1
|
Fu X, Li X, Wang W, Li J. DPP3 promotes breast cancer tumorigenesis by stabilizing FASN and promoting lipid synthesis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:805-818. [PMID: 38655619 PMCID: PMC11177116 DOI: 10.3724/abbs.2024054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/29/2024] [Indexed: 04/26/2024] Open
Abstract
DPP3, a dipeptidyl peptidase, participates in a variety of pathophysiological processes. DPP3 is upregulated in cancer and might serve as a key factor in the tumorigenesis and progression of various malignancies. However, its specific role and molecular mechanism are still unknown. In this study, the expression of DPP3 in breast cancer tissues is analyzed using TCGA database. Kaplan-Meier survival analysis is performed to estimate the effect of DPP3 on the survival outcomes. To explore the biological function and mechanisms of DPP3 in breast cancer, biochemical and cell biology assays are conducted in vitro. DPP3 expresses at a higher level in breast cancer tissues than that in adjacent tissues in both TCGA database and clinical samples. Patients with high expression of DPP3 have poor survival outcomes. The proliferation and migration abilities of tumor cells with stable DPP3 knockout in breast cancer cell lines are significantly inhibited, and apoptosis is increased in vitro. GSEA analysis shows that DPP3 can affect lipid metabolism and fatty acid synthesis in tumors. Subsequent experiments show that DPP3 could stabilize FASN expression and thus promote fatty acid synthesis in tumor cells. The results of the metabolomic analysis also confirm that DPP3 can affect the content of free fatty acids. This study demonstrates that DPP3 plays a role in the reprogramming of fatty acid metabolism in tumors and is associated with poor prognosis in breast cancer patients. These findings will provide a new therapeutic target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Xiaoyu Fu
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhan430060China
- Department of General SurgeryRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Xu Li
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesTaiKang Center for Life and Medical SciencesWuhan UniversityWuhan430072China
| | - Weixing Wang
- Department of General SurgeryRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Juanjuan Li
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhan430060China
| |
Collapse
|
2
|
Arora M, Kumari S, Kadian L, Anupa G, Singh J, Kumar A, Verma D, Pramanik R, Kumar S, Yadav R, Chopra A, Chauhan S. Involvement of DPP3 in modulating oncological features and oxidative stress response in esophageal squamous cell carcinoma. Biosci Rep 2023; 43:BSR20222472. [PMID: 37531267 PMCID: PMC10500228 DOI: 10.1042/bsr20222472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 07/13/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023] Open
Abstract
Resistance to therapy in esophageal squamous cell carcinoma (ESCC) is a critical clinical problem and identification of novel therapeutic targets is highly warranted. Dipeptidyl peptidase III (DPP3) is a zinc-dependent aminopeptidase and functions in the terminal stages of the protein turnover. Several studies have reported overexpression and oncogenic functions of DPP3 in numerous malignancies. The present study aimed to determine the expression pattern and functional role of DPP3 in ESCC. DPP3 expression was assessed in normal and tumor tissues using quantitative real-time (qRT)-PCR and corroborated with ESCC gene expression datasets from Gene Expression Omnibus (GEO) and The cancer genome atlas (TCGA). DPP3 stable knockdown was performed in ESCC cells by shRNA and its effect on cell proliferation, migration, cell cycle, apoptosis, and activation of nuclear factor erythroid 2-related factor 2 (NRF2) pathway was assessed. The results suggested that DPP3 is overexpressed in ESCC and its knockdown leads to reduced proliferation, increased apoptosis, and inhibited migration of ESCC cells. Additionally, DPP3 knockdown leads to down-regulation of the NRF2 pathway proteins, such as NRF2, G6PD, and NQO1 along with increased sensitivity toward oxidative stress-induced cell death and chemotherapy. Conclusively, these results demonstrate critical role of DPP3 in ESCC and DPP3/NRF2 axis may serve as an attractive therapeutic target against chemoresistance in this malignancy.
Collapse
Affiliation(s)
- Mohit Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sarita Kumari
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Lokesh Kadian
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Geethadevi Anupa
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Jay Singh
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Anurag Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Deepika Verma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Raja Pramanik
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Sunil Kumar
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Rajni Yadav
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Anita Chopra
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam S. Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Fischer A, Manske K, Seissler J, Wohlleber D, Simm N, Wolf-van Buerck L, Knolle P, Schnieke A, Fischer K. Cytokine-inducible promoters to drive dynamic transgene expression: The "Smart Graft" strategy. Xenotransplantation 2020; 27:e12634. [PMID: 32808410 DOI: 10.1111/xen.12634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/03/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ubiquitous expression of T-cell regulatory transgenes such as the cytotoxic T lymphocyte-associated antigen 4 (CTLA4) or the high-affinity variant LEA29Y improves xeno graft survival. Such donor pigs are however immunocompromised and susceptible to infection. Continous high expression of CTLA4 or LEA29Y in the graft could also compromise the health status of recipients. The novel "Smart Graft" strategy is likely to avoid these problems by controlling the expression of T-cell regulatory transgenes as and when required. METHODS Candidate promoters inducible by inflammatory cytokines were identified by in silico screening for potential NF-κB binding sites. Basal promoter levels and responsiveness to TNFα and IL1ß were quantified by expression of secreted embryonic alkaline phosphatase in cultured cells. Promoters were modified to increase responsiveness by removing regulatory elements or adding SP-1 or NF-κB binding sites and again tested in vitro. The most promising promoters were then assessed in vivo. Porcine cells expressing inducible Renilla luciferase constructs were transplanted into immunodeficient NOD-Scid-IL2 receptor gammanull (NSG) mice. Following engraftment, the recipient's immune system was reconstituted by splenocyte transfer raising an immune response to the porcine xenograft. The resulting induction of promoter activity was detected by in vivo bioimaging. RESULTS Three human (hTNFAIP1, hVCAM1 and hCCL2), and one porcine promoter (pA20) were chosen for in vitro tests. In all experiments, the semi-synthetic and inducible ELAM promoter as well as the CAG promoter were used as references. In contrast to hTNFAIP1 and hVCAM1 the ELAM, hCCL2 and pA20 promoters showed significant induction after cytokine challenge. The hCCL2 and pA20 promoters were further optimized, resulting in increased responsiveness to TNFα and IL1ß. Cytokine-dependent upregulation of promoter activity was tested in vivo, where the ELAM and the optimized hCCL2 promoters showed a 2-fold upregulation, while one of the improved A20 promoters showed almost 10-fold upregulation. Our results also revealed more than 4-fold cytokine inducibility of the CAG promoter. CONCLUSION This is the first in vivo comparison of existing and newly designed cytokine-inducible promoters. Optimization of promoter structure resulted in almost 10-fold inducibility of promoter activity. Such a rapid and dynamically regulated response to inflammation and cell damage could reduce initial graft rejection, making the "Smart Graft" approach a useful means of modulating the expression of immune regulatory transgenes to avoid deleterious effects on porcine and human health. Expressing transgenes in this fashion could provide a safer organ for transplantation.
Collapse
Affiliation(s)
- Andrea Fischer
- Livestock Biotechnology, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Katrin Manske
- Institute of Molecular Immunology and Experimental Oncology, Technische Universität München, Munich, Germany
| | - Jochen Seissler
- Diabetes Center, Medizinische Klinik und Polyklinik IV, Klinikum der Universität München, Munich, Germany
| | - Dirk Wohlleber
- Institute of Molecular Immunology and Experimental Oncology, Technische Universität München, Munich, Germany
| | - Nina Simm
- Livestock Biotechnology, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Lelia Wolf-van Buerck
- Diabetes Center, Medizinische Klinik und Polyklinik IV, Klinikum der Universität München, Munich, Germany
| | - Percy Knolle
- Institute of Molecular Immunology and Experimental Oncology, Technische Universität München, Munich, Germany
| | - Angelika Schnieke
- Livestock Biotechnology, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Konrad Fischer
- Livestock Biotechnology, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| |
Collapse
|
4
|
Menale C, Robinson LJ, Palagano E, Rigoni R, Erreni M, Almarza AJ, Strina D, Mantero S, Lizier M, Forlino A, Besio R, Monari M, Vezzoni P, Cassani B, Blair HC, Villa A, Sobacchi C. Absence of Dipeptidyl Peptidase 3 Increases Oxidative Stress and Causes Bone Loss. J Bone Miner Res 2019; 34:2133-2148. [PMID: 31295380 PMCID: PMC7203631 DOI: 10.1002/jbmr.3829] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/26/2019] [Accepted: 07/06/2019] [Indexed: 12/29/2022]
Abstract
Controlling oxidative stress through the activation of antioxidant pathways is crucial in bone homeostasis, and impairments of the cellular defense systems involved contribute to the pathogenesis of common skeletal diseases. In this work we focused on the dipeptidyl peptidase 3 (DPP3), a poorly investigated ubiquitous zinc-dependent exopeptidase activating the Keap1-Nrf2 antioxidant pathway. We showed Dpp3 expression in bone and, to understand its role in this compartment, we generated a Dpp3 knockout (KO) mouse model and specifically investigated the skeletal phenotype. Adult Dpp3 KO mice showed a mild growth defect, a significant increase in bone marrow cellularity, and bone loss mainly caused by increased osteoclast activity. Overall, in the mouse model, lack of DPP3 resulted in sustained oxidative stress and in alterations of bone microenvironment favoring the osteoclast compared to the osteoblast lineage. Accordingly, in vitro studies revealed that Dpp3 KO osteoclasts had an inherent increased resorptive activity and ROS production, which on the other hand made them prone to apoptosis. Moreover, absence of DPP3 augmented bone loss after estrogen withdrawal in female mice, further supporting its relevance in the framework of bone pathophysiology. Overall, we show a nonredundant role for DPP3 in the maintenance of bone homeostasis and propose that DPP3 might represent a possible new osteoimmunological player and a marker of human bone loss pathology. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ciro Menale
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, Milan, Italy.,Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Lisa J Robinson
- Department of Pathology, West Virginia University, Morgantown, WV, USA
| | - Eleonora Palagano
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, Milan, Italy.,Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Rosita Rigoni
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, Milan, Italy.,Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Marco Erreni
- Unit of Advanced Optical Microscopy, Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Alejandro J Almarza
- Department of Oral Biology, Department of Bioengineering, McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dario Strina
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, Milan, Italy.,Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Stefano Mantero
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, Milan, Italy.,Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Michela Lizier
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, Milan, Italy.,Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Antonella Forlino
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Roberta Besio
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Marta Monari
- Clinical Investigation Laboratory, Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Paolo Vezzoni
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, Milan, Italy.,Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Barbara Cassani
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, Milan, Italy.,Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Harry C Blair
- Veterans' Affairs Medical Center and Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anna Villa
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, Milan, Italy.,Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Cristina Sobacchi
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, Milan, Italy.,Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| |
Collapse
|
5
|
Prajapati SC, Singh R, Chauhan SS. Human dipeptidyl peptidase III regulates G-protein coupled receptor-dependent Ca2+ concentration in human embryonic kidney 293T cells. Biol Chem 2017; 397:563-9. [PMID: 26887037 DOI: 10.1515/hsz-2016-0117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/15/2016] [Indexed: 01/08/2023]
Abstract
The precise biological function of human dipeptidyl peptidase III (hDPP III) is poorly understood. Using luciferase reporter constructs responsive to change in Ca2+ and/or cAMP and Fura 2-AM fluorometric assay, we show a significant decrease in intracellular Ca2+ following hDPP III overexpression and angiotensin II stimulation in angiotensin II type 1 receptor (G-protein coupled receptor, GPCR) expressing HEK293T cells. Silencing the expression of hDPP III by siRNA reversed the effect of hDPP III overexpression with a concomitant increase in Ca2+. These results, for the first time, show involvement of hDPP III in GPCR dependent Ca2+ regulation in HEK293T cells.
Collapse
|
6
|
Du C, Pan P, Jiang Y, Zhang Q, Bao J, Liu C. Microarray data analysis to identify crucial genes regulated by CEBPB in human SNB19 glioma cells. World J Surg Oncol 2016; 14:258. [PMID: 27716259 PMCID: PMC5054626 DOI: 10.1186/s12957-016-0997-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/30/2016] [Indexed: 01/18/2023] Open
Abstract
Background Glioma is one of the most common primary malignancies in the brain or spine. The transcription factor (TF) CCAAT/enhancer binding protein beta (CEBPB) is important for maintaining the tumor initiating capacity and invasion ability. To investigate the regulation mechanism of CEBPB in glioma, microarray data GSE47352 was analyzed. Methods GSE47352 was downloaded from Gene Expression Omnibus, including three samples of SNB19 human glioma cells transduced with non-target control small hairpin RNA (shRNA) lentiviral vectors for 72 h (normal glioma cells) and three samples of SNB19 human glioma cells transduced with CEBPB shRNA lentiviral vectors for 72 h (CEBPB-silenced glioma cells). The differentially expressed genes (DEGs) were screened using limma package and then annotated. Afterwards, the Database for Annotation, Visualization, and Integrated Discovery (DAVID) software was applied to perform enrichment analysis for the DEGs. Furthermore, the protein-protein interaction (PPI) network and transcriptional regulatory network were constructed using Cytoscape software. Results Total 529 DEGs were identified in the normal glioma cells compared with the CEBPB-silenced glioma cells, including 336 up-regulated and 193 down-regulated genes. The significantly enriched pathways included chemokine signaling pathway (which involved CCL2), focal adhesion (which involved THBS1 and THBS2), TGF-beta signaling pathway (which involved THBS1, THBS2, SMAD5, and SMAD6) and chronic myeloid leukemia (which involved TGFBR2 and CCND1). In the PPI network, CCND1 (degree = 29) and CCL2 (degree = 12) were hub nodes. Additionally, CEBPB and TCF12 might function in glioma through targeting others (CEBPB → TCF12, CEBPB → TGFBR2, and TCF12 → TGFBR2). Conclusions CEBPB might act in glioma by regulating CCL2, CCND1, THBS1, THBS2, SMAD5, SMAD6, TGFBR2, and TCF12.
Collapse
Affiliation(s)
- Chenghua Du
- Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia University for the Nationalities, Huolinhe Street No.1742, Tongliao, Inner Mongolia, 028007, China.
| | - Pan Pan
- Department of Hepatology, Tongliao City Hospital for Infectious Diseases, Tongliao, Inner Mongolia, 028007, China
| | - Yan Jiang
- Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia University for the Nationalities, Huolinhe Street No.1742, Tongliao, Inner Mongolia, 028007, China
| | - Qiuli Zhang
- Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia University for the Nationalities, Huolinhe Street No.1742, Tongliao, Inner Mongolia, 028007, China
| | - Jinsuo Bao
- Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia University for the Nationalities, Huolinhe Street No.1742, Tongliao, Inner Mongolia, 028007, China
| | - Chang Liu
- Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia University for the Nationalities, Huolinhe Street No.1742, Tongliao, Inner Mongolia, 028007, China
| |
Collapse
|
7
|
Human dipeptidyl peptidase III mRNA variant I and II are expressed concurrently in multiple tumor derived cell lines and translated at comparable efficiency in vitro. Mol Biol Rep 2016; 43:457-62. [PMID: 27153830 DOI: 10.1007/s11033-016-3996-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 05/04/2016] [Indexed: 01/06/2023]
Abstract
Dipeptidyl peptidase III (DPP III) is an emerging biomarker of human cancers. Expression, specificity, and function of human DPP III (hDPP III) mRNA variant I (V-I), II (V-II), and III (V-III) are poorly understood. Here, we investigated expression of these variants in multiple human tumor derived cell lines. DNA sequencing revealed concurrent expression of hDPP III V-I and V-II in U87MG (glioblastoma), SCC4 (squamous cell carcinoma), SiHa (carcinoma of uterus) cells. In SKOV1 cells, a cell line derived from ovarian carcinoma where a positive correlation between histological aggressiveness of the malignancy and hDPP III expression has previously been established, only V-II could be detected. Human DPP III V-III, which lacks an in-frame coding sequence, could not be detected in any of these cell lines. 5' untranslated region (UTR) of hDPP III V-II contains nucleotides GCA (-12 to -10 bp) upstream to the translation initiator codon (AUG). These nucleotides are absent from V-I and V-III, however, both V-I and V-II encode for the same hDPP III protein isoform-I. In vitro transcription coupled translation assay using hDPP III V-I and V-II expression vectors which contained full length V-I and V-II cDNA including the variable 5' UTR cloned under T7 promoter, respectively revealed a comparable translational efficiency for both the variants, abrogating involvement of nucleotides GCA (-12 to -10 bp) in translation of the variants. Our results, for the first time, demonstrate concurrent expression in multiple tumor derived cell lines and a comparable in vitro translational efficiency for hDPP III V-I and II.
Collapse
|
8
|
Mačak Šafranko Ž, Sobočanec S, Šarić A, Jajčanin-Jozić N, Krsnik Ž, Aralica G, Balog T, Abramić M. The effect of 17β-estradiol on the expression of dipeptidyl peptidase III and heme oxygenase 1 in liver of CBA/H mice. J Endocrinol Invest 2015; 38:471-9. [PMID: 25432329 DOI: 10.1007/s40618-014-0217-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 11/19/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND 17β-estradiol (E₂) has well-established cardioprotective, antioxidant and neuroprotective role, and exerts a vast range of biological effects in both sexes. Dipeptidyl peptidase III (DPP III) is protease involved as activator in Keap1-Nrf2 signalling pathway, which is important in cellular defense to oxidative and electrophilic stress. It is generally accepted that oxidative stress is crucial in promoting liver diseases. OBJECTIVE To examine the effect of E₂ on the expression of DPP III and haeme oxygenase 1 (HO-1) in liver of adult CBA/H mice of both sexes. METHODS Gene and protein expressions of studied enzymes were determined by quantitative real-time PCR and Western blot analysis. Immunohistochemistry was performed to analyse the localization of both proteins in different liver cell types. RESULTS Ovariectomy diminished expression of DPP III and HO-1 proteins. E₂ administration abolished this effect, and even increased these proteins above the control. A significant enhancement in DPP III protein was found in E₂-treated males, as well. A decrease in the expression of HO-1, but not of the DPP III gene, was detected in the liver of ovariectomized females. HO-1 protein was found localized in the pericentral areas of hepatic lobules (Kupffer cells and hepatocytes), whilst DPP III showed a uniform distribution within hepatic tissue. CONCLUSIONS We demonstrate for the first time that E₂ influences the protein level of DPP III in vivo, and confirm earlier finding on HO-1 gene upregulation by 17β-estradiol. These results additionally confer new insights into complexity of protective action of E₂.
Collapse
Affiliation(s)
- Ž Mačak Šafranko
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - S Sobočanec
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia.
| | - A Šarić
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - N Jajčanin-Jozić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ž Krsnik
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - G Aralica
- Department of Pathology, Medical School University of Zagreb and University Hospital, Dubrava, Zagreb, Croatia
| | - T Balog
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - M Abramić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|