1
|
Wang J, Zou J, Shi Y, Zeng N, Guo D, Wang H, Zhao C, Luan F, Zhang X, Sun J. Traditional Chinese medicine and mitophagy: A novel approach for cardiovascular disease management. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155472. [PMID: 38461630 DOI: 10.1016/j.phymed.2024.155472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide, imposing an enormous economic burden on individuals and human society. Laboratory studies have identified several drugs that target mitophagy for the prevention and treatment of CVD. Only a few of these drugs have been successful in clinical trials, and most studies have been limited to animal and cellular models. Furthermore, conventional drugs used to treat CVD, such as antiplatelet agents, statins, and diuretics, often result in adverse effects on patients' cardiovascular, metabolic, and respiratory systems. In contrast, traditional Chinese medicine (TCM) has gained significant attention for its unique theoretical basis and clinical efficacy in treating CVD. PURPOSE This paper systematically summarizes all the herbal compounds, extracts, and active monomers used to target mitophagy for the treatment of CVD in the last five years. It provides valuable information for researchers in the field of basic cardiovascular research, pharmacologists, and clinicians developing herbal medicines with fewer side effects, as well as a useful reference for future mitophagy research. METHODS The search terms "cardiovascular disease," "mitophagy," "herbal preparations," "active monomers," and "cardiac disease pathogenesis" in combination with "natural products" and "diseases" were used to search for studies published in the past five years until January 2024. RESULTS Studies have shown that mitophagy plays a significant role in the progression and development of CVD, such as atherosclerosis (AS), heart failure (HF), myocardial infarction (MI), myocardial ischemia/reperfusion injury (MI/RI), cardiac hypertrophy, cardiomyopathy, and arrhythmia. Herbal compound preparations, crude extracts, and active monomers have shown potential as effective treatments for these conditions. These substances protect cardiomyocytes by inducing mitophagy, scavenging damaged mitochondria, and maintaining mitochondrial homeostasis. They display notable efficacy in combating CVD. CONCLUSION TCM (including herbal compound preparations, extracts, and active monomers) can treat CVD through various pharmacological mechanisms and signaling pathways by inducing mitophagy. They represent a hotspot for future cardiovascular basic research and a promising candidate for the development of future cardiovascular drugs with fewer side effects and better therapeutic efficacy.
Collapse
Affiliation(s)
- Jinhui Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - He Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Chongbo Zhao
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
2
|
Shi H, Meng S, Qiu J, Xie S, Jiang N, Luo C, Naqvi NI, Kou Y. MoAti1 mediates mitophagy by facilitating recruitment of MoAtg8 to promote invasive growth in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2024; 25:e13439. [PMID: 38483039 PMCID: PMC10938464 DOI: 10.1111/mpp.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 03/17/2024]
Abstract
Mitophagy is a selective autophagy for the degradation of damaged or excessive mitochondria to maintain intracellular homeostasis. In Magnaporthe oryzae, a filamentous ascomycetous fungus that causes rice blast, the most devastating disease of rice, mitophagy occurs in the invasive hyphae to promote infection. To date, only a few proteins are known to participate in mitophagy and the mechanisms of mitophagy are largely unknown in pathogenic fungi. Here, by a yeast two-hybrid screen with the core autophagy-related protein MoAtg8 as a bait, we obtained a MoAtg8 interactor MoAti1 (MoAtg8-interacting protein 1). Fluorescent observations and protease digestion analyses revealed that MoAti1 is primarily localized to the peripheral mitochondrial outer membrane and is responsible for recruiting MoAtg8 to mitochondria under mitophagy induction conditions. MoAti1 is specifically required for mitophagy, but not for macroautophagy and pexophagy. Infection assays suggested that MoAti1 is required for mitophagy in invasive hyphae during pathogenesis. Notably, no homologues of MoAti1 were found in rice and human protein databases, indicating that MoAti1 may be used as a potential target to control rice blast. By the host-induced gene silencing (HIGS) strategy, transgenic rice plants targeted to silencing MoATI1 showed enhanced resistance against M. oryzae with unchanged agronomic traits. Our results suggest that MoATI1 is required for mitophagy and pathogenicity in M. oryzae and can be used as a target for reducing rice blast.
Collapse
Affiliation(s)
- Huanbin Shi
- State Key Lab of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Shuai Meng
- State Key Lab of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Jiehua Qiu
- State Key Lab of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Shuwei Xie
- State Key Lab of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Nan Jiang
- State Key Lab of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Chaoxi Luo
- Key Lab of Horticultural Plant Biology, Ministry of Education, and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Naweed I. Naqvi
- Temasek Life Sciences Laboratory, Department of Biological SciencesNational University of SingaporeSingapore
| | - Yanjun Kou
- State Key Lab of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| |
Collapse
|
3
|
Abeliovich H. Mitophagy in yeast: known unknowns and unknown unknowns. Biochem J 2023; 480:1639-1657. [PMID: 37850532 PMCID: PMC10586778 DOI: 10.1042/bcj20230279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Mitophagy, the autophagic breakdown of mitochondria, is observed in eukaryotic cells under various different physiological circumstances. These can be broadly categorized into two types: mitophagy related to quality control events and mitophagy induced during developmental transitions. Quality control mitophagy involves the lysosomal or vacuolar degradation of malfunctioning or superfluous mitochondria within lysosomes or vacuoles, and this is thought to serve as a vital maintenance function in respiring eukaryotic cells. It plays a crucial role in maintaining physiological balance, and its disruption has been associated with the progression of late-onset diseases. Developmentally induced mitophagy has been reported in the differentiation of metazoan tissues which undergo metabolic shifts upon developmental transitions, such as in the differentiation of red blood cells and muscle cells. Although the mechanistic studies of mitophagy in mammalian cells were initiated after the initial mechanistic findings in Saccharomyces cerevisiae, our current understanding of the physiological role of mitophagy in yeast remains more limited, despite the presence of better-defined assays and tools. In this review, I present my perspective on our present knowledge of mitophagy in yeast, focusing on physiological and mechanistic aspects. I aim to focus on areas where our understanding is still incomplete, such as the role of mitochondrial dynamics and the phenomenon of protein-level selectivity.
Collapse
Affiliation(s)
- Hagai Abeliovich
- Institute of Biochemistry, Food Science and Nutrition, Hebrew University of Jerusalem, 1 Hankin St, Rehovot 7610001, Israel
| |
Collapse
|
4
|
Liu H, Luo Z, Rao Y. Manipulation of fungal cell wall integrity to improve production of fungal natural products. ADVANCES IN APPLIED MICROBIOLOGY 2023; 125:49-78. [PMID: 38783724 DOI: 10.1016/bs.aambs.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Fungi, as an important industrial microorganism, play an essential role in the production of natural products (NPs) due to their advantages of utilizing cheap raw materials as substrates and strong protein secretion ability. Although many metabolic engineering strategies have been adopted to enhance the biosynthetic pathway of NPs in fungi, the fungal cell wall as a natural barrier tissue is the final and key step that affects the efficiency of NPs synthesis. To date, many important progresses have been achieved in improving the synthesis of NPs by regulating the cell wall structure of fungi. In this review, we systematically summarize and discuss various strategies for modifying the cell wall structure of fungi to improve the synthesis of NPs. At first, the cell wall structure of different types of fungi is systematically described. Then, strategies to disrupt cell wall integrity (CWI) by regulating the synthesis of cell wall polysaccharides and binding proteins are summarized, which have been applied to improve the synthesis of NPs. In addition, we also summarize the studies on the regulation of CWI-related signaling pathway and the addition of exogenous components for regulating CWI to improve the synthesis of NPs. Finally, we propose the current challenges and essential strategies to usher in an era of more extensive manipulation of fungal CWI to improve the production of fungal NPs.
Collapse
Affiliation(s)
- Huiling Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P.R. China
| | - Zhengshan Luo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P.R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P.R. China.
| |
Collapse
|
5
|
Wang L, Klionsky DJ, Shen HM. The emerging mechanisms and functions of microautophagy. Nat Rev Mol Cell Biol 2023; 24:186-203. [PMID: 36097284 DOI: 10.1038/s41580-022-00529-z] [Citation(s) in RCA: 172] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 02/08/2023]
Abstract
'Autophagy' refers to an evolutionarily conserved process through which cellular contents, such as damaged organelles and protein aggregates, are delivered to lysosomes for degradation. Different forms of autophagy have been described on the basis of the nature of the cargoes and the means used to deliver them to lysosomes. At present, the prevailing categories of autophagy in mammalian cells are macroautophagy, microautophagy and chaperone-mediated autophagy. The molecular mechanisms and biological functions of macroautophagy and chaperone-mediated autophagy have been extensively studied, but microautophagy has received much less attention. In recent years, there has been a growth in research on microautophagy, first in yeast and then in mammalian cells. Here we review this form of autophagy, focusing on selective forms of microautophagy. We also discuss the upstream regulatory mechanisms, the crosstalk between macroautophagy and microautophagy, and the functional implications of microautophagy in diseases such as cancer and neurodegenerative disorders in humans. Future research into microautophagy will provide opportunities to develop novel interventional strategies for autophagy- and lysosome-related diseases.
Collapse
Affiliation(s)
- Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Han-Ming Shen
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Li J, Zeng Y, Wang WB, Wan QQ, Liu CG, den Haan R, van Zyl WH, Zhao XQ. Increasing extracellular cellulase activity of the recombinant Saccharomyces cerevisiae by engineering cell wall-related proteins for improved consolidated processing of carbon neutral lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2022; 365:128132. [PMID: 36252752 DOI: 10.1016/j.biortech.2022.128132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Sustainable bioproduction usingcarbon neutral feedstocks, especially lignocellulosic biomass, has attracted increasing attention due to concern over climate change and carbon reduction. Consolidated bioprocessing (CBP) of lignocellulosic biomass using recombinantyeast of Saccharomyces cerevisiaeis a promising strategy forlignocellulosic biorefinery. However, the economic viability is restricted by low enzyme secretion levels.For more efficient CBP, MIG1spsc01isolated from the industrial yeast which encodes the glucose repression regulator derivative was overexpressed. Increased extracellular cellobiohydrolase (CBH) activity was observed with unexpectedly decreased cell wall integrity. Further studies revealed that disruption ofCWP2, YGP1, andUTH1,which are functionally related toMIG1spsc01, also enhanced CBH secretion. Subsequently, improved cellulase production was achieved by simultaneous disruption ofYGP1and overexpression ofSED5, which remarkably increased extracellular CBH activity of 2.2-fold over the control strain. These results provide a novel strategy to improve the CBP yeast for bioconversion of carbon neutral biomass.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Zeng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei-Bin Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing-Qing Wan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Riaan den Haan
- Department of Biotechnology, University of the Western Cape, Bellville 7530, South Africa
| | - Willem H van Zyl
- Department of Microbiology, University of Stellenbosch, Stellenbosch 7600, South Africa
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
7
|
Li X, Zhu M, Liu Y, Yang L, Yang J. Aoatg11 and Aoatg33 are indispensable for mitophagy, and contribute to conidiation, the stress response, and pathogenicity in the nematode-trapping fungus Arthrobotrys oligospora. Microbiol Res 2022; 266:127252. [DOI: 10.1016/j.micres.2022.127252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
8
|
Schuster R, Okamoto K. An overview of the molecular mechanisms of mitophagy in yeast. Biochim Biophys Acta Gen Subj 2022; 1866:130203. [PMID: 35842014 DOI: 10.1016/j.bbagen.2022.130203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/27/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022]
Abstract
Autophagy-dependent selective degradation of excess or damaged mitochondria, termed mitophagy, is a tightly regulated process necessary for mitochondrial quality and quantity control. Mitochondria are highly dynamic and major sites for vital cellular processes such as ATP and iron‑sulfur cluster biogenesis. Due to their pivotal roles for immunity, apoptosis, and aging, the maintenance of mitochondrial function is of utmost importance for cellular homeostasis. In yeast, mitophagy is mediated by the receptor protein Atg32 that is localized to the outer mitochondrial membrane. Upon mitophagy induction, Atg32 expression is transcriptionally upregulated, which leads to its accumulation on the mitochondrial surface and to recruitment of the autophagic machinery via its direct interaction with Atg11 and Atg8. Importantly, post-translational modifications such as phosphorylation further fine-tune the mitophagic response. This review summarizes the current knowledge about mitophagy in yeast and its connection with mitochondrial dynamics and the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Ramona Schuster
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Koji Okamoto
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
9
|
Role of Mitophagy in neurodegenerative Diseases and potential tagarts for Therapy. Mol Biol Rep 2022; 49:10749-10760. [PMID: 35794507 DOI: 10.1007/s11033-022-07738-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 12/27/2022]
Abstract
Mitochondria dysfunction has been defined as one of the hallmarks of aging-related diseases as is characterized by the destroyed integrity, abnormal distribution and size, insufficient ATP supply, increased ROS production, and subsequently damage and oxidize the proteins, lipids and nucleic acid. Mitophagy, an efficient way of removing damaged or defective mitochondria by autophagy, plays a pivotal role in maintaining the mitochondrial quantity and quality control enabling the degradation of unwanted mitochondria, and thus rescues cellular homeostasis in response to stress. Accumulating evidence demonstrates that impaired mitophagy has been associated with many neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) in a variety of patients and disease models with neural death, oxidative stress and disturbed metabolism, either as the cause or consequence. These findings suggest that modulation of mitophagy may be considered as a valid therapeutic strategy in neurodegenerative diseases. In this review, we summarize recent findings on the mechanisms of mitophagy and its role in neurodegenerative diseases, with a particular focus on mitochondrial proteins acting as receptors that mediate mitophagy in these diseases.
Collapse
|
10
|
Lu AX, Lu AX, Pritišanac I, Zarin T, Forman-Kay JD, Moses AM. Discovering molecular features of intrinsically disordered regions by using evolution for contrastive learning. PLoS Comput Biol 2022; 18:e1010238. [PMID: 35767567 PMCID: PMC9275697 DOI: 10.1371/journal.pcbi.1010238] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 07/12/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023] Open
Abstract
A major challenge to the characterization of intrinsically disordered regions (IDRs), which are widespread in the proteome, but relatively poorly understood, is the identification of molecular features that mediate functions of these regions, such as short motifs, amino acid repeats and physicochemical properties. Here, we introduce a proteome-scale feature discovery approach for IDRs. Our approach, which we call "reverse homology", exploits the principle that important functional features are conserved over evolution. We use this as a contrastive learning signal for deep learning: given a set of homologous IDRs, the neural network has to correctly choose a held-out homolog from another set of IDRs sampled randomly from the proteome. We pair reverse homology with a simple architecture and standard interpretation techniques, and show that the network learns conserved features of IDRs that can be interpreted as motifs, repeats, or bulk features like charge or amino acid propensities. We also show that our model can be used to produce visualizations of what residues and regions are most important to IDR function, generating hypotheses for uncharacterized IDRs. Our results suggest that feature discovery using unsupervised neural networks is a promising avenue to gain systematic insight into poorly understood protein sequences.
Collapse
Affiliation(s)
- Alex X. Lu
- Department of Computer Science, University of Toronto, Toronto, Canada
| | - Amy X. Lu
- Department of Computer Science, University of Toronto, Toronto, Canada
| | - Iva Pritišanac
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
| | - Taraneh Zarin
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Julie D. Forman-Kay
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Alan M. Moses
- Department of Computer Science, University of Toronto, Toronto, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Innokentev A, Kanki T. Mitophagy in Yeast: Molecular Mechanism and Regulation. Cells 2021; 10:cells10123569. [PMID: 34944077 PMCID: PMC8700587 DOI: 10.3390/cells10123569] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 01/13/2023] Open
Abstract
Mitophagy is a type of autophagy that selectively degrades mitochondria. Mitochondria, known as the “powerhouse of the cell”, supply the majority of the energy required by cells. During energy production, mitochondria produce reactive oxygen species (ROS) as byproducts. The ROS damage mitochondria, and the damaged mitochondria further produce mitochondrial ROS. The increased mitochondrial ROS damage cellular components, including mitochondria themselves, and leads to diverse pathologies. Accordingly, it is crucial to eliminate excessive or damaged mitochondria to maintain mitochondrial homeostasis, in which mitophagy is believed to play a major role. Recently, the molecular mechanism and physiological role of mitophagy have been vigorously studied in yeast and mammalian cells. In yeast, Atg32 and Atg43, mitochondrial outer membrane proteins, were identified as mitophagy receptors in budding yeast and fission yeast, respectively. Here we summarize the molecular mechanisms of mitophagy in yeast, as revealed by the analysis of Atg32 and Atg43, and review recent progress in our understanding of mitophagy induction and regulation in yeast.
Collapse
|
12
|
Bhatia-Kissova I, Camougrand N. Mitophagy in Yeast: Decades of Research. Cells 2021; 10:3541. [PMID: 34944049 PMCID: PMC8700663 DOI: 10.3390/cells10123541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022] Open
Abstract
Mitophagy, the selective degradation of mitochondria by autophagy, is one of the most important mechanisms of mitochondrial quality control, and its proper functioning is essential for cellular homeostasis. In this review, we describe the most important milestones achieved during almost 2 decades of research on yeasts, which shed light on the molecular mechanisms, regulation, and role of the Atg32 receptor in this process. We analyze the role of ROS in mitophagy and discuss the physiological roles of mitophagy in unicellular organisms, such as yeast; these roles are very different from those in mammals. Additionally, we discuss some of the different tools available for studying mitophagy.
Collapse
Affiliation(s)
- Ingrid Bhatia-Kissova
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 84215 Bratislava, Slovakia;
| | - Nadine Camougrand
- CNRS, UMR 5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France
- Institut de Biochimie et de Génétique Cellulaires, Université de Bordeaux, UMR 5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France
| |
Collapse
|
13
|
Montella-Manuel S, Pujol-Carrion N, de la Torre-Ruiz MA. The Cell Wall Integrity Receptor Mtl1 Contributes to Articulate Autophagic Responses When Glucose Availability Is Compromised. J Fungi (Basel) 2021; 7:903. [PMID: 34829194 PMCID: PMC8623553 DOI: 10.3390/jof7110903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 01/02/2023] Open
Abstract
Mtl1protein is a cell wall receptor belonging to the CWI pathway. Mtl1 function is related to glucose and oxidative stress signaling. In this report, we show data demonstrating that Mtl1 plays a critical role in the detection of a descent in glucose concentration, in order to activate bulk autophagy machinery as a response to nutrient deprivation and to maintain cell survival in starvation conditions. Autophagy is a tightly regulated mechanism involving several signaling pathways. The data here show that in Saccharomyces cerevisiae, Mtl1 signals glucose availability to either Ras2 or Sch9 proteins converging in Atg1 phosphorylation and autophagy induction. TORC1 complex function is not involved in autophagy induction during the diauxic shift when glucose is limited. In this context, the GCN2 gene is required to regulate autophagy activation upon amino acid starvation independent of the TORC1 complex. Mtl1 function is also involved in signaling the autophagic degradation of mitochondria during the stationary phase through both Ras2 and Sch9, in a manner dependent on either Atg33 and Atg11 proteins and independent of the Atg32 protein, the mitophagy receptor. All of the above suggest a pivotal signaling role for Mtl1 in maintaining correct cell homeostasis function in periods of glucose scarcity in budding yeast.
Collapse
Affiliation(s)
| | | | - Maria Angeles de la Torre-Ruiz
- Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, 25198 Lleida, Spain; (S.M.-M.); (N.P.-C.)
| |
Collapse
|
14
|
Common Principles and Specific Mechanisms of Mitophagy from Yeast to Humans. Int J Mol Sci 2021; 22:ijms22094363. [PMID: 33922020 PMCID: PMC8122514 DOI: 10.3390/ijms22094363] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are double membrane-bound organelles in eukaryotic cells essential to a variety of cellular functions including energy conversion and ATP production, iron-sulfur biogenesis, lipid and amino acid metabolism, and regulating apoptosis and stress responses. Mitochondrial dysfunction is mechanistically linked to several neurodegenerative diseases, cancer, and ageing. Excessive and dysfunctional/damaged mitochondria are degraded by selective autophagic pathways known as mitophagy. Both budding yeast and mammals use the well-conserved machinery of core autophagy-related genes (ATGs) to execute and regulate mitophagy. In mammalian cells, the PINK1-PARKIN mitophagy pathway is a well-studied pathway that senses dysfunctional mitochondria and marks them for degradation in the lysosome. PINK1-PARKIN mediated mitophagy relies on ubiquitin-binding mitophagy adaptors that are non-ATG proteins. Loss-of-function mutations in PINK1 and PARKIN are linked to Parkinson´s disease (PD) in humans, and defective mitophagy is proposed to be a main pathomechanism. Despite the common view that yeast cells lack PINK1- and PARKIN-homologs and that mitophagy in yeast is solely regulated by receptor-mediated mitophagy, some studies suggest that a ubiquitination-dependent mitophagy pathway also exists. Here, we will discuss shared mechanisms between mammals and yeast, how mitophagy in the latter is regulated in a ubiquitin-dependent and -independent manner, and why these pathways are essential for yeast cell survival and fitness under various physiological stress conditions.
Collapse
|
15
|
Liu Y, Okamoto K. Regulatory mechanisms of mitophagy in yeast. Biochim Biophys Acta Gen Subj 2021; 1865:129858. [PMID: 33545228 DOI: 10.1016/j.bbagen.2021.129858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
Mitochondria are dynamic organelles functioning in diverse reactions and processes such as energy metabolism, apoptosis, innate immunity, and aging, whose quality and quantity control is critical for cell homeostasis. Mitochondria-specific autophagy, termed mitophagy, is an evolutionarily conserved process that selectively degrades mitochondria via autophagy, thereby contributing to mitochondrial quality and quantity control. In the budding yeast Saccharomyces cerevisiae, the single-pass membrane protein Atg32 accumulates on the surface of mitochondria and recruit the autophagy machinery to initiate mitophagy. This catabolic process is elaborately regulated through transcriptional induction and post-translational modifications of Atg32. Notably, other factors acting in manifold pathways including protein N-terminal acetylation, phospholipid methylation, stress signaling, and endoplasmic reticulum-localized protein dephosphorylation and membrane protein insertion are also linked to mitophagy. Here we review recent discoveries of molecules regulating mitophagy in yeast.
Collapse
Affiliation(s)
- Yang Liu
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Koji Okamoto
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan.
| |
Collapse
|
16
|
Onishi M, Yamano K, Sato M, Matsuda N, Okamoto K. Molecular mechanisms and physiological functions of mitophagy. EMBO J 2021; 40:e104705. [PMID: 33438778 PMCID: PMC7849173 DOI: 10.15252/embj.2020104705] [Citation(s) in RCA: 704] [Impact Index Per Article: 176.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 08/03/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Degradation of mitochondria via a selective form of autophagy, named mitophagy, is a fundamental mechanism conserved from yeast to humans that regulates mitochondrial quality and quantity control. Mitophagy is promoted via specific mitochondrial outer membrane receptors, or ubiquitin molecules conjugated to proteins on the mitochondrial surface leading to the formation of autophagosomes surrounding mitochondria. Mitophagy-mediated elimination of mitochondria plays an important role in many processes including early embryonic development, cell differentiation, inflammation, and apoptosis. Recent advances in analyzing mitophagy in vivo also reveal high rates of steady-state mitochondrial turnover in diverse cell types, highlighting the intracellular housekeeping role of mitophagy. Defects in mitophagy are associated with various pathological conditions such as neurodegeneration, heart failure, cancer, and aging, further underscoring the biological relevance. Here, we review our current molecular understanding of mitophagy, and its physiological implications, and discuss how multiple mitophagy pathways coordinately modulate mitochondrial fitness and populations.
Collapse
Affiliation(s)
- Mashun Onishi
- Laboratory of Mitochondrial DynamicsGraduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Koji Yamano
- The Ubiquitin ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Miyuki Sato
- Laboratory of Molecular Membrane BiologyInstitute for Molecular and Cellular RegulationGunma UniversityMaebashiJapan
| | - Noriyuki Matsuda
- The Ubiquitin ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Koji Okamoto
- Laboratory of Mitochondrial DynamicsGraduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| |
Collapse
|
17
|
Ajoolabady A, Aslkhodapasandhokmabad H, Aghanejad A, Zhang Y, Ren J. Mitophagy Receptors and Mediators: Therapeutic Targets in the Management of Cardiovascular Ageing. Ageing Res Rev 2020; 62:101129. [PMID: 32711157 DOI: 10.1016/j.arr.2020.101129] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/10/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022]
Abstract
Mitophagy serves as a cardinal regulator in the maintenance of mitochondrial integrity, function, and cardiovascular homeostasis, through the fine control and governance of cellular metabolism, ATP production, redox balance, and mitochondrial quality and quantity control. As a unique form of selective autophagy, mitophagy specifically recognizes and engulfs long-lived or damaged (depolarized) mitochondria through formation of the double-membraned intracellular organelles - mitophagosomes, ultimately resulting in lysosomal degradation. Levels of mitophagy are reported to be altered in pathological settings including cardiovascular diseases and biological ageing although the precise nature of mitophagy change in ageing and ageing-associated cardiovascular deterioration remains poorly defined. Ample clinical and experimental evidence has depicted a convincing tie between cardiovascular ageing and altered mitophagy. In particular, ageing perturbs multiple enigmatic various signal machineries governing mitophagy, mitochondrial quality, and mitochondrial function, contributing to ageing-elicited anomalies in the cardiovascular system. This review will update novel regulatory mechanisms of mitophagy especially in the perspective of advanced ageing, and discuss how mitophagy dysregulation may be linked to cardiovascular abnormalities in ageing. We hope to pave the way for development of new therapeutic strategies against the growing health and socieconomical issue of cardiovascular ageing through targeting mitophagy.
Collapse
|
18
|
|
19
|
Mitter AL, Schlotterhose P, Krick R. Gyp1 has a dual function as Ypt1 GAP and interaction partner of Atg8 in selective autophagy. Autophagy 2019; 15:1031-1050. [PMID: 30686108 DOI: 10.1080/15548627.2019.1569929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Macroautophagy/autophagy is a highly conserved intracellular vesicle transport pathway that prevents accumulation of harmful materials within cells. The dynamic assembly and disassembly of the different autophagic protein complexes at the so-called phagophore assembly site (PAS) is strictly regulated. Rab GTPases are major regulators of cellular vesicle trafficking, and the Rab GTPase Ypt1 and its GEF TRAPPIII have been implicated in autophagy. We show that Gyp1 acts as a Ypt1 GTPase-activating protein (GAP) for selective autophagic variants, such as the Cvt pathway or the selective autophagic degradation of mitochondria (mitophagy). Gyp1 regulates the dynamic disassembly of the conserved Ypt1-Atg1 complex. Thereby, Gyp1 sets the stage for efficient Atg14 recruitment, and facilitates the critical step from nucleation to elongation of the phagophore. In addition, we identified Gyp1 as a new Atg8-interacting motif (AIM)-dependent Atg8 interaction partner. The Gyp1 AIM is required for efficient formation of the cargo receptor-Atg8 complexes. Our findings elucidate the molecular mechanisms of complex disassembly during phagophore formation and suggest potential dual functions of GAPs in cellular vesicle trafficking. Abbreviations AIM, Atg8-interacting motif; Atg, autophagy related; Cvt, cytoplasm-to-vacuole targeting; GAP, GTPase-activating protein; GEF, guanine-nucleotide exchange factor; GFP, green fluorescent protein; log phase, logarithmic growth phase; NHD, N-terminal helical domain; PAS, phagophore assembly site; PE, phosphatidylethanolamine; PtdIns3P, phosphatidylinositol-3-phosphate; WT, wild-type.
Collapse
Affiliation(s)
- Anne Lisa Mitter
- a Department of Cellular Biochemistry, University Medicine , Georg-August University , Goettingen , Germany
| | - Petra Schlotterhose
- a Department of Cellular Biochemistry, University Medicine , Georg-August University , Goettingen , Germany
| | - Roswitha Krick
- a Department of Cellular Biochemistry, University Medicine , Georg-August University , Goettingen , Germany
| |
Collapse
|
20
|
Williams JA, Ding WX. Mechanisms, pathophysiological roles and methods for analyzing mitophagy - recent insights. Biol Chem 2018; 399:147-178. [PMID: 28976892 DOI: 10.1515/hsz-2017-0228] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022]
Abstract
In 2012, we briefly summarized the mechanisms, pathophysiological roles and methods for analyzing mitophagy. As then, the mitophagy field has continued to grow rapidly, and many new molecular mechanisms regulating mitophagy and molecular tools for monitoring mitophagy have been discovered and developed. Therefore, the purpose of this review is to update information regarding these advances in mitophagy while focusing on basic molecular mechanisms of mitophagy in different organisms and its pathophysiological roles. We also discuss the advantage and limitations of current methods to monitor and quantify mitophagy in cultured cells and in vivo mouse tissues.
Collapse
Affiliation(s)
- Jessica A Williams
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
21
|
Fukuda T, Kanki T. Mechanisms and Physiological Roles of Mitophagy in Yeast. Mol Cells 2018; 41:35-44. [PMID: 29370687 PMCID: PMC5792711 DOI: 10.14348/molcells.2018.2214] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/08/2017] [Accepted: 12/05/2017] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are responsible for supplying of most of the cell's energy via oxidative phosphorylation. However, mitochondria also can be deleterious for a cell because they are the primary source of reactive oxygen species, which are generated as a byproduct of respiration. Accumulation of mitochondrial and cellular oxidative damage leads to diverse pathologies. Thus, it is important to maintain a population of healthy and functional mitochondria for normal cellular metabolism. Eukaryotes have developed defense mechanisms to cope with aberrant mitochondria. Mitochondria autophagy (known as mitophagy) is thought to be one such process that selectively sequesters dysfunctional or excess mitochondria within double-membrane autophagosomes and carries them into lysosomes/vacuoles for degradation. The power of genetics and conservation of fundamental cellular processes among eukaryotes make yeast an excellent model for understanding the general mechanisms, regulation, and function of mitophagy. In budding yeast, a mitochondrial surface protein, Atg32, serves as a mitochondrial receptor for selective autophagy that interacts with Atg11, an adaptor protein for selective types of autophagy, and Atg8, a ubiquitin-like protein localized to the isolation membrane. Atg32 is regulated transcriptionally and post-translationally to control mitophagy. Moreover, because Atg32 is a mitophagy-specific protein, analysis of its deficient mutant enables investigation of the physiological roles of mitophagy. Here, we review recent progress in the understanding of the molecular mechanisms and functional importance of mitophagy in yeast at multiple levels.
Collapse
Affiliation(s)
- Tomoyuki Fukuda
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510,
Japan
| | - Tomotake Kanki
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510,
Japan
| |
Collapse
|
22
|
Tan T, Zimmermann M, Reichert AS. Controlling quality and amount of mitochondria by mitophagy: insights into the role of ubiquitination and deubiquitination. Biol Chem 2017; 397:637-47. [PMID: 27145142 DOI: 10.1515/hsz-2016-0125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/27/2016] [Indexed: 02/04/2023]
Abstract
Mitophagy is a selective autophagy pathway conserved in eukaryotes and plays an essential role in mitochondrial quality and quantity control. Mitochondrial fission and fusion cycles maintain a certain amount of healthy mitochondria and allow the isolation of damaged mitochondria for their elimination by mitophagy. Mitophagy can be classified into receptor-dependent and ubiquitin-dependent pathways. The mitochondrial outer membrane protein Atg32 is identified as the only known receptor for mitophagy in baker's yeast, whereas mitochondrial proteins FUNDC1, NIX/BNIP3L, BNIP3 and Bcl2L13 are recognized as mitophagy receptors in mammalian cells. Earlier studies showed that ubiquitination and deubiquitination occurs in yeast, yet there is no direct evidence for an ubiquitin-dependent mitophagy pathway in this organism. In contrast, a ubiquitin-/PINK1-/Parkin-dependent mitophagy pathway was unraveled and was extensively characterized in mammals in recent years. Recently, a quantitative method termed synthetic quantitative array (SQA) technology was developed to identify modulators of mitophagy in baker's yeast on a genome-wide level. The Ubp3-Bre5 deubiquitination complex was found as a negative regulator of mitophagy while promoting other autophagic pathways. Here we discuss how ubiquitination and deubiquitination regulates mitophagy and other selective forms of autophagy and what argues for using baker's yeast as a model to study the ubiquitin-dependent mitophagy pathway.
Collapse
|
23
|
Levchenko M, Lorenzi I, Dudek J. The Degradation Pathway of the Mitophagy Receptor Atg32 Is Re-Routed by a Posttranslational Modification. PLoS One 2016; 11:e0168518. [PMID: 27992522 PMCID: PMC5161373 DOI: 10.1371/journal.pone.0168518] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/01/2016] [Indexed: 12/19/2022] Open
Abstract
The outer mitochondrial membrane protein Atg32 is the central receptor for mitophagy, the mitochondria-specific form of autophagy. Atg32 is an unstable protein, and is rapidly degraded under conditions in which mitophagy is not induced. Here we show that Atg32 undergoes a posttranslational modification upon induction of mitophagy. The modification is dependent on the core autophagic machinery, including Atg8, and on the mitophagy-specific adaptor protein Atg11. The modified Atg32 is targeted to the vacuole where it becomes stabilized when vacuolar proteases are deficient. Interestingly, we find that this degradation pathway differs from the degradation pathway of non-modified Atg32, which neither involves vacuolar proteases, nor the proteasome. These analyses reveal that a posttranslational modification discriminates a form of Atg32 targeting mitochondria for mitophagy from that, which escapes mitophagy by rapid degradation.
Collapse
Affiliation(s)
- Mariia Levchenko
- Department of Cellular Biochemistry, Georg-August University, Göttingen, Germany
| | - Isotta Lorenzi
- Department of Cellular Biochemistry, Georg-August University, Göttingen, Germany
| | - Jan Dudek
- Department of Cellular Biochemistry, Georg-August University, Göttingen, Germany
| |
Collapse
|
24
|
Mitochondrial degradation and energy metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2812-21. [DOI: 10.1016/j.bbamcr.2015.05.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 04/23/2015] [Accepted: 05/07/2015] [Indexed: 12/14/2022]
|
25
|
Wei H, Liu L, Chen Q. Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2784-90. [PMID: 25840011 DOI: 10.1016/j.bbamcr.2015.03.013] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/17/2015] [Accepted: 03/25/2015] [Indexed: 11/29/2022]
Abstract
The efficient and selective elimination of damaged or excessive mitochondria in response to bioenergetic and environmental cues is critical for maintaining a healthy and appropriate population of mitochondria. Mitophagy is considered to be the central mechanism of mitochondrial quality and quantity control. Atg32, a mitophagy receptor in yeast, recruits mitochondria targeted for degradation into the isolation membrane via both direct and indirect interactions with Atg8. In mammals, different mitophagy effectors, including the mitophagy receptors NIX, BNIP3 and FUDNC1 and the PINK1/Parkin pathway, have been identified to participate in the selective clearance of mitochondria. One common feature of mitophagy receptors is that they harbor an LC3-interacting region (LIR) that interacts with LC3, thus promoting the sequestration of mitochondria into the isolation membrane. Additionally, both receptor- and Parkin/PINK1-mediated mitophagy have been found to be regulated by reversible phosphorylation. Here, we review the recent progress in the understanding of the molecular mechanisms involved in selective mitophagy at multiple levels. We also discuss different mitophagy receptors from an evolutionary perspective and highlight the specific functions of and possible cooperation between distinct mechanisms of mitophagy.
Collapse
Affiliation(s)
- Huifang Wei
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Quan Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
26
|
Mechanisms by which different functional states of mitochondria define yeast longevity. Int J Mol Sci 2015; 16:5528-54. [PMID: 25768339 PMCID: PMC4394491 DOI: 10.3390/ijms16035528] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial functionality is vital to organismal physiology. A body of evidence supports the notion that an age-related progressive decline in mitochondrial function is a hallmark of cellular and organismal aging in evolutionarily distant eukaryotes. Studies of the baker’s yeast Saccharomyces cerevisiae, a unicellular eukaryote, have led to discoveries of genes, signaling pathways and chemical compounds that modulate longevity-defining cellular processes in eukaryotic organisms across phyla. These studies have provided deep insights into mechanistic links that exist between different traits of mitochondrial functionality and cellular aging. The molecular mechanisms underlying the essential role of mitochondria as signaling organelles in yeast aging have begun to emerge. In this review, we discuss recent progress in understanding mechanisms by which different functional states of mitochondria define yeast longevity, outline the most important unanswered questions and suggest directions for future research.
Collapse
|
27
|
Müller M, Lu K, Reichert AS. Mitophagy and mitochondrial dynamics in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2766-74. [PMID: 25753536 DOI: 10.1016/j.bbamcr.2015.02.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/10/2015] [Accepted: 02/27/2015] [Indexed: 12/13/2022]
Abstract
Mitochondria fulfill central cellular functions including energy metabolism, iron-sulfur biogenesis, and regulation of apoptosis and calcium homeostasis. Accumulation of dysfunctional mitochondria is observed in ageing and many human diseases such as cancer and various neurodegenerative disorders. Appropriate quality control of mitochondria is important for cell survival in most eukaryotic cells. One important pathway in this respect is mitophagy, a selective form of autophagy which removes excess and dysfunctional mitochondria. In the past decades a series of essential factors for mitophagy have been identified and characterized. However, little is known about the molecular mechanisms regulating mitophagy. The role of mitochondrial dynamics in mitophagy is controversially discussed. Here we will review recent advances in this context promoting our understanding on the molecular regulation of mitophagy in Saccharomyces cerevisiae and on the role of mitochondrial dynamics in mitochondrial quality control.
Collapse
Affiliation(s)
- Matthias Müller
- Mitochondrial Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Germany; Mitochondrial Biology, Medical School, Goethe University Frankfurt am Main, Germany
| | - Kaihui Lu
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Andreas S Reichert
- Mitochondrial Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Germany; Mitochondrial Biology, Medical School, Goethe University Frankfurt am Main, Germany; Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
28
|
Juris L, Montino M, Rube P, Schlotterhose P, Thumm M, Krick R. PI3P binding by Atg21 organises Atg8 lipidation. EMBO J 2015; 34:955-73. [PMID: 25691244 DOI: 10.15252/embj.201488957] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 01/28/2015] [Indexed: 11/09/2022] Open
Abstract
Autophagosome biogenesis requires two ubiquitin-like conjugation systems. One couples ubiquitin-like Atg8 to phosphatidylethanolamine, and the other couples ubiquitin-like Atg12 to Atg5. Atg12~Atg5 then forms a heterodimer with Atg16. Membrane recruitment of the Atg12~Atg5/Atg16 complex defines the Atg8 lipidation site. Lipidation requires a PI3P-containing precursor. How PI3P is sensed and used to coordinate the conjugation systems remained unclear. Here, we show that Atg21, a WD40 β-propeller, binds via PI3P to the preautophagosomal structure (PAS). Atg21 directly interacts with the coiled-coil domain of Atg16 and with Atg8. This latter interaction requires the conserved F5K6-motif in the N-terminal helical domain of Atg8, but not its AIM-binding site. Accordingly, the Atg8 AIM-binding site remains free to mediate interaction with its E2 enzyme Atg3. Atg21 thus defines PI3P-dependently the lipidation site by linking and organising the E3 ligase complex and Atg8 at the PAS.
Collapse
Affiliation(s)
- Lisa Juris
- Georg-August-University, University Medicine, Institute of Cellular Biochemistry, Goettingen, Germany
| | - Marco Montino
- Georg-August-University, University Medicine, Institute of Cellular Biochemistry, Goettingen, Germany
| | - Peter Rube
- Georg-August-University, University Medicine, Institute of Cellular Biochemistry, Goettingen, Germany
| | - Petra Schlotterhose
- Georg-August-University, University Medicine, Institute of Cellular Biochemistry, Goettingen, Germany
| | - Michael Thumm
- Georg-August-University, University Medicine, Institute of Cellular Biochemistry, Goettingen, Germany
| | - Roswitha Krick
- Georg-August-University, University Medicine, Institute of Cellular Biochemistry, Goettingen, Germany
| |
Collapse
|
29
|
Kanki T, Furukawa K, Yamashita SI. Mitophagy in yeast: Molecular mechanisms and physiological role. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2756-65. [PMID: 25603537 DOI: 10.1016/j.bbamcr.2015.01.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/24/2014] [Accepted: 01/08/2015] [Indexed: 01/19/2023]
Abstract
Mitochondria autophagy (mitophagy) is a process that selectively degrades mitochondria via autophagy. Recently, there has been significant progress in the understanding of mitophagy in yeast. Atg32, a mitochondrial outer membrane receptor, is indispensable for mitophagy. Phosphorylation of Atg32 is an initial cue for selective mitochondrial degradation. Atg32 expression and phosphorylation regulate the induction and efficiency of mitophagy. In addition to Atg32-related processes, recent studies have revealed that mitochondrial fission and the mitochondria-endoplasmic reticulum (ER) contact site may play important roles in mitophagy. Mitochondrial fission is required to regulate mitochondrial size. Mitochondria-ER contact is mediated by the ER-mitochondria encounter structure and is important to supply lipids from the ER for autophagosome biogenesis for mitophagy. Mitophagy is physiologically important for regulating the number of mitochondria, diminishing mitochondrial production of reactive oxygen species, and extending chronological lifespan under caloric restriction. These findings suggest that mitophagy contributes to maintain mitochondrial homeostasis. However, whether mitophagy selectively degrades damaged or dysfunctional mitochondria in yeast is unknown.
Collapse
Affiliation(s)
- Tomotake Kanki
- Laboratory of Biosignaling, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan.
| | - Kentaro Furukawa
- Laboratory of Biosignaling, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Shun-ichi Yamashita
- Laboratory of Biosignaling, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| |
Collapse
|
30
|
Okamoto K. Organellophagy: eliminating cellular building blocks via selective autophagy. ACTA ACUST UNITED AC 2014; 205:435-45. [PMID: 24862571 PMCID: PMC4033777 DOI: 10.1083/jcb.201402054] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Maintenance of organellar quality and quantity is critical for cellular homeostasis and adaptation to variable environments. Emerging evidence demonstrates that this kind of control is achieved by selective elimination of organelles via autophagy, termed organellophagy. Organellophagy consists of three key steps: induction, cargo tagging, and sequestration, which involve signaling pathways, organellar landmark molecules, and core autophagy-related proteins, respectively. In addition, posttranslational modifications such as phosphorylation and ubiquitination play important roles in recruiting and tailoring the autophagy machinery to each organelle. The basic principles underlying organellophagy are conserved from yeast to mammals, highlighting its biological relevance in eukaryotic cells.
Collapse
Affiliation(s)
- Koji Okamoto
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
31
|
Liu L, Sakakibara K, Chen Q, Okamoto K. Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res 2014; 24:787-95. [PMID: 24903109 PMCID: PMC4085769 DOI: 10.1038/cr.2014.75] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mitophagy, or mitochondria autophagy, plays a critical role in selective removal of damaged or unwanted mitochondria. Several protein receptors, including Atg32 in yeast, NIX/BNIP3L, BNIP3 and FUNDC1 in mammalian systems, directly act in mitophagy. Atg32 interacts with Atg8 and Atg11 on the surface of mitochondria, promoting core Atg protein assembly for mitophagy. NIX/BNIP3L, BNIP3 and FUNDC1 also have a classic motif to directly bind LC3 (Atg8 homolog in mammals) for activation of mitophagy. Recent studies have shown that receptor-mediated mitophagy is regulated by reversible protein phosphorylation. Casein kinase 2 (CK2) phosphorylates Atg32 and activates mitophagy in yeast. In contrast, in mammalian cells Src kinase and CK2 phosphorylate FUNDC1 to prevent mitophagy. Notably, in response to hypoxia and FCCP treatment, the mitochondrial phosphatase PGAM5 dephosphorylates FUNDC1 to activate mitophagy. Here, we mainly focus on recent advances in our understanding of the molecular mechanisms underlying the activation of receptor-mediated mitophagy and the implications of this catabolic process in health and disease.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kaori Sakakibara
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Quan Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Koji Okamoto
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|