1
|
Lohmann J, de Luxán-Hernández C, Gao Y, Zoschke R, Weingartner M. Arabidopsis translation factor eEF1Bγ impacts plant development and is associated with heat-induced cytoplasmic foci. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2585-2602. [PMID: 36749654 DOI: 10.1093/jxb/erad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/02/2023] [Indexed: 06/06/2023]
Abstract
The important role of translational control for maintenance of proteostasis is well documented in plants, but the exact mechanisms that coordinate translation rates during plant development and stress response are not well understood. In Arabidopsis, the translation elongation complex eEF1B consists of three subunits: eEF1Bα, eEF1Bβ, and eEF1Bγ. While eEF1Bα and eEF1Bβ have a conserved GDP/GTP exchange function, the function of eEF1Bγ is still unknown. By generating Arabidopsis mutants with strongly reduced eEF1Bγ levels, we revealed its essential role during plant growth and development and analysed its impact on translation. To explore the function of the eEF1B subunits under high temperature stress, we analysed their dynamic localization as green fluorescent protein fusions under control and heat stress conditions. Each of these fusion proteins accumulated in heat-induced cytoplasmic foci and co-localized with the stress granule marker poly(A)-binding protein 8-mCherry. Protein-protein interaction studies and co-expression analyses indicated that eEF1Bβ physically interacted with both of the other subunits and promoted their recruitment to cytoplasmic foci. These data provide new insights into the mechanisms allowing for rapid adaptation of translation rates during heat stress response.
Collapse
Affiliation(s)
- Julia Lohmann
- Institute of Plant Sciences and Microbiology, University of Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany
| | - Cloe de Luxán-Hernández
- Institute of Plant Sciences and Microbiology, University of Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany
| | - Yang Gao
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Magdalena Weingartner
- Institute of Plant Sciences and Microbiology, University of Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany
| |
Collapse
|
2
|
Negrutskii B, Shalak V, Novosylna O, Porubleva L, Lozhko D, El'skaya A. The eEF1 family of mammalian translation elongation factors. BBA ADVANCES 2022; 3:100067. [PMID: 37082266 PMCID: PMC10074971 DOI: 10.1016/j.bbadva.2022.100067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The eEF1 family of mammalian translation elongation factors is comprised of the two variants of eEF1A (eEF1A1 and eEF1A2), and the eEF1B complex. The latter consists of eEF1Bα, eEF1Bβ, and eEF1Bγ subunits. The two eEF1A variants have similar translation activity but may differ with respect to their secondary, "moonlighting" functions. This variability is underlined by the difference in the spatial organization of eEF1A1 and eEF1A2, and also possibly by the differences in their post-translational modifications. Here, we review the data on the spatial organization and post-translation modifications of eEF1A1 and eEF1A2, and provide examples of their involvement in various processes in addition to translation. We also describe the structural models of eEF1B subunits, their organization in the subcomplexes, and the trimeric model of the entire eEF1B complex. We discuss the functional consequences of such an assembly into a complex as well as the involvement of individual subunits in non-translational processes.
Collapse
Affiliation(s)
- B.S. Negrutskii
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
- Aarhus Institute of Advanced Sciences, Høegh-Guldbergs Gade 6B, DK–8000 Aarhus C, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000 Aarhus C, Denmark
| | - V.F. Shalak
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
| | - O.V. Novosylna
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
| | - L.V. Porubleva
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
| | - D.M. Lozhko
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
| | - A.V. El'skaya
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
| |
Collapse
|
3
|
Bondarchuk TV, Shalak VF, Lozhko DM, Fatalska A, Szczepanowski R, Liudkovska V, Tsuvariev O, Dadlez M, El'skaya A, Negrutskii B. Quaternary organization of the human eEF1B complex reveals unique multi-GEF domain assembly. Nucleic Acids Res 2022; 50:9490-9504. [PMID: 35971611 PMCID: PMC9458455 DOI: 10.1093/nar/gkac685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/12/2022] [Accepted: 07/31/2022] [Indexed: 12/24/2022] Open
Abstract
Protein synthesis in eukaryotic cell is spatially and structurally compartmentalized that ensures high efficiency of this process. One of the distinctive features of higher eukaryotes is the existence of stable multi-protein complexes of aminoacyl-tRNA synthetases and translation elongation factors. Here, we report a quaternary organization of the human guanine-nucleotide exchange factor (GEF) complex, eEF1B, comprising α, β and γ subunits that specifically associate into a heterotrimeric form eEF1B(αβγ)3. As both the eEF1Bα and eEF1Bβ proteins have structurally conserved GEF domains, their total number within the complex is equal to six. Such, so far, unique structural assembly of the guanine-nucleotide exchange factors within a stable complex may be considered as a 'GEF hub' that ensures efficient maintenance of the translationally active GTP-bound conformation of eEF1A in higher eukaryotes.
Collapse
Affiliation(s)
- Tetiana V Bondarchuk
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - Vyacheslav F Shalak
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - Dmytro M Lozhko
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - Agnieszka Fatalska
- Institute of Biochemistry and Biophysics, PAN, Pawinskiego 5a, 02-109 Warsaw, Poland
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Roman H Szczepanowski
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Vladyslava Liudkovska
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Oleksandr Yu Tsuvariev
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Akademik Glushkov Ave. 4-g, 03022 Kyiv, Ukraine
| | - Michal Dadlez
- Institute of Biochemistry and Biophysics, PAN, Pawinskiego 5a, 02-109 Warsaw, Poland
| | - Anna V El'skaya
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - Boris S Negrutskii
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| |
Collapse
|
4
|
Genomic and functional insights into the diversification of the elongation factor eEF1Bγ in fungi. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Kashyap A, Gupta R. N-truncation in lipase Lip11 from Yarrowia lipolytica alleviates substrate inhibition with improved stability and efficiency ensuing distinct structural modifications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Gong P, Liu J, Jiao X, Niu Y, Wang J, Wang X, Yang Z. Novel biallelic loss of EEF1B2 function links to autosomal recessive intellectual disability. Hum Mutat 2022; 43:299-304. [PMID: 35015920 DOI: 10.1002/humu.24329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 11/10/2022]
Abstract
Biallelic variants in EEF1B2 have recently been shown to cause a novel form of non-syndromic intellectual disability (ID) in two unrelated families. More patients are needed to delineate the genotypic and phenotypic spectrum of this gene. In this study, two patients in a family harboring pathogenic compound heterozygous variants in EEF1B2 were identified. They were characterized by non-syndromic ID and fever-sensitive seizures in childhood. Quantitative real-time polymerase chain reaction (QPCR) analysis showed significantly reduced levels of mRNA expression in two patients compared with unaffected controls. The level of EEF1B2 protein was hardly detected in both patients and their unaffected parents. The eef1b2 F0 knockout (crispant) zebrafish presented with abnormal development and light-induced hyperactivity. We identified novel pathogenic EEF1B2 variants within two siblings in a new family. The findings of the expression experiment and first crispant eef1b2 zebrafish model provided further clues to the role of EEF1B2 variants in the pathogenesis of autosomal-recessive ID.
Collapse
Affiliation(s)
- Pan Gong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | | | - Xianru Jiao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yue Niu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | | | | | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
7
|
Bchini R, Girardet JM, Sormani R, Gelhaye E, Morel-Rouhier M. Oxidized glutathione promotes association between eukaryotic translation elongation factor 1Bγ and Ure2p glutathione transferase from Phanerochaete chrysosporium. FEBS J 2020; 288:2956-2969. [PMID: 33124131 DOI: 10.1111/febs.15614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/10/2020] [Accepted: 10/27/2020] [Indexed: 11/27/2022]
Abstract
The eukaryotic translation elongation factor 1Bγ (eEF1Bγ) is an atypical member of the glutathione transferase (GST) superfamily. Contrary to more classical GSTs having a role in toxic compound detoxification, eEF1Bγ is suggested to act as a scaffold protein, anchoring the elongation factor complex EF1B to the endoplasmic reticulum. In this study, we show that eEF1Bγ from the basidiomycete Phanerochaete chrysosporium is fully active as a glutathione transferase in vitro and undergoes conformational changes upon binding of oxidized glutathione. Using real-time analyses of biomolecular interactions, we show that GSSG allows eEF1Bγ to physically interact with other GSTs from the Ure2p class, opening new perspectives for a better understanding of the role of eEF1Bγ in cellular oxidative stress response.
Collapse
|
8
|
Negrutskii B. Non-translational Connections of eEF1B in the Cytoplasm and Nucleus of Cancer Cells. Front Mol Biosci 2020; 7:56. [PMID: 32328499 PMCID: PMC7160314 DOI: 10.3389/fmolb.2020.00056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/20/2020] [Indexed: 12/28/2022] Open
Abstract
The human translation machinery includes three types of supramolecular complexes involved in elongation of the polypeptide chain: the ribosome, complex of elongation factors eEF1B and multienzyme aminoacyl-tRNA synthetase complex. Of the above, eEF1B is the least investigated assembly. Recently, a number of studies provided some insights into the structure of different eEF1B subunits and changes in their expression in cancer and other diseases. There is increasing agreement that possible disease-related functions of eEF1B are not necessarily related to its role in translation. This mini-review focuses on structural and functional features of the eEF1B complex while paying special attention to possible non-canonical functions of its subunits in cancer cells.
Collapse
Affiliation(s)
- Boris Negrutskii
- Department of Structural and Functional Proteomics, Institute of Molecular Biology and Genetics, National Academy of Sciences, Kyiv, Ukraine
| |
Collapse
|
9
|
Larcher L, Buratti J, Héron-Longe B, Benzacken B, Pipiras E, Keren B, Delahaye-Duriez A. New evidence that biallelic loss of function in EEF1B2 gene leads to intellectual disability. Clin Genet 2020; 97:639-643. [PMID: 31845318 DOI: 10.1111/cge.13688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/01/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023]
Abstract
The guanine exchange factor subunit eEF1Bα encoded by the EEF1B2 gene belongs to the eukaryotic elongation translational machinery. Pathogen variants in genes of the translational machinery have been associated with several neurodevelopmental disorders. However, only one family of three siblings with intellectual disability (ID) has been reported so far with a homozygous variant in EEF1B2. Here, we report a second family with a novel homozygous loss of function (LoF) variant p.(Ser128*), carried by two siblings with moderate ID and seizures. Our findings confirm the role of EEF1B2 variants in the pathogenesis of autosomal-recessive ID, expand the variant spectrum and precisely describe the clinical consequences of the LoF of EEF1B2.
Collapse
Affiliation(s)
- Lise Larcher
- APHP, Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié Salpêtrière et GHUEP Hôpital Trousseau, Sorbonne Université, GRC "Déficience Intellectuelle et Autisme,", Paris, France
| | - Julien Buratti
- APHP, Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié Salpêtrière et GHUEP Hôpital Trousseau, Sorbonne Université, GRC "Déficience Intellectuelle et Autisme,", Paris, France
| | | | - Brigitte Benzacken
- APHP, Département d'Histologie, Embryologie et Cytogénétique, Hôpital Jean Verdier, Bondy, France.,Université Paris 13, Sorbonne Paris Cité, UFR SMBH, Bobigny, France.,Neurodiderot, UMR 1141, INSERM, Université de Paris, Paris, France
| | - Eva Pipiras
- APHP, Département d'Histologie, Embryologie et Cytogénétique, Hôpital Jean Verdier, Bondy, France.,Université Paris 13, Sorbonne Paris Cité, UFR SMBH, Bobigny, France.,Neurodiderot, UMR 1141, INSERM, Université de Paris, Paris, France
| | - Boris Keren
- APHP, Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié Salpêtrière et GHUEP Hôpital Trousseau, Sorbonne Université, GRC "Déficience Intellectuelle et Autisme,", Paris, France
| | - Andrée Delahaye-Duriez
- APHP, Département d'Histologie, Embryologie et Cytogénétique, Hôpital Jean Verdier, Bondy, France.,Université Paris 13, Sorbonne Paris Cité, UFR SMBH, Bobigny, France.,Neurodiderot, UMR 1141, INSERM, Université de Paris, Paris, France.,Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| |
Collapse
|
10
|
Bondarchuk TV, Lozhko DM, Shalak VF, Fatalska A, Szczepanowski RH, Dadlez M, Negrutskii BS, El'skaya AV. The protein-binding N-terminal domain of human translation elongation factor 1Bβ possesses a dynamic α-helical structural organization. Int J Biol Macromol 2019; 126:899-907. [PMID: 30590147 DOI: 10.1016/j.ijbiomac.2018.12.220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 10/27/2022]
Abstract
Translation elongation factor 1Bβ (eEF1Bβ) is a metazoan-specific protein involved into the macromolecular eEF1B complex, containing also eEF1Bα and eEF1Bγ subunits. Both eEF1Bα and eEF1Bβ ensure the guanine nucleotide exchange on eEF1A while eEF1Bγ is thought to have a structural role. The structures of the eEF1Bβ catalytic C-terminal domain and neighboring central acidic region are known while the structure of the protein-binding N-terminal domain remains unidentified which prevents clear understanding of architecture of the eEF1B complex. Here we show that the N-terminal domain comprising initial 77 amino acids of eEF1Bβ, eEF1Bβ(1-77), is a monomer in solution with increased hydrodynamic volume. This domain binds eEF1Bγ in equimolar ratio. The CD spectra reveal that the secondary structure of eEF1Bβ(1-77) consists predominantly of α-helices and a portion of disordered region. Very rapid hydrogen/deuterium exchange for all eEF1Bβ(1-77) peptides favors a flexible tertiary organization of eEF1Bβ(1-77). Computational modeling of eEF1Bβ(1-77) suggests several conformation states each composed of three α-helices connected by flexible linkers. Altogether, the data imply that the protein-binding domain of eEF1Bβ shows flexible spatial organization which may be needed for interaction with eEF1Bγ or other protein partners.
Collapse
Affiliation(s)
- Tetiana V Bondarchuk
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150, Zabolotnogo St., 03680 Kyiv, Ukraine
| | - Dmytro M Lozhko
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150, Zabolotnogo St., 03680 Kyiv, Ukraine
| | - Vyacheslav F Shalak
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150, Zabolotnogo St., 03680 Kyiv, Ukraine.
| | - Agnieszka Fatalska
- Institute of Biochemistry and Biophysics, PAN, Pawinskiego 5a, 02-109 Warsaw, Poland
| | - Roman H Szczepanowski
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, PAN, Pawinskiego 5a, 02-109 Warsaw, Poland
| | - Boris S Negrutskii
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150, Zabolotnogo St., 03680 Kyiv, Ukraine
| | - Anna V El'skaya
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150, Zabolotnogo St., 03680 Kyiv, Ukraine
| |
Collapse
|
11
|
Translation elongation factor eEF1Bα is identified as a novel prognostic marker of gastric cancer. Int J Biol Macromol 2018; 126:345-351. [PMID: 30572058 DOI: 10.1016/j.ijbiomac.2018.12.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/15/2018] [Accepted: 12/15/2018] [Indexed: 11/24/2022]
Abstract
Gastric cancer (GC) is a common cancer in humans. Although overexpression of eukaryotic translation elongation factor eEF1Bα is associated with cancer onset and progression, little is known about its expression in GC and its prognostic significance. Here we used immunohistochemistry to analyze eEF1Bα expression in the following tissue types: GC, normal gastric, chronic gastritis, intestinal metaplasia, and intraepithelial neoplasia. These data were correlated with patients' clinical information. eEF1Bα was expressed at levels approximately three times higher in GC tissues compared with normal gastric tissues. High expression of eEF1Bα was significantly associated with histological type, TNM stage, tumor size, and distant metastases. GC patients with high eEF1Bα expression experienced significantly shorter overall survival. Bioinformatics analysis indicated that eEF1Bα may be associated with protein synthesis, energy metabolism, cell cycle, and the p53 signaling pathway. We identified the products of RPL10A and RPS13 as critical components of a network comprising eEF1Bα. We concluded that high eEF1Bα expression is associated with poor overall survival and may serve as an independent prognostic factor of GC. Further, we proposed that eEF1Bα likely mediates the development of GC through the cell cycle and p53 signaling pathway. Together, our findings suggest that eEF1Bα could be an effective prognostic biomarker for GC.
Collapse
|
12
|
McLachlan F, Sires AM, Abbott CM. The role of translation elongation factor eEF1 subunits in neurodevelopmental disorders. Hum Mutat 2018; 40:131-141. [PMID: 30370994 DOI: 10.1002/humu.23677] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 11/06/2022]
Abstract
The multi-subunit eEF1 complex plays a crucial role in de novo protein synthesis. The central functional component of the complex is eEF1A, which occurs as two independently encoded variants with reciprocal expression patterns: whilst eEF1A1 is widely expressed, eEF1A2 is found only in neurons and muscle. Heterozygous mutations in the gene encoding eEF1A2, EEF1A2, have recently been shown to cause epilepsy, autism, and intellectual disability. The remaining subunits of the eEF1 complex, eEF1Bα, eEF1Bδ, eEF1Bγ, and valyl-tRNA synthetase (VARS), together form the GTP exchange factor for eEF1A and are ubiquitously expressed, in keeping with their housekeeping role. However, mutations in the genes encoding these subunits EEF1B2 (eEF1Bα), EEF1D (eEF1Bδ), and VARS (valyl-tRNA synthetase) have also now been identified as causes of neurodevelopmental disorders. In this review, we describe the mutations identified so far in comparison with the degree of normal variation in each gene, and the predicted consequences of the mutations on the functions of the proteins and their isoforms. We discuss the likely effects of the mutations in the context of the role of protein synthesis in neuronal development.
Collapse
Affiliation(s)
- Fiona McLachlan
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Anna Martinez Sires
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Catherine M Abbott
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| |
Collapse
|
13
|
Tao C, Jin X, Zhu L, Li H. Two-Dimensional Gel Electrophoresis-Based Proteomic Analysis Reveals N-terminal Truncation of the Hsc70 Protein in Cotton Fibers In Vivo. Sci Rep 2016; 6:36961. [PMID: 27833127 PMCID: PMC5105075 DOI: 10.1038/srep36961] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/21/2016] [Indexed: 11/09/2022] Open
Abstract
On two-dimensional electrophoresis gels, six protein spots from cotton ovules and fibers were identified as heat shock cognate 70 kD protein (Hsc70). Three spots corresponded to an experimental molecular weight (MW) of 70 kD (spots 1, 2 and 3), and the remaining three spots corresponded to an experimental MW slightly greater than 45 kD (spots 4, 5 and 6). Protein spots 1, 2 and 3 were abundant on gels of 0-day (the day of anthesis) wild-type (WT) ovules, 0-day fuzzless-lintless mutant ovules and 10-day WT ovules but absent from gels of 10-day WT fibers. Three individual transcripts encoding these six protein spots were obtained by using rapid amplification of cDNA ends (RACE). Edman degradation and western blotting confirmed that the three 45 kD Hsc70 protein spots had the same N-terminal, which started from the T271 amino acid in the intact Hsc70 protein. Furthermore, quadrupole time-of-flight mass spectrometry analysis identified a methylation modification on the arginine at position 475 for protein spots 4 and 5. Our data demonstrate that site-specific in vivo N-terminal truncation of the Hsc70 protein was particularly prevalent in cotton fibers, indicating that post-translational regulation might play an important role in cotton fiber development.
Collapse
Affiliation(s)
- Chengcheng Tao
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, 832003, China.,Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xiang Jin
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, 832003, China.,Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Liping Zhu
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, 832003, China
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, 832003, China
| |
Collapse
|
14
|
Pisani C, Onori A, Gabanella F, Delle Monache F, Borreca A, Ammassari-Teule M, Fanciulli M, Di Certo MG, Passananti C, Corbi N. eEF1Bγ binds the Che-1 and TP53 gene promoters and their transcripts. J Exp Clin Cancer Res 2016; 35:146. [PMID: 27639846 PMCID: PMC5027090 DOI: 10.1186/s13046-016-0424-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/10/2016] [Indexed: 11/25/2022] Open
Abstract
Background We have previously shown that the eukaryotic elongation factor subunit 1B gamma (eEF1Bγ) interacts with the RNA polymerase II (pol II) alpha-like subunit “C” (POLR2C), alone or complexed, in the pol II enzyme. Moreover, we demonstrated that eEF1Bγ binds the promoter region and the 3’ UTR mRNA of the vimentin gene. These events contribute to localize the vimentin transcript and consequentially its translation, promoting a proper mitochondrial network. Methods With the intent of identifying additional transcripts that complex with the eEF1Bγ protein, we performed a series of ribonucleoprotein immunoprecipitation (RIP) assays using a mitochondria-enriched heavy membrane (HM) fraction. Results Among the eEF1Bγ complexed transcripts, we found the mRNA encoding the Che-1/AATF multifunctional protein. As reported by other research groups, we found the tumor suppressor p53 transcript complexed with the eEF1Bγ protein. Here, we show for the first time that eEF1Bγ binds not only Che-1 and p53 transcripts but also their promoters. Remarkably, we demonstrate that both the Che-1 transcript and its translated product localize also to the mitochondria and that eEF1Bγ depletion strongly perturbs the mitochondrial network and the correct localization of Che-1. In a doxorubicin (Dox)-induced DNA damage assay we show that eEF1Bγ depletion significantly decreases p53 protein accumulation and slightly impacts on Che-1 accumulation. Importantly, Che-1 and p53 proteins are components of the DNA damage response machinery that maintains genome integrity and prevents tumorigenesis. Conclusions Our data support the notion that eEF1Bγ, besides its canonical role in translation, is an RNA-binding protein and a key player in cellular stress responses. We suggest for eEF1Bγ a role as primordial transcription/translation factor that links fundamental steps from transcription control to local translation. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0424-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cinzia Pisani
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Annalisa Onori
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University, Viale Regina Elena 291, 00161, Rome, Italy
| | - Francesca Gabanella
- CNR -Institute of Cell Biology and Neurobiology, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Francesca Delle Monache
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University, Viale Regina Elena 291, 00161, Rome, Italy
| | - Antonella Borreca
- CNR -Institute of Cell Biology and Neurobiology, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Martine Ammassari-Teule
- CNR -Institute of Cell Biology and Neurobiology, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maurizio Fanciulli
- Department of Research, Advanced Diagnostic, and Technological Innovation, SAFU Laboratory, Regina Elena Cancer Institute, Rome, Italy
| | - Maria Grazia Di Certo
- CNR -Institute of Cell Biology and Neurobiology, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Claudio Passananti
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University, Viale Regina Elena 291, 00161, Rome, Italy
| | - Nicoletta Corbi
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University, Viale Regina Elena 291, 00161, Rome, Italy.
| |
Collapse
|