1
|
Barik S, Panda AK, Biswas VK, Das S, Chakraborty A, Beura S, Modak R, Raghav SK, Kar RK, Biswas A. Lysine acetylation of Hsp16.3: Effect on its structure, chaperone function and influence towards the growth of Mycobacterium tuberculosis. Int J Biol Macromol 2024; 268:131763. [PMID: 38657928 DOI: 10.1016/j.ijbiomac.2024.131763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/09/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Hsp16.3 plays a vital role in the slow growth of Mycobacterium tuberculosis via its chaperone function. Many secretory proteins, including Hsp16.3 undergo acetylation in vivo. Seven lysine (K) residues (K64, K78, K85, K114, K119, K132 and K136) in Hsp16.3 are acetylated inside pathogen. However, how lysine acetylation affects its structure, chaperone function and pathogen's growth is still elusive. We examined these aspects by executing in vitro chemical acetylation (acetic anhydride modification) and by utilizing a lysine acetylation mimic mutant (Hsp16.3-K64Q/K78Q/K85Q/K114Q/K119Q/K132Q/K136Q). Far- and near-UV CD measurements revealed that the chemically acetylated proteins(s) and acetylation mimic mutant has altered secondary and tertiary structure than unacetylated/wild-type protein. The chemical modification and acetylation mimic mutation also disrupted the oligomeric assembly, increased surface hydrophobicity and reduced stability of Hsp16.3, as revealed by GF-HPLC, 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid binding and urea denaturation experiments, respectively. These structural changes collectively led to an enhancement in chaperone function (aggregation and thermal inactivation prevention ability) of Hsp16.3. Moreover, when the H37Rv strain expressed the acetylation mimic mutant protein, its growth was slower in comparison to the strain expressing the wild-type/unacetylated Hsp16.3. Altogether, these findings indicated that lysine acetylation improves the chaperone function of Hsp16.3 which may influence pathogen's growth in host environment.
Collapse
Affiliation(s)
- Subhashree Barik
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Alok Kumar Panda
- Environmental Science Laboratory, School of Applied Sciences, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Viplov Kumar Biswas
- Immunogenomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha 751023, India; School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India
| | - Sheetal Das
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Center for Nanotechnology, Indian Institute of Technology Guwahati, Assam, India
| | - Ayon Chakraborty
- University Institute of Biotechnology, University Centre for Research & Development, Chandigarh University, Mohali, India
| | - Shibangini Beura
- Infection and Epigenetics Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India
| | - Rahul Modak
- Infection and Epigenetics Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India
| | - Sunil Kumar Raghav
- Immunogenomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha 751023, India
| | - Rajiv K Kar
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Center for Nanotechnology, Indian Institute of Technology Guwahati, Assam, India
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India.
| |
Collapse
|
2
|
Rehna EA, Munavar H, Dharmalingam K, Shakila M, Natesan S. Mycobacterium leprae hsp18 promoter-EGFP transcriptional fusion construct: Environmental stress and strain-specific expression. Gene 2022; 851:147034. [DOI: 10.1016/j.gene.2022.147034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
|
3
|
Nandi SK, Panda AK, Chakraborty A, Rathee S, Roy I, Barik S, Mohapatra SS, Biswas A. Role of ATP-Small Heat Shock Protein Interaction in Human Diseases. Front Mol Biosci 2022; 9:844826. [PMID: 35252358 PMCID: PMC8890618 DOI: 10.3389/fmolb.2022.844826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/18/2022] [Indexed: 01/18/2023] Open
Abstract
Adenosine triphosphate (ATP) is an important fuel of life for humans and Mycobacterium species. Its potential role in modulating cellular functions and implications in systemic, pulmonary, and ocular diseases is well studied. Plasma ATP has been used as a diagnostic and prognostic biomarker owing to its close association with disease’s progression. Several stresses induce altered ATP generation, causing disorders and illnesses. Small heat shock proteins (sHSPs) are dynamic oligomers that are dominantly β-sheet in nature. Some important functions that they exhibit include preventing protein aggregation, enabling protein refolding, conferring thermotolerance to cells, and exhibiting anti-apoptotic functions. Expression and functions of sHSPs in humans are closely associated with several diseases like cataracts, cardiovascular diseases, renal diseases, cancer, etc. Additionally, there are some mycobacterial sHSPs like Mycobacterium leprae HSP18 and Mycobacterium tuberculosis HSP16.3, whose molecular chaperone functions are implicated in the growth and survival of pathogens in host species. As both ATP and sHSPs, remain closely associated with several human diseases and survival of bacterial pathogens in the host, therefore substantial research has been conducted to elucidate ATP-sHSP interaction. In this mini review, the impact of ATP on the structure and function of human and mycobacterial sHSPs is discussed. Additionally, how such interactions can influence the onset of several human diseases is also discussed.
Collapse
Affiliation(s)
- Sandip K. Nandi
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, India
- *Correspondence: Sandip K. Nandi, ; Ashis Biswas,
| | - Alok Kumar Panda
- School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, India
| | - Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Shivani Rathee
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, India
| | - Ipsita Roy
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Subhashree Barik
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | | | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
- *Correspondence: Sandip K. Nandi, ; Ashis Biswas,
| |
Collapse
|
4
|
Chakraborty A, Ghosh R, Biswas A. Interaction of constituents of MDT regimen for leprosy with Mycobacterium leprae HSP18: impact on its structure and function. FEBS J 2021; 289:832-853. [PMID: 34555271 DOI: 10.1111/febs.16212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/18/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022]
Abstract
Mycobacterium leprae, the causative organism of leprosy, harbors many antigenic proteins, and one such protein is the 18-kDa antigen. This protein belongs to the small heat shock protein family and is commonly known as HSP18. Its chaperone function plays an important role in the growth and survival of M. leprae inside infected hosts. HSP18/18-kDa antigen is often used as a diagnostic marker for determining the efficacy of multidrug therapy (MDT) in leprosy. However, whether MDT drugs (dapsone, clofazimine, and rifampicin) do interact with HSP18 and how these interactions affect its structure and chaperone function is still unclear. Here, we report evidence of HSP18-dapsone/clofazimine/rifampicin interaction and its impact on the structure and chaperone function of HSP18. These three drugs interact efficiently with HSP18 (having submicromolar binding affinity) with 1 : 1 stoichiometry. Binding of these MDT drugs to the 'α-crystallin domain' of HSP18 alters its secondary structure and tryptophan micro-environment. Furthermore, surface hydrophobicity, oligomeric size, and thermostability of the protein are reduced upon interaction with these three drugs. Eventually, all these structural alterations synergistically decrease the chaperone function of HSP18. Interestingly, the effect of rifampicin on the structure, stability, and chaperone function of this mycobacterial small heat shock protein is more pronounced than the other two MDT drugs. This reduction in the chaperone function of HSP18 may additionally abate M. leprae survivability during multidrug treatment. Altogether, this study provides a possible foundation for rational designing and development of suitable HSP18 inhibitors in the context of effective treatment of leprosy.
Collapse
Affiliation(s)
- Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, India
| | - Rajesh Ghosh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, India
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, India
| |
Collapse
|
5
|
Nandi SK, Chakraborty A, Panda AK, Biswas A. M. leprae HSP18 suppresses copper (II) mediated ROS generation: Effect of redox stress on its structure and function. Int J Biol Macromol 2020; 146:648-660. [DOI: 10.1016/j.ijbiomac.2019.12.215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/16/2019] [Accepted: 12/24/2019] [Indexed: 11/25/2022]
|
6
|
Chakraborty A, Biswas A. Structure, stability and chaperone function of Mycobacterium leprae Heat Shock Protein 18 are differentially affected upon interaction with gold and silver nanoparticles. Int J Biol Macromol 2020; 152:250-260. [PMID: 32084461 DOI: 10.1016/j.ijbiomac.2020.02.182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 12/19/2022]
Abstract
Gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) have several biomedical applications. However, the effective usage of these two nanoparticles is impeded due to limited understanding of their interaction with proteins including small heat shock proteins (sHSPs). Specifically, no evidences of interaction of these two nanoparticles with HSP18 (an antigenic protein) which is an important factor for the growth and survival of M. leprae (the causative organism of leprosy) are available in the literature. Here, we report for the first time evidences of "HSP18-AuNPs/AgNPs interaction" and its impact on the structure and chaperone function of HSP18. Interaction of citrate-capped AuNPs/AgNPs (~20 nm diameter) to HSP18 alters the secondary and tertiary structure of HSP18 in a distinctly opposite manner; while "HSP18-AuNPs interaction" leads to oligomeric association, "HSP18-AgNPs interaction" results in oligomeric dissociation of the protein. Surface hydrophobicity, thermal stability, chaperone function of HSP18 and survival of thermally stressed E. coli harbouring HSP18 are enhanced upon AuNPs interaction, while all of them are reduced upon interaction with AgNPs. Altogether, our study reveals that HSP18 is an important drug target in leprosy and its chaperone function may possibly plays a vital role in the growth and survival of M. leprae pathogen in infected hosts.
Collapse
Affiliation(s)
- Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India.
| |
Collapse
|
7
|
Panda AK, Chakraborty A, Nandi SK, Biswas A. The impact of different mutations at arginine141 on the structure, subunit exchange dynamics and chaperone activity of Hsp16.3. Proteins 2019; 88:759-774. [PMID: 31860142 DOI: 10.1002/prot.25864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/27/2019] [Accepted: 12/14/2019] [Indexed: 11/07/2022]
Abstract
Hsp16.3, a molecular chaperone, plays a vital role in the growth and survival of Mycobacterium tuberculosis inside the host. We previously reported that deletion of three amino acid residues (142 STN144 ) from C-terminal extension (CTE) of Hsp16.3 triggers its structural perturbation and increases its chaperone activity, which reaches its apex upon the deletion of its entire CTE (141 RSTN144 ). Thus, we hypothesized that Arg141 (R141) and Ser142 (S142) in the CTE of Hsp16.3 possibly hold the key in maintaining its native-like structure and chaperone activity. To test this hypothesis, we generated two deletion mutants in which R141 and S142 were deleted individually (Hsp16.3ΔR141 and Hsp16.3ΔS142) and three substitution mutants in which R141 was replaced by lysine (Hsp16.3R141K), alanine (Hsp16.3R141A), and glutamic acid (Hsp16.3R141E), respectively. Hsp16.3ΔS142 or Hsp16.3R141K mutant has native-like structure and chaperone activity. Deletion of R141 from the CTE (Hsp16.3ΔR141) perturbs the secondary and tertiary structure, lowers the subunit exchange dynamics and decreases the chaperone activity of Hsp16.3. But, the substitution of R141 with alanine (Hsp16.3R141A) or glutamic acid (Hsp16.3R141E) perturbs its secondary and tertiary structure. Surprisingly, such charge tampering of R141 enhances the subunit exchange dynamics and chaperone activity of Hsp16.3. Interestingly, neither the deletion of R141/S142 nor the substitution of R141 with lysine, alanine and glutamic acid affects the oligomeric mass/size of Hsp16.3. Overall, our study suggests that R141 (especially the positive charge on R141) plays a crucial role in maintaining the native-like structure as well as in regulating subunit exchange dynamics and chaperone activity of Hsp16.3.
Collapse
Affiliation(s)
- Alok Kumar Panda
- School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni, Bhubaneswar, India
| | - Sandip Kumar Nandi
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni, Bhubaneswar, India
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni, Bhubaneswar, India
| |
Collapse
|
8
|
Nandi SK, Rakete S, Nahomi RB, Michel C, Dunbar A, Fritz KS, Nagaraj RH. Succinylation Is a Gain-of-Function Modification in Human Lens αB-Crystallin. Biochemistry 2019; 58:1260-1274. [PMID: 30758948 DOI: 10.1021/acs.biochem.8b01053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acylation of lysine residues is a common post-translational modification of cellular proteins. Here, we show that lysine succinylation, a type of acylation, occurs in human lens proteins. All of the major crystallins exhibited Nε-succinyllysine (SuccK) residues. Quantification of SuccK in human lens proteins (from donors between the ages of 20 and 73 years) by LC-MS/MS showed a range between 1.2 and 14.3 pmol/mg lens protein. The total SuccK levels were slightly reduced in aged lenses (age > 60 years) relative to young lenses (age < 30 years). Immunohistochemical analyses revealed that SuccK was present in epithelium and fiber cells. Western blotting and immunoprecipitation experiments revealed that SuccK is particularly prominent in αB-crystallin, and succinylation in vitro revealed that αB-crystallin is more prone to succinylation than αA-crystallin. Mass spectrometric analyses showed succinylation at K72, K90, K92, K166, K175, and potentially K174 in human lens αB-crystallin. We detected succinylation at K72, K82, K90, K92, K103, K121, K150, K166, K175, and potentially K174 by mass spectrometry in mildly succinylated αB-crystallin. Mild succinylation improved the chaperone activity of αB-crystallin along with minor perturbation in tertiary and quaternary structure of the protein. These observations imply that succinylation is beneficial to αB-crystallin by improving its chaperone activity with only mild conformational alterations.
Collapse
|
9
|
Bhandari S, Biswas S, Chaudhary A, Dutta S, Suguna K. Dodecameric structure of a small heat shock protein from Mycobacterium marinum M. Proteins 2019; 87:365-379. [PMID: 30632633 DOI: 10.1002/prot.25657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/24/2018] [Accepted: 01/05/2019] [Indexed: 12/31/2022]
Abstract
Small heat shock proteins (sHSPs) are ATP-independent molecular chaperones present ubiquitously in all kingdoms of life. Their low molecular weight subunits associate to form higher order structures. Under conditions of stress, sHSPs prevent aggregation of substrate proteins by undergoing rapid changes in their conformation or stoichiometry. Polydispersity and dynamic nature of these proteins have made structural investigations through crystallography a daunting task. In pathogens like Mycobacteria, sHSPs are immuno-dominant antigens, enabling survival of the pathogen within the host and contributing to disease persistence. We characterized sHSPs from Mycobacterium marinum M and determined the crystal structure of one of these. The protein crystallized in three different conditions as dodecamers, with dimers arranged in a tetrahedral fashion to form a closed cage-like architecture. Interestingly, we found a pentapeptide bound to the dodecamers revealing one of the modes of sHSP-substrate interaction. Further, we have observed that ATP inhibits the chaperoning activity of the protein.
Collapse
Affiliation(s)
- Spraha Bhandari
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Sreeparna Biswas
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Anuradha Chaudhary
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Kaza Suguna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
10
|
Nandi SK, Chakraborty A, Panda AK, Kar RK, Bhunia A, Biswas A. Evidences for zinc (II) and copper (II) ion interactions with Mycobacterium leprae HSP18: Effect on its structure and chaperone function. J Inorg Biochem 2018; 188:62-75. [DOI: 10.1016/j.jinorgbio.2018.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/01/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
|
11
|
Chakraborty A, Nandi SK, Panda AK, Mahapatra PP, Giri S, Biswas A. Probing the structure-function relationship of Mycobacterium leprae HSP18 under different UV radiations. Int J Biol Macromol 2018; 119:604-616. [DOI: 10.1016/j.ijbiomac.2018.07.151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/01/2018] [Accepted: 07/23/2018] [Indexed: 02/03/2023]
|
12
|
Sharma A, Equbal MJ, Pandey S, Sheikh JA, Ehtesham NZ, Hasnain SE, Chaudhuri TK. Immunodominant protein MIP_05962 from Mycobacterium indicus pranii displays chaperone activity. FEBS J 2017; 284:1338-1354. [PMID: 28296245 DOI: 10.1111/febs.14057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/23/2017] [Accepted: 03/07/2017] [Indexed: 12/14/2022]
Abstract
Tuberculosis, a contagious disease of infectious origin is currently a major cause of deaths worldwide. Mycobacterium indicus pranii (MIP), a saprophytic nonpathogen and a potent immunomodulator is currently being investigated as an intervention against tuberculosis along with many other diseases with positive outcome. The apparent paradox of multiple chaperones in mycobacterial species and enigma about the cellular functions of the client proteins of these chaperones need to be explored. Chaperones are the known immunomodulators; thus, there is need to exploit the proteome of MIP for identification and characterization of putative chaperones. One of the immunogenic proteins, MIP_05962 is a member of heat shock protein (HSP) 20 family due to the presence of α-crystallin domain, and has amino acid similarity with Mycobacterium lepraeHSP18 protein. The diverse functions of M. lepraeHSP18 in stress conditions implicate MIP_05962 as an important protein that needs to be explored. Biophysical and biochemical characterization of the said protein proved it to be a chaperone. The observations of aggregation prevention and refolding of substrate proteins in the presence of MIP_05962 along with interaction with non-native proteins, surface hydrophobicity, formation of large oligomers, in-vivo thermal rescue of Escherichia coli expressing MIP_05962, enhancing solubility of insoluble protein maltodextrin glucosidase (MalZ) under in-vivo conditions, and thermal stability and reversibility confirmed MIP_05962 as a molecular chaperone.
Collapse
Affiliation(s)
- Ashish Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Md Javed Equbal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Saurabh Pandey
- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Javaid A Sheikh
- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Nasreen Z Ehtesham
- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Seyed E Hasnain
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India.,Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, India
| | - Tapan K Chaudhuri
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
13
|
Panda AK, Chakraborty A, Nandi SK, Kaushik A, Biswas A. The C‐terminal extension of
Mycobacterium tuberculosis
Hsp16.3 regulates its oligomerization, subunit exchange dynamics and chaperone function. FEBS J 2017; 284:277-300. [DOI: 10.1111/febs.13975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 11/01/2016] [Accepted: 11/22/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Alok Kumar Panda
- School of Basic Sciences Indian Institute of Technology Bhubaneswar India
| | - Ayon Chakraborty
- School of Basic Sciences Indian Institute of Technology Bhubaneswar India
| | - Sandip Kumar Nandi
- School of Basic Sciences Indian Institute of Technology Bhubaneswar India
| | - Abhishek Kaushik
- G. N. Ramachandran Protein Center Council of Scientific and Industrial Research Institute of Microbial Technology Chandigarh India
| | - Ashis Biswas
- School of Basic Sciences Indian Institute of Technology Bhubaneswar India
| |
Collapse
|
14
|
Marada A, Karri S, Singh S, Allu PK, Boggula Y, Krishnamoorthy T, Guruprasad L, V Sepuri NB. A Single Point Mutation in Mitochondrial Hsp70 Cochaperone Mge1 Gains Thermal Stability and Resistance. Biochemistry 2016; 55:7065-7072. [DOI: 10.1021/acs.biochem.6b00232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Adinarayana Marada
- Department
of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, T.S., India
| | - Srinivasu Karri
- Department
of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, T.S., India
| | - Swati Singh
- School
of Chemistry, University of Hyderabad, Hyderabad 500046, T.S., India
| | - Praveen Kumar Allu
- Department
of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, T.S., India
| | - Yerranna Boggula
- Department
of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, T.S., India
| | - Thanuja Krishnamoorthy
- Department
of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, T.S., India
| | - Lalitha Guruprasad
- School
of Chemistry, University of Hyderabad, Hyderabad 500046, T.S., India
| | - Naresh Babu V Sepuri
- Department
of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, T.S., India
| |
Collapse
|
15
|
Nandi SK, Chakraborty A, Panda AK, Biswas A. Conformational perturbation, hydrophobic interactions and oligomeric association are responsible for the enhanced chaperone function of Mycobacterium leprae HSP18 under pre-thermal condition. RSC Adv 2016. [DOI: 10.1039/c6ra00167j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chaperone function of HSP18 is enhanced upon pre-heating at 60 °C and above which may be due to structural alterations.
Collapse
Affiliation(s)
- Sandip Kumar Nandi
- School of Basic Sciences
- Indian Institute of Technology Bhubaneswar
- Bhubaneswar-751 013
- India
| | - Ayon Chakraborty
- School of Basic Sciences
- Indian Institute of Technology Bhubaneswar
- Bhubaneswar-751 013
- India
| | - Alok Kumar Panda
- School of Basic Sciences
- Indian Institute of Technology Bhubaneswar
- Bhubaneswar-751 013
- India
| | - Ashis Biswas
- School of Basic Sciences
- Indian Institute of Technology Bhubaneswar
- Bhubaneswar-751 013
- India
| |
Collapse
|
16
|
Nandi SK, Panda AK, Chakraborty A, Ray SS, Biswas A. Role of Subunit Exchange and Electrostatic Interactions on the Chaperone Activity of Mycobacterium leprae HSP18. PLoS One 2015; 10:e0129734. [PMID: 26098662 PMCID: PMC4476693 DOI: 10.1371/journal.pone.0129734] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/12/2015] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium leprae HSP18, a major immunodominant antigen of M. leprae pathogen, is a small heat shock protein. Previously, we reported that HSP18 is a molecular chaperone that prevents aggregation of different chemically and thermally stressed client proteins and assists refolding of denatured enzyme at normal temperature. We also demonstrated that it can efficiently prevent the thermal killing of E. coli at higher temperature. However, molecular mechanism behind the chaperone function of HSP18 is still unclear. Therefore, we studied the structure and chaperone function of HSP18 at normal temperature (25°C) as well as at higher temperatures (31–43°C). Our study revealed that the chaperone function of HSP18 is enhanced significantly with increasing temperature. Far- and near-UV CD experiments suggested that its secondary and tertiary structure remain intact in this temperature range (25–43°C). Besides, temperature has no effect on the static oligomeric size of this protein. Subunit exchange study demonstrated that subunits of HSP18 exchange at 25°C with a rate constant of 0.018 min-1. Both rate of subunit exchange and chaperone activity of HSP18 is found to increase with rise in temperature. However, the surface hydrophobicity of HSP18 decreases markedly upon heating and has no correlation with its chaperone function in this temperature range. Furthermore, we observed that HSP18 exhibits diminished chaperone function in the presence of NaCl at 25°C. At elevated temperatures, weakening of interactions between HSP18 and stressed client proteins in the presence of NaCl results in greater reduction of its chaperone function. The oligomeric size, rate of subunit exchange and structural stability of HSP18 were also found to decrease when electrostatic interactions were weakened. These results clearly indicated that subunit exchange and electrostatic interactions play a major role in the chaperone function of HSP18.
Collapse
Affiliation(s)
- Sandip Kumar Nandi
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Alok Kumar Panda
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | | | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
- * E-mail:
| |
Collapse
|
17
|
Nandi SK, Chakraborty A, Panda AK, Sinha Ray S, Kar RK, Bhunia A, Biswas A. Interaction of ATP with a small heat shock protein from Mycobacterium leprae: effect on its structure and function. PLoS Negl Trop Dis 2015; 9:e0003661. [PMID: 25811190 PMCID: PMC4374918 DOI: 10.1371/journal.pntd.0003661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/28/2015] [Indexed: 11/18/2022] Open
Abstract
Adenosine-5'-triphosphate (ATP) is an important phosphate metabolite abundantly found in Mycobacterium leprae bacilli. This pathogen does not derive ATP from its host but has its own mechanism for the generation of ATP. Interestingly, this molecule as well as several antigenic proteins act as bio-markers for the detection of leprosy. One such bio-marker is the 18 kDa antigen. This 18 kDa antigen is a small heat shock protein (HSP18) whose molecular chaperone function is believed to help in the growth and survival of the pathogen. But, no evidences of interaction of ATP with HSP18 and its effect on the structure and chaperone function of HSP18 are available in the literature. Here, we report for the first time evidences of "HSP18-ATP" interaction and its consequences on the structure and chaperone function of HSP18. TNP-ATP binding experiment and surface plasmon resonance measurement showed that HSP18 interacts with ATP with a sub-micromolar binding affinity. Comparative sequence alignment between M. leprae HSP18 and αB-crystallin identified the sequence 49KADSLDIDIE58 of HSP18 as the Walker-B ATP binding motif. Molecular docking studies revealed that β4-β8 groove/strands as an ATP interactive region in M. leprae HSP18. ATP perturbs the tertiary structure of HSP18 mildly and makes it less susceptible towards tryptic cleavage. ATP triggers exposure of additional hydrophobic patches at the surface of HSP18 and induces more stability against chemical and thermal denaturation. In vitro aggregation and thermal inactivation assays clearly revealed that ATP enhances the chaperone function of HSP18. Our studies also revealed that the alteration in the chaperone function of HSP18 is reversible and is independent of ATP hydrolysis. As the availability and binding of ATP to HSP18 regulates its chaperone function, this functional inflection may play an important role in the survival of M. leprae in hosts.
Collapse
Affiliation(s)
- Sandip Kumar Nandi
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Alok Kumar Panda
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | | | | | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Kolkata, India
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
- * E-mail:
| |
Collapse
|
18
|
DiMauro MA, Nandi SK, Raghavan CT, Kar RK, Wang B, Bhunia A, Nagaraj RH, Biswas A. Acetylation of Gly1 and Lys2 promotes aggregation of human γD-crystallin. Biochemistry 2014; 53:7269-82. [PMID: 25393041 PMCID: PMC4245984 DOI: 10.1021/bi501004y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
The human lens contains three major
protein families: α-,
β-, and γ-crystallin. Among the several variants of γ-crystallin
in the human lens, γD-crystallin is a major form. γD-Crystallin
is primarily present in the nuclear region of the lens and contains
a single lysine residue at the second position (K2). In this study,
we investigated the acetylation of K2 in γD-crystallin in aging
and cataractous human lenses. Our results indicated that K2 is acetylated
at an early age and that the amount of K2-acetylated γD-crystallin
increased with age. Mass spectrometric analysis revealed that in addition
to K2, glycine 1 (G1) was acetylated in γD-crystallin from human
lenses and in γD-crystallin acetylated in vitro. The chaperone ability of α-crystallin for acetylated γD-crystallin
was lower than that for the nonacetylated protein. The tertiary structure
and the microenvironment of the cysteine residues were significantly
altered by acetylation. The acetylated protein exhibited higher surface
hydrophobicity, was unstable against thermal and chemical denaturation,
and exhibited a higher propensity to aggregate at 80 °C in comparison
to the nonacetylated protein. Acetylation enhanced the GdnHCl-induced
unfolding and slowed the subsequent refolding of γD-crystallin.
Theoretical analysis indicated that the acetylation of K2 and G1 reduced
the structural stability of the protein and brought the distal cysteine
residues (C18 and C78) into close proximity. Collectively, these results
indicate that the acetylation of G1 and K2 residues in γD-crystallin
likely induced a molten globule-like structure, predisposing it to
aggregation, which may account for the high content of aggregated
proteins in the nucleus of aged and cataractous human lenses.
Collapse
Affiliation(s)
- Michael A DiMauro
- Department of Ophthalmology and Visual Sciences and ‡Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine , Cleveland, Ohio, United States
| | | | | | | | | | | | | | | |
Collapse
|