1
|
Bier SB, Toska J, Zhao W, Suthianthong P, Proespraiwong P, Robins WP, Mekalanos J. A coordinated attack by a bacterial secretion system and a small molecule drives prey specificity. Commun Biol 2024; 7:958. [PMID: 39117895 PMCID: PMC11310501 DOI: 10.1038/s42003-024-06637-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Vibrio species are recognized for their role in food- and water-borne diseases in humans, fish, and aquatic invertebrates. We screened bacterial strains isolated from raw food shrimp for those that are bactericidal to Vibrio strains. Here we identify and characterize Aeromonas dhakensis strain A603 which shows robust bactericidal activity specifically towards Vibrio and related taxa but less potency toward other Gram-negative species. Using the A603 genome and genetic analysis, we show that two antibacterial mechanisms account for its vibriocidal activity -- a highly potent Type Six Secretion System (T6SS) and biosynthesis of a vibriocidal phenazine-like small molecule, named here as Ad-Phen. Further analysis indicates coregulation between Ad-Phen and a pore-forming T6SS effector TseC, which potentiates V. cholerae to killing by Ad-Phen.
Collapse
Affiliation(s)
- S B Bier
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - J Toska
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - W Zhao
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease. The Sixth Affiliated Hospital, School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - P Suthianthong
- Charoen Pokphand Foods PCL. Aquatic Animal Health Research Center, Samutsakorn, Thailand
| | - P Proespraiwong
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - W P Robins
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| | - J Mekalanos
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Cai Y, Zhang X. The atypical organization of the luxI/R family genes in AHL-driven quorum-sensing circuits. J Bacteriol 2024; 206:e0043023. [PMID: 38240569 PMCID: PMC10882985 DOI: 10.1128/jb.00430-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Quorum sensing (QS) is an elaborate regulatory mechanism associated with virulence and bacterial adaptation to the changing environment. QS is widespread in Proteobacteria and acts primarily through N-acylhomoserine lactone (AHL) signals. At the core of the AHL-driven QS systems are the AHL synthase gene (luxI family) and its cognate transcriptional regulator gene (luxR family). Several QS systems display one or more genes intervening between the luxI and luxR, in which gene arrangements are notably different due to the relative position and the transcriptional orientation between the essential luxI/R and the genes of location correlation. These adjacent genes may exert a regulatory impact on the primary QS genes or contribute toward an extension of QS regulatory control. In this review, we describe the organization of AHL-driven QS genes based on previous research and specific genome databases and provide new insights into these atypical QS gene arrangements.
Collapse
Affiliation(s)
- Yuyuan Cai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Mellini M, Letizia M, Caruso L, Guiducci A, Meneghini C, Heeb S, Williams P, Cámara M, Visca P, Imperi F, Leoni L, Rampioni G. RsaL-driven negative regulation promotes heterogeneity in Pseudomonas aeruginosa quorum sensing. mBio 2023; 14:e0203923. [PMID: 37843294 PMCID: PMC10746200 DOI: 10.1128/mbio.02039-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/05/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE Single-cell analyses can reveal that despite experiencing identical physico-chemical conditions, individual bacterial cells within a monoclonal population may exhibit variations in gene expression. Such phenotypic heterogeneity has been described for several aspects of bacterial physiology, including QS activation. This study demonstrates that the transition of non-quorate cells to the quorate state is a graded process that does not occur at a specific cell density and that subpopulations of non-quorate cells also persist at high cell density. Here, we provide a mechanistic explanation for this phenomenon, showing that a negative feedback regulatory loop integrated into the las system has a pivotal role in promoting cell-to-cell variation in the QS activation state and in limiting the transition of non-quorate cells to the quorate state in P. aeruginosa.
Collapse
Affiliation(s)
- Marta Mellini
- Department of Science, University Roma Tre, Rome, Italy
| | | | | | | | | | - Stephan Heeb
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Paul Williams
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Miguel Cámara
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Francesco Imperi
- Department of Science, University Roma Tre, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | - Giordano Rampioni
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
4
|
Venturi V, Špacapan M, Ristović N, Bez C. RsaM: a unique dominant regulator of AHL quorum sensing in bacteria. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001417. [PMID: 38010341 PMCID: PMC10710839 DOI: 10.1099/mic.0.001417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Quorum sensing (QS) in proteobacteria is a mechanism to control gene expression orchestrated by the LuxI/LuxR protein family pair, which produces and responds to N-acyl homoserine lactone (AHL) diffusible signal molecules. QS is often regarded as a cell density response via the sensing of/response to the concentrations of AHLs, which are constantly basally produced by bacterial cells. The luxI/R systems, however, undergo supra-regulation in response to external stimuli and many regulators have been implicated in controlling QS in bacteria, although it remains unclear how most of these regulators and cues contribute to the QS response. One regulator, called RsaM, has been reported in a few proteobacterial species to have a stringent role in the control of AHL QS. RsaMs are small, in the range of 140-170 aa long, and are found in several genera, principally in Burkholderia and Acinetobacter. The gene encoding RsaM is always located as an independent transcriptional unit, situated adjacent to QS luxI and/or luxR loci. One of the most remarkable aspects of RsaM is its uniqueness; it does not fall into any of the known bacterial regulatory families and it possesses a distinct and novel fold that does not exhibit binding affinity for nucleic acids or AHLs. RsaM stands out as a distinctive regulator in bacteria, as it is likely to have an important ecological role, as well as unravelling a novel way of gene regulation in bacteria.
Collapse
Affiliation(s)
- Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Mihael Špacapan
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Nemanja Ristović
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Cristina Bez
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
5
|
López-Martín M, Dubern JF, Alexander MR, Williams P. AbaM Regulates Quorum Sensing, Biofilm Formation, and Virulence in Acinetobacter baumannii. J Bacteriol 2021; 203:e00635-20. [PMID: 33495249 PMCID: PMC8088503 DOI: 10.1128/jb.00635-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/08/2021] [Indexed: 12/31/2022] Open
Abstract
Acinetobacter baumannii possesses a single divergent luxR/luxRI-type quorum-sensing (QS) locus named abaR/abaI This locus also contains a third gene located between abaR and abaI, which we term abaM, that codes for an uncharacterized member of the RsaM protein family known to regulate N-acylhomoserine lactone (AHL)-dependent QS in other beta- and gammaproteobacteria. Here, we show that disruption of abaM via a T26 insertion in A. baumannii strain AB5075 resulted in increased production of N-(3-hydroxydodecanoyl)-l-homoserine lactone and enhanced surface motility and biofilm formation. In contrast to the wild type and the abaI::T26 mutant, the virulence of the abaM::T26 mutant was completely attenuated in a Galleria mellonella infection model. Transcriptomic analysis of the abaM::T26 mutant revealed that AbaM differentially regulates at least 76 genes, including the csu pilus operon and the acinetin 505 lipopeptide biosynthetic operon, that are involved in surface adherence, biofilm formation and virulence. A comparison of the wild type, abaM::T26 and abaI::T26 transcriptomes, indicates that AbaM regulates ∼21% of the QS regulon including the csu operon. Moreover, the QS genes (abaI and abaR) were among the most upregulated in the abaM::T26 mutant. A. baumanniilux-based abaM reporter gene fusions revealed that abaM expression is positively regulated by QS but negatively autoregulated. Overall, the data presented in this work demonstrates that AbaM plays a central role in regulating A. baumannii QS, virulence, surface motility, and biofilm formation.IMPORTANCEAcinetobacter baumannii is a multiantibiotic-resistant pathogen of global health care importance. Understanding Acinetobacter virulence gene regulation could aid the development of novel anti-infective strategies. In A. baumannii, the abaR and abaI genes that code for the receptor and synthase components of an N-acylhomoserine (AHL) lactone-dependent quorum sensing system (QS) are separated by abaM Here, we show that although mutation of abaM increased AHL production, surface motility, and biofilm development, it resulted in the attenuation of virulence. AbaM was found to control both QS-dependent and QS-independent genes. The significance of this work lies in the identification of AbaM, an RsaM ortholog known to control virulence in plant pathogens, as a modulator of virulence in a human pathogen.
Collapse
Affiliation(s)
- Mario López-Martín
- Biodiscovery Institute, National Biofilms Innovation Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Jean-Frédéric Dubern
- Biodiscovery Institute, National Biofilms Innovation Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Morgan R Alexander
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Paul Williams
- Biodiscovery Institute, National Biofilms Innovation Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
6
|
Quorum Sensing as Antivirulence Target in Cystic Fibrosis Pathogens. Int J Mol Sci 2019; 20:ijms20081838. [PMID: 31013936 PMCID: PMC6515091 DOI: 10.3390/ijms20081838] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder which leads to the secretion of a viscous mucus layer on the respiratory epithelium that facilitates colonization by various bacterial pathogens. The problem of drug resistance has been reported for all the species able to colonize the lung of CF patients, so alternative treatments are urgently needed. In this context, a valid approach is to investigate new natural and synthetic molecules for their ability to counteract alternative pathways, such as virulence regulating quorum sensing (QS). In this review we describe the pathogens most commonly associated with CF lung infections: Staphylococcus aureus, Pseudomonas aeruginosa, species of the Burkholderia cepacia complex and the emerging pathogens Stenotrophomonas maltophilia, Haemophilus influenzae and non-tuberculous Mycobacteria. For each bacterium, the QS system(s) and the molecules targeting the different components of this pathway are described. The amount of investigations published in the last five years clearly indicate the interest and the expectations on antivirulence therapy as an alternative to classical antibiotics.
Collapse
|
7
|
Two rsaM Homologues Encode Central Regulatory Elements Modulating Quorum Sensing in Burkholderia thailandensis. J Bacteriol 2018; 200:JB.00727-17. [PMID: 29507087 DOI: 10.1128/jb.00727-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/20/2018] [Indexed: 01/05/2023] Open
Abstract
The bacterium Burkholderia thailandensis possesses three N-acyl-l-homoserine lactone (AHL) quorum sensing (QS) systems designated BtaI1/BtaR1 (QS-1), BtaI2/BtaR2 (QS-2), and BtaI3/BtaR3 (QS-3). These QS systems are associated with the biosynthesis of N-octanoyl-homoserine lactone (C8-HSL), N-3-hydroxy-decanoyl-homoserine lactone (3OHC10-HSL), and N-3-hydroxy-octanoyl-homoserine lactone (3OHC8-HSL), which are produced by the LuxI-type synthases BtaI1, BtaI2, and BtaI3 and modulated by the LuxR-type transcriptional regulators BtaR1, BtaR2, and BtaR3. The btaR1-btaI1 and btaR2-btaI2 gene clusters each carry an additional gene encoding a homologue of the QS repressor RsaM originally identified in the phytopathogen Pseudomonas fuscovaginae and thus here named rsaM1 and rsaM2, respectively. We have characterized the functions of these two conserved rsaM homologues and demonstrated their involvement in the regulation of AHL biosynthesis in B. thailandensis strain E264. We quantified the production of C8-HSL, 3OHC10-HSL, and 3OHC8-HSL by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in the wild-type strain and in the rsaM1 and rsaM2 mutants, and we monitored btaI1, btaI2, and btaI3 expression using chromosomal mini-CTX-lux transcriptional reporters. The transcription of btaR1, btaR2, and btaR3 was also measured by quantitative reverse transcription-PCR (qRT-PCR). We observed that RsaM1 mainly represses the QS-1 system, whereas RsaM2 principally represses the QS-2 system. We also found that both rsaM1 and rsaM2 are QS controlled and negatively autoregulated. We conclude that RsaM1 and RsaM2 are an integral part of the QS circuitry of B. thailandensis and play a major role in the hierarchical and homeostatic organization of the QS-1, QS-2, and QS-3 systems.IMPORTANCE Quorum sensing (QS) is commonly involved in the coordination of gene transcription associated with the establishment of host-pathogen interactions and acclimatization to the environment. We present the functional characterization of two rsaM homologues in the regulation of the multiple QS systems coexisting in the nonpathogenic bacterium Burkholderia thailandensis, which is widely used as a model system for the study of the human pathogen Burkholderia pseudomallei We found that inactivation of these rsaM homologues, which are clustered with the other QS genes, profoundly affects the QS circuitry of B. thailandensis We conclude that they constitute essential regulatory components of the QS modulatory network and provide additional layers of regulation to modulate the transcription of QS-controlled genes, particularly those linked to environmental adaptation.
Collapse
|
8
|
The Complex Quorum Sensing Circuitry of Burkholderia thailandensis Is Both Hierarchically and Homeostatically Organized. mBio 2017; 8:mBio.01861-17. [PMID: 29208745 PMCID: PMC5717390 DOI: 10.1128/mbio.01861-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The genome of the bacterium Burkholderia thailandensis encodes three complete LuxI/LuxR-type quorum sensing (QS) systems: BtaI1/BtaR1 (QS-1), BtaI2/BtaR2 (QS-2), and BtaI3/BtaR3 (QS-3). The LuxR-type transcriptional regulators BtaR1, BtaR2, and BtaR3 modulate the expression of target genes in association with various N-acyl-l-homoserine lactones (AHLs) as signaling molecules produced by the LuxI-type synthases BtaI1, BtaI2, and BtaI3. We have systematically dissected the complex QS circuitry of B. thailandensis strain E264. Direct quantification of N-octanoyl-homoserine lactone (C8-HSL), N-3-hydroxy-decanoyl-homoserine lactone (3OHC10-HSL), and N-3-hydroxy-octanoyl-homoserine lactone (3OHC8-HSL), the primary AHLs produced by this bacterium, was performed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in the wild-type strain and in QS deletion mutants. This was compared to the transcription of btaI1, btaI2, and btaI3 using chromosomal mini-CTX-lux transcriptional reporters. Furthermore, the levels of expression of btaR1, btaR2, and btaR3 were monitored by quantitative reverse transcription-PCR (qRT-PCR). We observed that C8-HSL, 3OHC10-HSL, and 3OHC8-HSL are differentially produced over time during bacterial growth and correlate with the btaI1, btaI2, and btaI3 gene expression profiles, revealing a successive activation of the corresponding QS systems. Moreover, the transcription of the btaR1, btaR2, and btaR3 genes is modulated by cognate and noncognate AHLs, showing that their regulation depends on themselves and on other QS systems. We conclude that the three QS systems in B. thailandensis are interdependent, suggesting that they cooperate dynamically and function in a concerted manner in modulating the expression of QS target genes through a successive regulatory network. Quorum sensing (QS) is a widespread bacterial communication system coordinating the expression of specific genes in a cell density-dependent manner and allowing bacteria to synchronize their activities and to function as multicellular communities. QS plays a crucial role in bacterial pathogenicity by regulating the expression of a wide spectrum of virulence/survival factors and is essential to environmental adaptation. The results presented here demonstrate that the multiple QS systems coexisting in the bacterium Burkholderia thailandensis, which is considered the avirulent version of the human pathogen Burkholderia pseudomallei and thus commonly used as an alternative study model, are hierarchically and homeostatically organized. We found these QS systems to be finely integrated into a complex regulatory network, including transcriptional and posttranscriptional interactions, and further incorporating growth stages and temporal expression. These results provide a unique, comprehensive illustration of a sophisticated QS network and will contribute to a better comprehension of the regulatory mechanisms that can be involved in the expression of QS-controlled genes, in particular those associated with the establishment of host-pathogen interactions and acclimatization to the environment.
Collapse
|
9
|
Uzelac G, Patel HK, Devescovi G, Licastro D, Venturi V. Quorum sensing and RsaM regulons of the rice pathogen Pseudomonas fuscovaginae. MICROBIOLOGY-SGM 2017; 163:765-777. [PMID: 28530166 DOI: 10.1099/mic.0.000454] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas fuscovaginae (Pfv) is an emerging plant pathogen causing sheath brown rot in rice, as well as diseases in other gramineae food crops including maize, sorghum and wheat. Pfv possesses two conserved N-acyl homoserine lactone (AHL) quorum sensing (QS) systems called PfvI/R and PfsI/R, which are repressed by RsaL and RsaM, respectively. The two systems are not hierarchically organized and are involved in plant virulence. In this study the AHL QS PfsI/R, PfvI/R and RsaM regulons were determined by transcriptomic analysis. The PfsI/R system regulates 98 genes, whereas 26 genes are regulated by the PfvI/R AHL QS system; only two genes are regulated by both systems. RsaM, on the other hand, regulates over 400 genes: 206 are negatively regulated and 260 are positively regulated. More than half of the genes controlled by the PfsI/R system and 65 % by the PfvI/R system are also part of the RsaM regulon; this is due to RsaM being involved in the regulation of both systems. It is concluded that the two QS systems regulate a unique set of genes and that RsaM is a global regulator mediating the expression of different genes through the two QS systems as well as genes independently of QS.
Collapse
Affiliation(s)
- Gordana Uzelac
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Hitendra Kumar Patel
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy.,Present address: CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Giulia Devescovi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
10
|
Devescovi G, Kojic M, Covaceuszach S, Cámara M, Williams P, Bertani I, Subramoni S, Venturi V. Negative Regulation of Violacein Biosynthesis in Chromobacterium violaceum. Front Microbiol 2017; 8:349. [PMID: 28326068 PMCID: PMC5339254 DOI: 10.3389/fmicb.2017.00349] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/20/2017] [Indexed: 11/25/2022] Open
Abstract
In Chromobacteium violaceum, the purple pigment violacein is under positive regulation by the N-acylhomoserine lactone CviI/R quorum sensing system and negative regulation by an uncharacterized putative repressor. In this study we report that the biosynthesis of violacein is negatively controlled by a novel repressor protein, VioS. The violacein operon is regulated negatively by VioS and positively by the CviI/R system in both C. violaceum and in a heterologous Escherichia coli genetic background. VioS does not regulate the CviI/R system and apart from violacein, VioS, and quorum sensing regulate other phenotypes antagonistically. Quorum sensing regulated phenotypes in C. violaceum are therefore further regulated providing an additional level of control.
Collapse
Affiliation(s)
- Giulia Devescovi
- International Centre for Genetic Engineering and Biotechnology Trieste, Italy
| | - Milan Kojic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade Belgrade, Serbia
| | - Sonia Covaceuszach
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, U.O.S di Trieste Trieste, Italy
| | - Miguel Cámara
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham Nottingham, UK
| | - Paul Williams
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham Nottingham, UK
| | - Iris Bertani
- International Centre for Genetic Engineering and Biotechnology Trieste, Italy
| | - Sujatha Subramoni
- International Centre for Genetic Engineering and Biotechnology Trieste, Italy
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology Trieste, Italy
| |
Collapse
|
11
|
Burkholderia cepacia Complex Regulation of Virulence Gene Expression: A Review. Genes (Basel) 2017; 8:genes8010043. [PMID: 28106859 PMCID: PMC5295037 DOI: 10.3390/genes8010043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/31/2022] Open
Abstract
Burkholderia cepacia complex (Bcc) bacteria emerged as opportunistic pathogens in cystic fibrosis and immunocompromised patients. Their eradication is very difficult due to the high level of intrinsic resistance to clinically relevant antibiotics. Bcc bacteria have large and complex genomes, composed of two to four replicons, with variable numbers of insertion sequences. The complexity of Bcc genomes confers a high genomic plasticity to these bacteria, allowing their adaptation and survival to diverse habitats, including the human host. In this work, we review results from recent studies using omics approaches to elucidate in vivo adaptive strategies and virulence gene regulation expression of Bcc bacteria when infecting the human host or subject to conditions mimicking the stressful environment of the cystic fibrosis lung.
Collapse
|
12
|
Naughton LM, An SQ, Hwang I, Chou SH, He YQ, Tang JL, Ryan RP, Dow JM. Functional and genomic insights into the pathogenesis of B
urkholderia
species to rice. Environ Microbiol 2016; 18:780-90. [DOI: 10.1111/1462-2920.13189] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/10/2015] [Accepted: 12/13/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Lynn M. Naughton
- School of Microbiology; Biosciences Institute; University College Cork; Cork Ireland
| | - Shi-qi An
- Division of Molecular Microbiology; College of Life Sciences; University of Dundee; Dundee UK
| | - Ingyu Hwang
- Institute of Biochemistry and Department of Agricultural Biotechnology; Seoul National University; Seoul 151-921 South Korea
| | - Shan-Ho Chou
- National Chung Hsing University Biotechnology Center; National Chung Hsing University; Taichung 40227 Taiwan
| | - Yong-Qiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering; College of Life Science and Technology; Guangxi University; 100 Daxue Road Nanning Guangxi 530004 China
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering; College of Life Science and Technology; Guangxi University; 100 Daxue Road Nanning Guangxi 530004 China
| | - Robert P. Ryan
- Division of Molecular Microbiology; College of Life Sciences; University of Dundee; Dundee UK
| | - J. Maxwell Dow
- School of Microbiology; Biosciences Institute; University College Cork; Cork Ireland
| |
Collapse
|