work with residues dispersed across a protein sequence and map them on the corresponding alignment of homologous protein sequences. Additionally, it provides several entropy and variability scores that indicate the conservation of each residue. RESULTS Our package allows the user to visualize evolutionary variability by locating the positions most likely to vary and to assess mutation candidates in protein engineering. CONCLUSION In comparison to other R packages BALCONY allows conservation/variability analysis in context of protein structure with linkage of the appropriate metrics with physicochemical features of user choice. AVAILABILITY CRAN project page: https://cran.r-project.org/package=BALCONY and our website: http://www.tunnelinggroup.pl/software/ for major platforms: Linux/Unix, Windows and Mac OS X.
Collapse
Affiliation(s)
- Alicja Płuciennik
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100, Gliwice, Poland.,Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Michał Stolarczyk
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100, Gliwice, Poland.,Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Maria Bzówka
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100, Gliwice, Poland.,Faculty of Chemistry, Silesian University of Technology, ks. Marcina Strzody 9, 44-100, Gliwice, Poland
| | - Agata Raczyńska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100, Gliwice, Poland.,Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Tomasz Magdziarz
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100, Gliwice, Poland
| | - Artur Góra
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100, Gliwice, Poland.
| |
Collapse
|
8
|
|
9
|
Brezovsky J, Babkova P, Degtjarik O, Fortova A, Gora A, Iermak I, Rezacova P, Dvorak P, Smatanova IK, Prokop Z, Chaloupkova R, Damborsky J. Engineering a de Novo Transport Tunnel. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02081] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jan Brezovsky
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Petra Babkova
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Oksana Degtjarik
- Faculty
of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic
- Center for Nanobiology and Structural Biology ASCR, Zamek 136, 37333 Nove Hrady, Czech Republic
| | - Andrea Fortova
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Artur Gora
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Iuliia Iermak
- Faculty
of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic
- Center for Nanobiology and Structural Biology ASCR, Zamek 136, 37333 Nove Hrady, Czech Republic
| | - Pavlina Rezacova
- Institute of Organic Chemistry and Biochemistry ASCR, v.v.i. Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
- Institute of Molecular Genetics of the ASCR, v.v.i. Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Pavel Dvorak
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Ivana Kuta Smatanova
- Faculty
of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic
- Center for Nanobiology and Structural Biology ASCR, Zamek 136, 37333 Nove Hrady, Czech Republic
| | - Zbynek Prokop
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Radka Chaloupkova
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| |
Collapse
|
10
|
Discovery of Novel Haloalkane Dehalogenase Inhibitors. Appl Environ Microbiol 2016; 82:1958-1965. [PMID: 26773086 DOI: 10.1128/aem.03916-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/12/2016] [Indexed: 12/27/2022] Open
Abstract
Haloalkane dehalogenases (HLDs) have recently been discovered in a number of bacteria, including symbionts and pathogens of both plants and humans. However, the biological roles of HLDs in these organisms are unclear. The development of efficient HLD inhibitors serving as molecular probes to explore their function would represent an important step toward a better understanding of these interesting enzymes. Here we report the identification of inhibitors for this enzyme family using two different approaches. The first builds on the structures of the enzymes' known substrates and led to the discovery of less potent nonspecific HLD inhibitors. The second approach involved the virtual screening of 150,000 potential inhibitors against the crystal structure of an HLD from the human pathogen Mycobacterium tuberculosis H37Rv. The best inhibitor exhibited high specificity for the target structure, with an inhibition constant of 3 μM and a molecular architecture that clearly differs from those of all known HLD substrates. The new inhibitors will be used to study the natural functions of HLDs in bacteria, to probe their mechanisms, and to achieve their stabilization.
Collapse
|
11
|
Properties and biotechnological applications of natural and engineered haloalkane dehalogenases. Appl Microbiol Biotechnol 2015; 99:9865-81. [DOI: 10.1007/s00253-015-6954-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/19/2015] [Accepted: 08/22/2015] [Indexed: 01/01/2023]
|
12
|
Tanokura M, Miyakawa T, Guan L, Hou F. Structural analysis of enzymes used for bioindustry and bioremediation. Biosci Biotechnol Biochem 2015; 79:1391-401. [DOI: 10.1080/09168451.2015.1052770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
Microbial enzymes have been widely applied in the large-scale, bioindustrial manufacture of food products and pharmaceuticals due to their high substrate specificity and stereoselectivity, and their effectiveness under mild conditions with low environmental burden. At the same time, bioremedial techniques using microbial enzymes have been developed to solve the problem of industrial waste, particularly with respect to persistent chemicals and toxic substances. And finally, structural studies of these enzymes have revealed the mechanistic basis of enzymatic reactions, including the stereoselectivity and binding specificity of substrates and cofactors. The obtained structural insights are useful not only to deepen our understanding of enzymes with potential bioindustrial and/or bioremedial application, but also for the functional improvement of enzymes through rational protein engineering. This review shows the structural bases for various types of enzymatic reactions, including the substrate specificity accompanying cofactor-controlled and kinetic mechanisms.
Collapse
Affiliation(s)
- Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Lijun Guan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Feng Hou
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Satpathy R, Konkimalla VB, Ratha J. Application of bioinformatics tools and databases in microbial dehalogenation research: A review. APPL BIOCHEM MICRO+ 2014. [DOI: 10.1134/s0003683815010147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Chaloupkova R, Prudnikova T, Rezacova P, Prokop Z, Koudelakova T, Daniel L, Brezovsky J, Ikeda-Ohtsubo W, Sato Y, Kuty M, Nagata Y, Kuta Smatanova I, Damborsky J. Structural and functional analysis of a novel haloalkane dehalogenase with two halide-binding sites. ACTA ACUST UNITED AC 2014; 70:1884-97. [DOI: 10.1107/s1399004714009018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/21/2014] [Indexed: 11/10/2022]
Abstract
The crystal structure of the novel haloalkane dehalogenase DbeA fromBradyrhizobium elkaniiUSDA94 revealed the presence of two chloride ions buried in the protein interior. The first halide-binding site is involved in substrate binding and is present in all structurally characterized haloalkane dehalogenases. The second halide-binding site is unique to DbeA. To elucidate the role of the second halide-binding site in enzyme functionality, a two-point mutant lacking this site was constructed and characterized. These substitutions resulted in a shift in the substrate-specificity class and were accompanied by a decrease in enzyme activity, stability and the elimination of substrate inhibition. The changes in enzyme catalytic activity were attributed to deceleration of the rate-limiting hydrolytic step mediated by the lower basicity of the catalytic histidine.
Collapse
|
15
|
Guan L, Yabuki H, Okai M, Ohtsuka J, Tanokura M. Crystal structure of the novel haloalkane dehalogenase DatA from Agrobacterium tumefaciens C58 reveals a special halide-stabilizing pair and enantioselectivity mechanism. Appl Microbiol Biotechnol 2014; 98:8573-82. [DOI: 10.1007/s00253-014-5751-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 11/24/2022]
|
16
|
Novak HR, Sayer C, Isupov MN, Gotz D, Spragg AM, Littlechild JA. Biochemical and structural characterisation of a haloalkane dehalogenase from a marineRhodobacteraceae. FEBS Lett 2014; 588:1616-22. [DOI: 10.1016/j.febslet.2014.02.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 10/25/2022]
|