1
|
Cooke SF, Wright TA, Sin YY, Ling J, Kyurkchieva E, Phanthaphol N, Mcskimming T, Herbert K, Rebus S, Biankin AV, Chang DK, Baillie GS, Blair CM. Disruption of the pro-oncogenic c-RAF-PDE8A complex represents a differentiated approach to treating KRAS-c-RAF dependent PDAC. Sci Rep 2024; 14:8998. [PMID: 38637546 PMCID: PMC11026450 DOI: 10.1038/s41598-024-59451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered the third leading cause of cancer mortality in the western world, offering advanced stage patients with few viable treatment options. Consequently, there remains an urgent unmet need to develop novel therapeutic strategies that can effectively inhibit pro-oncogenic molecular targets underpinning PDACs pathogenesis and progression. One such target is c-RAF, a downstream effector of RAS that is considered essential for the oncogenic growth and survival of mutant RAS-driven cancers (including KRASMT PDAC). Herein, we demonstrate how a novel cell-penetrating peptide disruptor (DRx-170) of the c-RAF-PDE8A protein-protein interaction (PPI) represents a differentiated approach to exploiting the c-RAF-cAMP/PKA signaling axes and treating KRAS-c-RAF dependent PDAC. Through disrupting the c-RAF-PDE8A protein complex, DRx-170 promotes the inactivation of c-RAF through an allosteric mechanism, dependent upon inactivating PKA phosphorylation. DRx-170 inhibits cell proliferation, adhesion and migration of a KRASMT PDAC cell line (PANC1), independent of ERK1/2 activity. Moreover, combining DRx-170 with afatinib significantly enhances PANC1 growth inhibition in both 2D and 3D cellular models. DRx-170 sensitivity appears to correlate with c-RAF dependency. This proof-of-concept study supports the development of DRx-170 as a novel and differentiated strategy for targeting c-RAF activity in KRAS-c-RAF dependent PDAC.
Collapse
Affiliation(s)
- Sean F Cooke
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Thomas A Wright
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Yuan Yan Sin
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Jiayue Ling
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Elka Kyurkchieva
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Nattaporn Phanthaphol
- Siriraj Centre of Research Excellence for Cancer Immunotherapy, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thomas Mcskimming
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Katharine Herbert
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Selma Rebus
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - David K Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - George S Baillie
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Connor M Blair
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.
| |
Collapse
|
2
|
Cooke SF, Blair CM. Exploiting c-RAF dependency in RAS mutant cancer: beyond catalytic activity. Expert Rev Anticancer Ther 2024; 24:95-100. [PMID: 38362755 DOI: 10.1080/14737140.2024.2319035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Affiliation(s)
- Sean F Cooke
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Connor M Blair
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
3
|
6-Gingerol, a major ingredient of ginger, attenuated cisplatin-induced pica in rats via regulating 5-HT3R/Ca2+/CaMKII/ERK1/2 signaling pathway. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
4
|
Kaur N, Lum M, Lewis RE, Black AR, Black JD. A novel anti-proliferative PKCα-Ras-ERK signaling axis in intestinal epithelial cells. J Biol Chem 2022; 298:102121. [PMID: 35697074 PMCID: PMC9270260 DOI: 10.1016/j.jbc.2022.102121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 01/02/2023] Open
Abstract
We have previously shown that the serine/threonine kinase PKCα triggers MAPK/ERK kinase (MEK)-dependent G1→S cell cycle arrest in intestinal epithelial cells, characterized by downregulation of cyclin D1 and inhibitor of DNA-binding protein 1 (Id1) and upregulation of the cyclin-dependent kinase inhibitor p21Cip1. Here, we use pharmacological inhibitors, genetic approaches, siRNA-mediated knockdown, and immunoprecipitation to further characterize anti-proliferative ERK signaling in intestinal cells. We show that PKCα signaling intersects the Ras-Raf-MEK-ERK kinase cascade at the level of Ras small GTPases, and that anti-proliferative effects of PKCα require active Ras, Raf, MEK and ERK, core ERK pathway components that are also essential for pro-proliferative ERK signaling induced by epidermal growth factor (EGF). However, PKCα-induced anti-proliferative signaling differs from EGF signaling in that it is independent of the Ras guanine nucleotide exchange factors (Ras-GEFs), SOS1/2, and involves prolonged rather than transient ERK activation. PKCα forms complexes with A-Raf, B-Raf and C-Raf that dissociate upon pathway activation, and all three Raf isoforms can mediate PKCα-induced anti-proliferative effects. At least two PKCα-ERK pathways that collaborate to promote growth arrest were identified: one pathway requiring the Ras-GEF, RasGRP3, and H-Ras, leads to p21Cip1 upregulation, while additional pathway(s) mediate PKCα-induced cyclin D1 and Id1 downregulation. PKCα also induces ERK-dependent SOS1 phosphorylation, indicating possible negative crosstalk between anti-proliferative and growth-promoting ERK signaling. Importantly, the spatio-temporal activation of PKCα and ERK in the intestinal epithelium in vivo supports the physiological relevance of these pathways and highlights the importance of anti-proliferative ERK signaling to tissue homeostasis in the intestine.
Collapse
Affiliation(s)
- Navneet Kaur
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michelle Lum
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Robert E Lewis
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
5
|
Sthanam LK, Roy T, Patwardhan S, Shukla A, Sharma S, Shinde PV, Kale HT, Chandra Shekar P, Kondabagil K, Sen S. MMP modulated differentiation of mouse embryonic stem cells on engineered cell derived matrices. Biomaterials 2021; 280:121268. [PMID: 34871878 DOI: 10.1016/j.biomaterials.2021.121268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 10/27/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022]
Abstract
Stem cell differentiation is dictated by the dynamic crosstalk between cells and their underlying extracellular matrix. While the importance of matrix degradation mediated by enzymes such as matrix metalloproteinases (MMPs) in the context of cancer invasion is well established, the role of MMPs in stem cell differentiation remains relatively unexplored. Here we address this question by assaying MMP expression and activity during differentiation of mouse embryonic stem cells (mESCs) on mouse embryonic fibroblast (MEF) derived matrices (MEFDMs) of varying stiffness and composition. We show that mESC differentiation into different germ layers is associated with expression of several MMPs including MMP-11, 2, 17, 25 and 9, with MMP-9 detected in cell secreted media. Different extents of softening of the different MEFDMs led to altered integrin expression, activated distinct mechanotransduction and metabolic pathways, and induced expression of germ layer-specific markers. Inhibition of MMP proteolytic activity by the broad spectrum MMP inhibitor GM6001 led to alterations in germ layer commitment of the differentiating mESCs. Together, our results illustrate the effect of MMPs in regulating mESC differentiation on engineered cell derived matrices and establish MEFDMs as suitable substrates for understanding molecular mechanisms regulating stem cell development and for regenerative medicine applications.
Collapse
Affiliation(s)
| | - Tanusri Roy
- Department. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | - Sejal Patwardhan
- Department. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India; Advanced Centre for Treatment, Research and Education in Cancer - Tata Memorial Centre (ACTREC-TMC), Kharghar, Navi Mumbai, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| | - Avi Shukla
- Department. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | - Shipra Sharma
- Department. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | - Pradip V Shinde
- Department. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | | | | | - Kiran Kondabagil
- Department. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | - Shamik Sen
- Department. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India.
| |
Collapse
|
6
|
Pudewell S, Wittich C, Kazemein Jasemi NS, Bazgir F, Ahmadian MR. Accessory proteins of the RAS-MAPK pathway: moving from the side line to the front line. Commun Biol 2021; 4:696. [PMID: 34103645 PMCID: PMC8187363 DOI: 10.1038/s42003-021-02149-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Health and disease are directly related to the RTK-RAS-MAPK signalling cascade. After more than three decades of intensive research, understanding its spatiotemporal features is afflicted with major conceptual shortcomings. Here we consider how the compilation of a vast array of accessory proteins may resolve some parts of the puzzles in this field, as they safeguard the strength, efficiency and specificity of signal transduction. Targeting such modulators, rather than the constituent components of the RTK-RAS-MAPK signalling cascade may attenuate rather than inhibit disease-relevant signalling pathways.
Collapse
Affiliation(s)
- Silke Pudewell
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Christoph Wittich
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Neda S. Kazemein Jasemi
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Farhad Bazgir
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Mohammad R. Ahmadian
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
7
|
Hao P, Huang Y, Peng J, Yu J, Guo X, Bao F, Dian Z, An S, Xu TR. IRS4 promotes the progression of non-small cell lung cancer and confers resistance to EGFR-TKI through the activation of PI3K/Akt and Ras-MAPK pathways. Exp Cell Res 2021; 403:112615. [PMID: 33894221 DOI: 10.1016/j.yexcr.2021.112615] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/13/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
IRS4 is a member of the insulin receptor substrate (IRS) protein family. It acts as a cytoplasmic adaptor protein, integrating and transmitting signals from receptor protein tyrosine kinases to the intracellular environment. IRS4 can induce mammary tumorigenesis and is usually overexpressed in non-small cell lung cancer (NSCLC). However, little is known about the role of IRS4 in the development and progression of lung cancer. In this study, we show that IRS4 knockout suppresses the proliferation, colony formation, migration, and invasion of A549 lung cancer cells, as well as tumor growth in a nude mouse xenograft model. In contrast, stable expression of IRS4 showed the opposite effects. As expected, IRS4 was found to activate the PI3K/Akt and Ras-MAPK pathways, and we also showed that IRS4 depletion significantly enhanced the sensitivity of EGFR tyrosine kinase inhibitor (EGFR-TKI)-resistant cells to gefitinib. Taken together, these results show that IRS4 promotes NSCLC progression and may represent a potential therapeutic target for EGFR-TKI-resistant NSCLC.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Drug Resistance, Neoplasm/genetics
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Extracellular Signal-Regulated MAP Kinases/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gefitinib/therapeutic use
- Gene Expression Regulation, Neoplastic
- Humans
- Insulin Receptor Substrate Proteins/antagonists & inhibitors
- Insulin Receptor Substrate Proteins/genetics
- Insulin Receptor Substrate Proteins/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Mice
- Mice, Nude
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Signal Transduction
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Peiqi Hao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ying Huang
- Simcere Pharmaceutical Co., Ltd, Nanjing, 210018, China; The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd, Nanjing, 210018, China
| | - Jun Peng
- The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Jiaojiao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaoxi Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Fan Bao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Ziqin Dian
- The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
8
|
Hao P, Yu J, Ward R, Liu Y, Hao Q, An S, Xu T. Eukaryotic translation initiation factors as promising targets in cancer therapy. Cell Commun Signal 2020; 18:175. [PMID: 33148274 PMCID: PMC7640403 DOI: 10.1186/s12964-020-00607-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
The regulation of the translation of messenger RNA (mRNA) in eukaryotic cells is critical for gene expression, and occurs principally at the initiation phase which is mainly regulated by eukaryotic initiation factors (eIFs). eIFs are fundamental for the translation of mRNA and as such act as the primary targets of several signaling pathways to regulate gene expression. Mis-regulated mRNA expression is a common feature of tumorigenesis and the abnormal activity of eIF complexes triggered by upstream signaling pathways is detected in many tumors, leading to the selective translation of mRNA encoding proteins involved in tumorigenesis, metastasis, or resistance to anti-cancer drugs, and making eIFs a promising therapeutic target for various types of cancers. Here, we briefly outline our current understanding of the biology of eIFs, mainly focusing on the effects of several signaling pathways upon their functions and discuss their contributions to the initiation and progression of tumor growth. An overview of the progress in developing agents targeting the components of translation machinery for cancer treatment is also provided. Video abstract
Collapse
Affiliation(s)
- Peiqi Hao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 Jingming South Road, Kunming, 650500, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jiaojiao Yu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 Jingming South Road, Kunming, 650500, China
| | - Richard Ward
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | - Yin Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qiao Hao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Tianrui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
9
|
Ge M, Bai X, Liu A, Liu L, Tian J, Lu T. An eIF3a gene mutation dysregulates myocardium growth with left ventricular noncompaction via the p-ERK1/2 pathway. Genes Dis 2020; 8:545-554. [PMID: 34179316 PMCID: PMC8209309 DOI: 10.1016/j.gendis.2020.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/20/2020] [Indexed: 11/29/2022] Open
Abstract
Left ventricular noncompaction (LVNC) is a heterogeneous disorder with unclear genetic causes and an unknown mechanism. eIF3a, an important member of the Eukaryotic translation initiation factor 3 (eIF3) family, is involved in multiple biological processes, including cell proliferation and migration during myocardial development, suggesting it could play a role in LVNC development. To investigate the association between a novel variant (c.1145 A- > G) in eIF3a and LVNC, and explore potential mechanisms that could lead to the development of LVNC. A novel eIF3a variant, c.1145 A- > G, was identified by whole-exome sequencing in a familial pedigree with LVNC. Adenovirus vectors containing wild-type eIF3a and the mutated version were constructed and co-infected into H9C2 cells. Cell proliferation, apoptosis, cell migration, and differentiation, as well as phosphorylation of ERK1/2 were studied and were measured by proliferation assays, flow cytometry, real-time PCR and Western blot, respectively. The eIF3a mutation inhibited the proliferation of H9C2 cells, induced apoptosis, promoted cell migration, and inhibited the differentiation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The effect of the eIF3a mutation may be attributed to a decrease in expression of p-ERK1/2. A novel eIF3a gene mutation disrupted the p-ERK1/2 pathway and caused decreased myocardium proliferation, differentiation, accelerated migration.This finding may provide some insight into the mechanism involved in LVNC development.
Collapse
Affiliation(s)
- Mei Ge
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China.,China International Science and Technology Cooperation Center for Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 401122, PR China
| | - Xuehan Bai
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China.,China International Science and Technology Cooperation Center for Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 401122, PR China
| | - Aoyi Liu
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China.,China International Science and Technology Cooperation Center for Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 401122, PR China
| | - Lingjuan Liu
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China.,China International Science and Technology Cooperation Center for Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 401122, PR China
| | - Jie Tian
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China.,China International Science and Technology Cooperation Center for Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 401122, PR China
| | - Tiewei Lu
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China.,China International Science and Technology Cooperation Center for Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 401122, PR China
| |
Collapse
|
10
|
Peng DH, Kundu ST, Fradette JJ, Diao L, Tong P, Byers LA, Wang J, Canales JR, Villalobos PA, Mino B, Yang Y, Minelli R, Peoples MD, Bristow CA, Heffernan TP, Carugo A, Wistuba II, Gibbons DL. ZEB1 suppression sensitizes KRAS mutant cancers to MEK inhibition by an IL17RD-dependent mechanism. Sci Transl Med 2020; 11:11/483/eaaq1238. [PMID: 30867319 DOI: 10.1126/scitranslmed.aaq1238] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 08/20/2018] [Accepted: 02/18/2019] [Indexed: 12/22/2022]
Abstract
Mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitors have failed to show clinical benefit in Kirsten rat sarcoma (KRAS) mutant lung cancer due to various resistance mechanisms. To identify differential therapeutic sensitivities between epithelial and mesenchymal lung tumors, we performed in vivo small hairpin RNA screens, proteomic profiling, and analysis of patient tumor datasets, which revealed an inverse correlation between mitogen-activated protein kinase (MAPK) signaling dependency and a zinc finger E-box binding homeobox 1 (ZEB1)-regulated epithelial-to-mesenchymal transition. Mechanistic studies determined that MAPK signaling dependency in epithelial lung cancer cells is due to the scaffold protein interleukin-17 receptor D (IL17RD), which is directly repressed by ZEB1. Lung tumors in multiple Kras mutant murine models with increased ZEB1 displayed low IL17RD expression, accompanied by MAPK-independent tumor growth and therapeutic resistance to MEK inhibition. Suppression of ZEB1 function with miR-200 expression or the histone deacetylase inhibitor mocetinostat sensitized resistant cancer cells to MEK inhibition and markedly reduced in vivo tumor growth, showing a promising combinatorial treatment strategy for KRAS mutant cancers. In human lung tumor samples, high ZEB1 and low IL17RD expression correlated with low MAPK signaling, presenting potential markers that predict patient response to MEK inhibitors.
Collapse
Affiliation(s)
- David H Peng
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Samrat T Kundu
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jared J Fradette
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pan Tong
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lauren A Byers
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jaime Rodriguez Canales
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pamela A Villalobos
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Barbara Mino
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanan Yang
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine and Department of Biochemistry and Molecular Biology, Cancer Center and College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Rosalba Minelli
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael D Peoples
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christopher A Bristow
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Timothy P Heffernan
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alessandro Carugo
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. .,Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
11
|
Lu N, Malemud CJ. Extracellular Signal-Regulated Kinase: A Regulator of Cell Growth, Inflammation, Chondrocyte and Bone Cell Receptor-Mediated Gene Expression. Int J Mol Sci 2019; 20:ijms20153792. [PMID: 31382554 PMCID: PMC6696446 DOI: 10.3390/ijms20153792] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022] Open
Abstract
Extracellular signal-regulated kinase (ERK) is a member of the mitogen-activated protein kinase family of signaling molecules. ERK is predominantly found in two forms, ERK1 (p44) and ERK2 (p42), respectively. There are also several atypical forms of ERK, including ERK3, ERK4, ERK5 and ERK7. The ERK1/2 signaling pathway has been implicated in many and diverse cellular events, including proliferation, growth, differentiation, cell migration, cell survival, metabolism and transcription. ERK1/2 is activated (i.e., phosphorylated) in the cytosol and subsequently translocated to the nucleus, where it activates transcription factors including, but not limited to, ETS, c-Jun, and Fos. It is not surprising that the ERK1/2 signaling cascade has been implicated in many pathological conditions, namely, cancer, arthritis, chronic inflammation, and osteoporosis. This narrative review examines many of the cellular events in which the ERK1/2 signaling cascade plays a critical role. It is anticipated that agents designed to inhibit ERK1/2 activation or p-ERK1/2 activity will be developed for the treatment of those diseases characterized by dysregulated gene expression through ERK1/2 activation.
Collapse
Affiliation(s)
- Nathan Lu
- Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Charles J Malemud
- Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA.
| |
Collapse
|
12
|
Zhang XY, Guo H, Huang Y, Hao PQ, Yang Y, Liu Y, Guo XX, Hao Q, An S, Xu TR. Comparative interactome analysis reveals distinct and overlapping properties of Raf family kinases. Biochem Biophys Res Commun 2019; 514:1217-1223. [DOI: 10.1016/j.bbrc.2019.05.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/12/2019] [Indexed: 12/31/2022]
|
13
|
Jenardhanan P, Panneerselvam M, Mathur PP. Targeting Kinase Interaction Networks: A New Paradigm in PPI Based Design of Kinase Inhibitors. Curr Top Med Chem 2019; 19:467-485. [PMID: 31184298 DOI: 10.2174/1568026619666190304155711] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/20/2019] [Accepted: 02/06/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Kinases are key modulators in regulating diverse range of cellular activities and are an essential part of the protein-protein interactome. Understanding the interaction of kinases with different substrates and other proteins is vital to decode the cell signaling machinery as well as causative mechanism for disease onset and progression. OBJECTIVE The objective of this review is to present all studies on the structure and function of few important kinases and highlight the protein-protein interaction (PPI) mechanism of kinases and the kinase specific interactome databases and how such studies could be utilized to develop anticancer drugs. METHODS The article is a review of the detailed description of the various domains in kinases that are involved in protein-protein interactions and specific inhibitors developed targeting these PPI domains. RESULTS The review has surfaced in depth the interacting domains in key kinases and their features and the roles of PPI in the human kinome and the various signaling cascades that are involved in certain types of cancer. CONCLUSION The insight availed into the mechanism of existing peptide inhibitors and peptidomimetics against kinases will pave way for the design and generation of domain specific peptide inhibitors with better productivity and efficiency and the various software and servers available can be of great use for the identification and analysis of protein-protein interactions.
Collapse
Affiliation(s)
| | - Manivel Panneerselvam
- Department of Biotechnology, BJM School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Premendu P Mathur
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
14
|
Zhang XY, Guo H, Han B, Zhang XM, Huang Y, Yang Y, Liu Y, Guo XX, Hao Q, An S, Xu TR. Revealing A-Raf functions through its interactome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:849-856. [DOI: 10.1016/j.bbapap.2018.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 01/01/2023]
|
15
|
Transdifferentiation of Melanoma Cells by the Reprogramming Factors Attenuates Malignant Nature In Vitro and In Vivo. J Invest Dermatol 2018; 139:254-257. [PMID: 29990471 DOI: 10.1016/j.jid.2018.06.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/08/2018] [Accepted: 06/24/2018] [Indexed: 11/23/2022]
|
16
|
Huang Y, Zhang XY, An S, Yang Y, Liu Y, Hao Q, Guo XX, Xu TR. C-RAF function at the genome-wide transcriptome level: A systematic view. Gene 2018; 656:53-59. [PMID: 29499332 DOI: 10.1016/j.gene.2018.02.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/12/2018] [Indexed: 01/30/2023]
Abstract
C-RAF was the first member of the RAF kinase family to be discovered. Since its discovery, C-RAF has been found to regulate many fundamental cell processes, such as cell proliferation, cell death, and metabolism. However, the majority of these functions are achieved through interactions with different proteins; the genes regulated by C-RAF in its active or inactive state remain unclear. In the work, we used RNA-seq analysis to study the global transcriptomes of C-RAF bearing or C-RAF knockout cells in quiescent or EGF activated states. We identified 3353 genes that are promoted or suppressed by C-RAF. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that these genes are involved in drug addiction, cardiomyopathy, autoimmunity, and regulation of cell metabolism. Our results provide a panoramic view of C-RAF function, including known and novel functions, and have revealed potential targets for elucidating the role of C-RAF.
Collapse
Affiliation(s)
- Ying Huang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xin-Yu Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ying Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qian Hao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiao-Xi Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China.
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
17
|
Eritja N, Yeramian A, Chen BJ, Llobet-Navas D, Ortega E, Colas E, Abal M, Dolcet X, Reventos J, Matias-Guiu X. Endometrial Carcinoma: Specific Targeted Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 943:149-207. [PMID: 27910068 DOI: 10.1007/978-3-319-43139-0_6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endometrial cancer (EC) is the most common gynecologic malignancy in the western world with more than 280,000 cases per year worldwide. Prognosis for EC at early stages, when primary surgical resection is the most common initial treatment, is excellent. Five-year survival rate is around 70 %.Several molecular alterations have been described in the different types of EC. They occur in genes involved in important signaling pathways. In this chapter, we will review the most relevant altered pathways in EC, including PI3K/AKT/mTOR, RAS-RAF-MEK-ERK, Tyrosine kinase, WNT/β-Catenin, cell cycle, and TGF-β signaling pathways. At the end of the chapter, the most significant clinical trials will be briefly discussed.This information is important to identify specific targets for therapy.
Collapse
Affiliation(s)
- Nuria Eritja
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Andree Yeramian
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Bo-Juen Chen
- New York Genome Center, New York, NY, 10013, USA
| | - David Llobet-Navas
- Institute of Genetic Medicine, Newcastle University, Newcastle-Upon-Tyne, NE1 3BZ, UK
| | - Eugenia Ortega
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Eva Colas
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Research Unit in Biomedicine and Translational and Pediatric Oncology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Miguel Abal
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Translational Medical Oncology, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Xavier Dolcet
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Jaume Reventos
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Research Unit in Biomedicine and Translational and Pediatric Oncology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain.
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain.
| |
Collapse
|