1
|
Lelas L, Rouffet J, Filachet A, Sechet J, Davière A, Desprez T, Vernhettes S, Voxeur A. A fungal phospholipase C involved in the degradation of plant glycosylinositol phosphorylceramides during Arabidopsis/Botrytis interaction. Commun Biol 2024; 7:1372. [PMID: 39438581 PMCID: PMC11496612 DOI: 10.1038/s42003-024-07064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
This study investigates the presence and significance of phosphorylated oligosaccharides that accumulate during the interaction between Arabidopsis thaliana and Botrytis cinerea, a necrotrophic fungus that poses a major threat to crops worldwide. While previous research has extensively characterized cell wall-derived molecules during fungal infection, the role of plasma membrane-derived ones remains unclear. Here, we reveal the discovery of inositol phosphate glycans (IPGs) released during infection, originating from plant sphingolipids, specifically glycosylinositol phosphorylceramides (GIPC). Advanced chromatography, mass spectrometry techniques and molecular biology were employed to identify these IPGs, and determine their origins. In addition to the well-characterized role of B. cinerea in releasing cell wall-degrading enzymes, this research suggests that B. cinerea's enzymatic machinery may also target the degradation of the plant plasma membrane. As a consequence of this, IPGs identical to those generated by the host plant are released, most likely due to activity of a putative phospholipase C that acts on GIPC plasma membrane lipids. These insights could pave the way for developing new strategies to enhance crop resistance by focusing on membrane integrity in addition to cell wall fortification.
Collapse
Affiliation(s)
- Luka Lelas
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Justine Rouffet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000, Angers, France
| | - Alexis Filachet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Julien Sechet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
- AlkInnov, Innovation for Life, 92100, Boulogne-Billancourt, France
| | - Antoine Davière
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Thierry Desprez
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Samantha Vernhettes
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France.
| | - Aline Voxeur
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France.
| |
Collapse
|
2
|
Takai Y, Hasi RY, Matsumoto N, Fujita C, Ali H, Hayashi J, Kawakami R, Aihara M, Ishikawa T, Imai H, Wakida M, Ando K, Tanaka T. Degradation of glycosylinositol phosphoceramide during plant tissue homogenization. J Biochem 2023; 175:115-124. [PMID: 37827526 DOI: 10.1093/jb/mvad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
A convenient method for the determination of plant sphingolipids (glycosylinositol phosphoceramide, GIPC; glucosylceramide, GluCer; phytoceramide 1-phosphate, PC1P and phytoceramide, PCer) was developed. This method includes the extraction of lipids using 1-butanol, alkali hydrolysis with methylamine and separation by TLC. The amounts of sphingolipids in the sample were determined based on the relative intensities of standard sphingolipids visualized by primulin/UV on TLC. Using this method, we found that almost all GIPCs were degraded in response to tissue homogenization in cruciferous plants (cabbage, broccoli and Arabidopsis thaliana). The decrease in GIPCs was compensated for by increases in PC1P and PCer, indicating that GIPC was degraded by hydrolysis at the D and C positions of GIPC, respectively. In carrot roots and leaves, most of GIPC degradation was compensated for by an increase in PCer. In rice roots, the decrease in GIPCs was not fully explained by the increases in PC1P and PCer, indicating that enzymes other than phospholipase C and D activities operated. As the visualization of lipids on TLC is useful for detecting the appearance or disappearance of lipids, this method will be available for the characterization of metabolism of sphingolipids in plants.
Collapse
Affiliation(s)
- Yoshimichi Takai
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Rumana Yesmin Hasi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Naoko Matsumoto
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Chiho Fujita
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Hanif Ali
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Junji Hayashi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Ryushi Kawakami
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Mutsumi Aihara
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Hiroyuki Imai
- Department of Biology, Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
| | - Mayuko Wakida
- Department of Sustainable System R&D JTEKT Corporation, Kariya 448-8652, Japan
| | - Kazuya Ando
- Department of Sustainable System R&D JTEKT Corporation, Kariya 448-8652, Japan
| | - Tamotsu Tanaka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| |
Collapse
|
3
|
Hasi RY, Ishikawa T, Sunagawa K, Takai Y, Ali H, Hayashi J, Kawakami R, Yuasa K, Aihara M, Kanemaru K, Imai H, Tanaka T. Nonspecific phospholipase C3 of radish has phospholipase D activity towards glycosylinositol phosphoceramide. FEBS Lett 2022; 596:3024-3036. [PMID: 36266963 DOI: 10.1002/1873-3468.14520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022]
Abstract
Glycosylinositol phosphoceramide (GIPC) is a major sphingolipid in the plasma membranes of plants. Previously, we found an enzyme activity that produces phytoceramide 1-phosphate (PC1P) by hydrolysis of the D position of GIPC in cabbage and named this activity as GIPC-phospholipase D (PLD). Here, we purified GIPC-PLD by sequential chromatography from radish roots. Peptide mass fingerprinting analysis revealed that the potential candidate for GIPC-PLD protein was nonspecific phospholipase C3 (NPC3), which has not been characterized as a PLD. The recombinant NPC3 protein obtained by heterologous expression system in Escherichia coli produced PC1P from GIPC and showed essentially the same enzymatic properties as those we characterized as GIPC-PLD in cabbage, radish and Arabidopsis thaliana. From these results, we conclude that NPC3 is one of the enzymes that degrade GIPC.
Collapse
Affiliation(s)
- Rumana Yesmin Hasi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, Japan
| | - Keigo Sunagawa
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Japan
| | - Yoshimichi Takai
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Japan
| | - Hanif Ali
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Japan
| | - Junji Hayashi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Japan
| | - Ryushi Kawakami
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Japan
| | - Keizo Yuasa
- Graduate School of Science and Engineering, Setsunan University, Neyagawa, Japan
| | - Mutsumi Aihara
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Japan
| | - Kaori Kanemaru
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Japan
| | - Hiroyuki Imai
- Graduate School of Natural Science, Konan University, Kobe, Japan
| | - Tamotsu Tanaka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Japan
| |
Collapse
|
4
|
Yang B, Li M, Phillips A, Li L, Ali U, Li Q, Lu S, Hong Y, Wang X, Guo L. Nonspecific phospholipase C4 hydrolyzes phosphosphingolipids and sustains plant root growth during phosphate deficiency. THE PLANT CELL 2021; 33:766-780. [PMID: 33955494 PMCID: PMC8136900 DOI: 10.1093/plcell/koaa054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/23/2020] [Indexed: 05/07/2023]
Abstract
Phosphate is a vital macronutrient for plant growth, and its availability in soil is critical for agricultural sustainability and productivity. A substantial amount of cellular phosphate is used to synthesize phospholipids for cell membranes. Here, we identify a key enzyme, nonspecific phospholipase C4 (NPC4) that is involved in phosphosphingolipid hydrolysis and remodeling in Arabidopsis during phosphate starvation. The level of glycosylinositolphosphorylceramide (GIPC), the most abundant sphingolipid in Arabidopsis thaliana, decreased upon phosphate starvation. NPC4 was highly induced by phosphate deficiency, and NPC4 knockouts in Arabidopsis decreased the loss of GIPC and impeded root growth during phosphate starvation. Enzymatic analysis showed that NPC4 hydrolyzed GIPC and displayed a higher activity toward GIPC as a substrate than toward the common glycerophospholipid phosphatidylcholine. NPC4 was associated with the plasma membrane lipid rafts in which GIPC is highly enriched. These results indicate that NPC4 uses GIPC as a substrate in planta and the NPC4-mediated sphingolipid remodeling plays a positive role in root growth in Arabidopsis response to phosphate deficiency.
Collapse
Affiliation(s)
- Bao Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Maoyin Li
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Anne Phillips
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Long Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
- Author for correspondence: (L.G) and (X.W.)
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- Author for correspondence: (L.G) and (X.W.)
| |
Collapse
|
5
|
Wang L, Sadeghnezhad E, Guan P, Gong P. Review: Microtubules monitor calcium and reactive oxygen species signatures in signal transduction. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110589. [PMID: 33568282 DOI: 10.1016/j.plantsci.2020.110589] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/18/2020] [Accepted: 06/22/2020] [Indexed: 06/12/2023]
Abstract
Signal transductions require calcium (Ca2+) or reactive oxygen species (ROS) signatures, which act as chemical and electrical signals in response to various biotic and abiotic stresses. Calcium as an ion or second messenger affects the membrane potential and microtubules (MTs) dynamicity, while MTs can modulate auto-propagating waves of calcium and ROS signatures in collaboration with ion channels depending on the stimulus type. Thus, in the current review, we highlight advances in research focused on the relationship between dynamic MTs and calcium and ROS signatures in short-distance transmission. The challenges of Ca2+-MTs-ROS crosstalk in cold sensing are addressed, which could suggest the prioritization of ROS or Ca2+ in signalling.
Collapse
Affiliation(s)
- Lixin Wang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Ehsan Sadeghnezhad
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Teheran, Iran.
| | - Pingyin Guan
- Laboratory of Fruit Physiology and Molecular Biology, China Agricultural University, Beijing, China
| | - Peijie Gong
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Ali H, Yamashita R, Morishige JI, Morito K, Kakiuchi N, Hayashi J, Aihara M, Kawakami R, Tsuchiya K, Tanaka T. Mass Spectrometric Analysis of Sphingomyelin with N-α-Hydroxy Fatty Acyl Residue in Mouse Tissues. Lipids 2020; 56:181-188. [PMID: 32996178 DOI: 10.1002/lipd.12285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 11/09/2022]
Abstract
Sphingomyelin (SM) with N-α-hydroxy fatty acyl residues (hSM) has been shown to occur in mammalian skin and digestive epithelia. However, the metabolism and physiological relevance of this characteristic SM species have not been fully elucidated yet. Here, we show methods for mass spectrometric characterization and quantification of hSM. The hSM in mouse skin was isolated by TLC. The hydroxy hexadecanoyl residue was confirmed by electron impact ionization-induced fragmentation in gas chromatography-mass spectrometry. Mass shift analysis of acetylated hSM by time of flight mass spectrometry revealed the number of hydroxyl groups in the molecule. After correcting the difference in detection efficacy, hSM in mouse skin and intestinal mucosa were quantified by liquid chromatography-tandem mass spectrometry, and found to be 16.5 ± 2.0 and 0.8 ± 0.4 nmol/μmol phospholipid, respectively. The methods described here are applicable to biological experiments on hSM in epithelia of the body surface and digestive tract.
Collapse
Affiliation(s)
- Hanif Ali
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Ryouhei Yamashita
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Jun-Ichi Morishige
- Department of Cellular and Molecular Function Analysis, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Katsuya Morito
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Naoya Kakiuchi
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Junji Hayashi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, 770-8513, Japan
| | - Mutsumi Aihara
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, 770-8513, Japan
| | - Ryushi Kawakami
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, 770-8513, Japan
| | - Koichiro Tsuchiya
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Tamotsu Tanaka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, 770-8513, Japan
| |
Collapse
|
7
|
Hasi RY, Majima D, Morito K, Ali H, Kogure K, Nanjundan M, Hayashi J, Kawakami R, Kanemaru K, Tanaka T. Isolation of glycosylinositol phosphoceramide and phytoceramide 1-phosphate in plants and their chemical stabilities. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1152:122213. [PMID: 32615533 DOI: 10.1016/j.jchromb.2020.122213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/13/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022]
Abstract
Glycosylinositol phosphoceramide (GIPC) is a sphingophospholipid in plants. Recently, we identified that GIPC is hydrolyzed to phytoceramide 1-phosphate (PC1P) by an uncharacterized phospholipase D activity following homogenization of certain plant tissues. We now developed methods for isolation of GIPC and PC1P from plant tissues and characterized their chemical stabilities. Hydrophilic solvents, namely a lower layer of a mixed solvent system consisting of isopropanol/hexane/water (55:20:25, v/v/v) was efficient solvent for extraction and eluent in column chromatography. GIPC was isolated by Sephadex column chromatography followed by TLC. A conventional method, such as the Bligh and Dyer method, was applicable for PC1P extraction. Specifically, PC1P was isolated by TLC following mild alkali treatment of lipid extracts of plants. The yields of GIPC and PC1P in our methods were both around 50-70%. We found that PC1P is tolerant against heat (up to 125 °C), strong acid (up to 10 M HCl), and mild alkali (0.1 M KOH). In contrast, significant degradation of GIPC occurred at 100 °C and 1.0 M HCl treatment, suggesting the instability of the inositol glycan moiety in these conditions. These data will be useful for further biochemical and nutritional studies on these sphingolipids.
Collapse
Affiliation(s)
- Rumana Yesmin Hasi
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Dai Majima
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Katsuya Morito
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Hanif Ali
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Kentaro Kogure
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Meera Nanjundan
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Junji Hayashi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Ryushi Kawakami
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Kaori Kanemaru
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Tamotsu Tanaka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan.
| |
Collapse
|
8
|
Mortimer JC, Scheller HV. Synthesis and Function of Complex Sphingolipid Glycosylation. TRENDS IN PLANT SCIENCE 2020; 25:522-524. [PMID: 32407692 DOI: 10.1016/j.tplants.2020.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Glycosylinositol phosphorylceramides (GIPCs) constitute an important class of plasma-membrane lipids in plants. The complex glycan headgroups of GIPCs vary between plant species and tissues. Recent studies have shown that the structure of the glycan headgroup is important for plant development, abiotic stress tolerance, and interactions with pathogenic and symbiotic microorganisms.
Collapse
Affiliation(s)
- Jenny C Mortimer
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Henrik Vibe Scheller
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
9
|
Hasi RY, Miyagi M, Kida T, Fukuta T, Kogure K, Hayashi J, Kawakami R, Kanemaru K, Tanaka T. Quantitative Analysis of Glycosylinositol Phosphoceramide and Phytoceramide 1-Phosphate in Vegetables. J Nutr Sci Vitaminol (Tokyo) 2020; 65:S175-S179. [PMID: 31619623 DOI: 10.3177/jnsv.65.s175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previously, we found an unidentified sphingolipid in cabbage, and determined it as phytoceramide 1-phosphate (PC1P). PC1P is found to be produced from glycosylinositol phosphoceramide (GIPC) by the action of phospholipase D (PLD) activity. Although GIPC is abundant sphingolipid, especially in cruciferous vegetables, amount of daily intake, digestibility and nutritional activity of GIPC are not well understood. Here, we investigated amounts of GIPC and PC1P in vegetables. GIPC was found in all vegetables examined (13 kinds) at levels 3-20 mg/100 g (wet weight). On the other hand, PC1P was present in limited vegetables which show higher GIPC-PLD activity, such as inner cabbage leaves (5.2 mg/100 g). Because PC1P is formed during homogenization by activated GIPC-PLD, level of PC1P in boiled cabbage leaves was very low. Although digestibility of GIPC is unknown at present, a portion of dietary GIPC is considered to be converted to PC1P during mastication by plant-derived GIPC-PLD activity in some vegetables.
Collapse
Affiliation(s)
| | - Makoto Miyagi
- Graduate School of Biomedical Sciences, Tokushima University
| | - Takashi Kida
- Graduate School of Biomedical Sciences, Tokushima University
| | - Tatsuya Fukuta
- Graduate School of Biomedical Sciences, Tokushima University
| | - Kentaro Kogure
- Graduate School of Biomedical Sciences, Tokushima University
| | - Junji Hayashi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University
| | - Ryushi Kawakami
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University
| | - Kaori Kanemaru
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University
| | - Tamotsu Tanaka
- Graduate School of Biomedical Sciences, Tokushima University.,Graduate School of Technology, Industrial and Social Sciences, Tokushima University
| |
Collapse
|
10
|
Huby E, Napier JA, Baillieul F, Michaelson LV, Dhondt‐Cordelier S. Sphingolipids: towards an integrated view of metabolism during the plant stress response. THE NEW PHYTOLOGIST 2020; 225:659-670. [PMID: 31211869 PMCID: PMC6973233 DOI: 10.1111/nph.15997] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/07/2019] [Indexed: 05/18/2023]
Abstract
Plants exist in an environment of changing abiotic and biotic stresses. They have developed a complex set of strategies to respond to these stresses and over recent years it has become clear that sphingolipids are a key player in these responses. Sphingolipids are not universally present in all three domains of life. Many bacteria and archaea do not produce sphingolipids but they are ubiquitous in eukaryotes and have been intensively studied in yeast and mammals. During the last decade there has been a steadily increasing interest in plant sphingolipids. Plant sphingolipids exhibit structural differences when compared with their mammalian counterparts and it is now clear that they perform some unique functions. Sphingolipids are recognised as critical components of the plant plasma membrane and endomembrane system. Besides being important structural elements of plant membranes, their particular structure contributes to the fluidity and biophysical order. Sphingolipids are also involved in multiple cellular and regulatory processes including vesicle trafficking, plant development and defence. This review will focus on our current knowledge as to the function of sphingolipids during plant stress responses, not only as structural components of biological membranes, but also as signalling mediators.
Collapse
Affiliation(s)
- Eloïse Huby
- Résistance Induite et Bioprotection des Plantes EA 4707SFR Condorcet FR CNRS 3417University of Reims Champagne‐ArdenneBP 1039F‐51687Reims Cedex 2France
- Laboratoire de Biophysique Moléculaire aux InterfacesGembloux Agro‐Bio TechUniversité de Liège2 Passage des DéportésB‐5030GemblouxBelgique
| | | | - Fabienne Baillieul
- Résistance Induite et Bioprotection des Plantes EA 4707SFR Condorcet FR CNRS 3417University of Reims Champagne‐ArdenneBP 1039F‐51687Reims Cedex 2France
| | | | - Sandrine Dhondt‐Cordelier
- Résistance Induite et Bioprotection des Plantes EA 4707SFR Condorcet FR CNRS 3417University of Reims Champagne‐ArdenneBP 1039F‐51687Reims Cedex 2France
| |
Collapse
|
11
|
Hasi RY, Miyagi M, Morito K, Ishikawa T, Kawai-Yamada M, Imai H, Fukuta T, Kogure K, Kanemaru K, Hayashi J, Kawakami R, Tanaka T. Glycosylinositol phosphoceramide-specific phospholipase D activity catalyzes transphosphatidylation. J Biochem 2019; 166:441-448. [DOI: 10.1093/jb/mvz056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/12/2019] [Indexed: 12/31/2022] Open
Abstract
AbstractGlycosylinositol phosphoceramide (GIPC) is the most abundant sphingolipid in plants and fungi. Recently, we detected GIPC-specific phospholipase D (GIPC-PLD) activity in plants. Here, we found that GIPC-PLD activity in young cabbage leaves catalyzes transphosphatidylation. The available alcohol for this reaction is a primary alcohol with a chain length below C4. Neither secondary alcohol, tertiary alcohol, choline, serine nor glycerol serves as an acceptor for transphosphatidylation of GIPC-PLD. We also found that cabbage GIPC-PLD prefers GIPC containing two sugars. Neither inositol phosphoceramide, mannosylinositol phosphoceramide nor GIPC with three sugar chains served as substrate. GIPC-PLD will become a useful catalyst for modification of polar head group of sphingophospholipid.
Collapse
Affiliation(s)
- Rumana Yesmin Hasi
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, Japan
| | - Makoto Miyagi
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, Japan
| | - Katsuya Morito
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, Japan
| | - Toshiki Ishikawa
- Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, Japan
| | - Maki Kawai-Yamada
- Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, Japan
| | - Hiroyuki Imai
- Department of Biology, Graduate School of Natural Science, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Japan
| | - Tatsuya Fukuta
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, Japan
| | - Kentaro Kogure
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, Japan
| | - Kaori Kanemaru
- Department of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, Japan
| | - Junji Hayashi
- Department of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, Japan
| | - Ryushi Kawakami
- Department of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, Japan
| | - Tamotsu Tanaka
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, Japan
- Department of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, Japan
| |
Collapse
|
12
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
13
|
Kida T, Itoh A, Kimura A, Matsuoka H, Imai H, Kogure K, Tokumura A, Tanaka T. Distribution of glycosylinositol phosphoceramide-specific phospholipase D activity in plants. J Biochem 2017; 161:187-195. [PMID: 28175321 DOI: 10.1093/jb/mvw060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 08/27/2016] [Indexed: 12/22/2022] Open
Abstract
Previously, we detected an unknown sphingophospholipid in cabbage leaves and identified it as phytoceramide-1-phosphate (PC1P). We also found an enzyme activity that produces PC1P by glycosylinositol phosphoceramide (GIPC)-specific hydrolysis in cabbage leaves. To characterize the GIPC-specific phospholipase D (GIPC-PLD) activity, we investigated distributions of GIPC-PLD activity in 25 tissues of 10 plants. In most plants, the GIPC-PLD activity was the highest in roots. Young leaves of cabbage and Welsh onion had higher activities than corresponding aged outer leaves. The GIPC-PLD activities in leaves, stems and roots of mung bean were higher in the sprouting stage than in more mature stages. We also examined the distribution of substrate GIPC and product PC1P and found that GIPC was ubiquitously distributed at 50–280 nmol/g (wet wt) in tissues of plants, whereas PC1P was detectable (3–60 nmol/g wet wt.) only in tissues showing considerable GIPC-PLD activity. These results suggest a possibility that GIPC-PLD activity is involved in plant growth.
Collapse
Affiliation(s)
- Takashi Kida
- Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8505, Japan
| | - Aoi Itoh
- Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8505, Japan
| | - Akari Kimura
- Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8505, Japan
| | - Hisatsugu Matsuoka
- Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8505, Japan
| | - Hiroyuki Imai
- Department of Biology, Graduate School of Natural Science, Konan University, Kobe, 658-8501, Japan
| | - Kentaro Kogure
- Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8505, Japan
| | - Akira Tokumura
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, 731-0351, Japan
| | - Tamotsu Tanaka
- Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8505, Japan
| |
Collapse
|
14
|
Ishikawa T, Ito Y, Kawai-Yamada M. Molecular characterization and targeted quantitative profiling of the sphingolipidome in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:681-693. [PMID: 27454201 DOI: 10.1111/tpj.13281] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/10/2016] [Accepted: 07/21/2016] [Indexed: 05/05/2023]
Abstract
Recent advances in comprehensive metabolite profiling techniques, the foundation of metabolomics, is facilitating our understanding of the functions, regulation and complex networks of various metabolites in organisms. Here, we report a quantitative metabolomics technique for complex plant sphingolipids, composed of various polar head groups as well as structural isomers of hydrophobic ceramide moieties. Rice (Oryza sativa L.) was used as an experimental model of monocotyledonous plants and has been demonstrated to possess a highly complex sphingolipidome including hundreds of molecular species with a wide range of abundance. We established a high-throughput scheme for lipid preparation and mass spectrometry-based characterization of complex sphingolipid structures, which provided basic information to create a comprehensive theoretical library for targeted quantitative profiling of complex sphingolipids in rice. The established sphingolipidomic approach combined with multivariate analyses of the large dataset obtained clearly showed that different classes of rice sphingolipids, particularly including subclasses of glycosylinositol phosphoceramide with various sugar-chain head groups, are distributed with distinct quantitative profiles in various rice tissues, indicating tissue-dependent metabolism and biological functions of the lipid classes and subclasses. The sphingolipidomic analysis also highlighted that disruption of a lipid-associated gene causes a typical sphingolipidomic change in a gene-dependent manner. These results clearly support the utility of the sphingolipidomic approach in application to wide screening of sphingolipid-metabolic phenotypes as well as deeper investigation of metabolism and biological functions of complex sphingolipid species in plants.
Collapse
Affiliation(s)
- Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Yukihiro Ito
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| |
Collapse
|
15
|
De Bigault Du Granrut A, Cacas JL. How Very-Long-Chain Fatty Acids Could Signal Stressful Conditions in Plants? FRONTIERS IN PLANT SCIENCE 2016; 7:1490. [PMID: 27803703 PMCID: PMC5067520 DOI: 10.3389/fpls.2016.01490] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 09/20/2016] [Indexed: 05/18/2023]
Abstract
Although encountered in minor amounts in plant cells, very-long-chain fatty acids exert crucial functions in developmental processes. When their levels are perturbed by means of genetic approaches, marked phenotypic consequences that range from severe growth retardation to embryo lethality was indeed reported. More recently, a growing body of findings has also accumulated that points to a potential role for these lipids as signals in governing both biotic and abiotic stress outcomes. In the present work, we discuss the latter theory and explore the ins and outs of very-long-chain fatty acid-based signaling in response to stress, with an attempt to reconcile two supposedly antagonistic parameters: the insoluble nature of fatty acids and their signaling function. To explain this apparent dilemma, we provide new interpretations of pre-existing data based on the fact that sphingolipids are the main reservoir of very-long-chain fatty acids in leaves. Thus, three non-exclusive, molecular scenarii that involve these lipids as membrane-embedded and free entities are proposed.
Collapse
Affiliation(s)
- Antoine De Bigault Du Granrut
- UMR1318 Institut National de la Recherche Agronomique-AgroParisTech, Centre Institut National de la Recherche Agronomique de Versailles-Grignon, Institut Jean-Pierre BourginVersailles, France
| | - Jean-Luc Cacas
- UMR1318 Institut National de la Recherche Agronomique-AgroParisTech, Centre Institut National de la Recherche Agronomique de Versailles-Grignon, Institut Jean-Pierre BourginVersailles, France
- Département Sciences de la Vie et Santé, AgroParisTech, UFR de Physiologie VégétaleParis, France
- *Correspondence: Jean-Luc Cacas ;
| |
Collapse
|
16
|
Gronnier J, Germain V, Gouguet P, Cacas JL, Mongrand S. GIPC: Glycosyl Inositol Phospho Ceramides, the major sphingolipids on earth. PLANT SIGNALING & BEHAVIOR 2016; 11:e1152438. [PMID: 27074617 PMCID: PMC4883921 DOI: 10.1080/15592324.2016.1152438] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 05/22/2023]
Abstract
What are the most abundant sphingolipids on earth? The answer is Glycosyl Inositol Phosphoryl Ceramides (GIPCs) present in fungi and the green lineage. In this review, we discuss the putative role of plant GIPCs in the lipid bilayer asymmetry, in the lateral organization of membrane rafts and in the very long chain fatty acid inter-leaflet coupling of lipids in the plant plasma membrane (PM). A special focus on the structural similarities -and putative functions- of GIPCs is discussed by comparison with animal gangliosides, structural homologs of plant GIPCs.
Collapse
Affiliation(s)
- Julien Gronnier
- Laboratoire de Biogenèse Membranaire (LBM), CNRS-University of Bordeaux, Villenave d'Ornon Cedex, France
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire (LBM), CNRS-University of Bordeaux, Villenave d'Ornon Cedex, France
| | - Paul Gouguet
- Laboratoire de Biogenèse Membranaire (LBM), CNRS-University of Bordeaux, Villenave d'Ornon Cedex, France
| | - Jean-Luc Cacas
- Laboratoire de Biogenèse Membranaire (LBM), CNRS-University of Bordeaux, Villenave d'Ornon Cedex, France
- Université de Bourgogne, Dijon Cedex, France
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM), CNRS-University of Bordeaux, Villenave d'Ornon Cedex, France
| |
Collapse
|
17
|
Yamashita R, Tabata Y, Iga E, Nakao M, Sano S, Kogure K, Tokumura A, Tanaka T. Analysis of Molecular Species Profiles of Ceramide-1-phosphate and Sphingomyelin Using MALDI-TOF Mass Spectrometry. Lipids 2015; 51:263-70. [DOI: 10.1007/s11745-015-4082-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/29/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Ryouhei Yamashita
- ; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima 770-8505 Japan
| | - Yumika Tabata
- ; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima 770-8505 Japan
| | - Erina Iga
- ; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima 770-8505 Japan
| | - Michiyasu Nakao
- ; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima 770-8505 Japan
| | - Shigeki Sano
- ; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima 770-8505 Japan
| | - Kentaro Kogure
- ; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima 770-8505 Japan
| | - Akira Tokumura
- ; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima 770-8505 Japan
- ; Department of Pharmaceutical Life Sciences, Faculty of Pharmacy; Yasuda Women's University; Hiroshima 731-0351 Japan
| | - Tamotsu Tanaka
- ; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima 770-8505 Japan
| |
Collapse
|