1
|
Zhao Y, Wang Y. Protein Dynamics in Plant Immunity: Insights into Plant-Pest Interactions. Int J Mol Sci 2024; 25:12951. [PMID: 39684662 DOI: 10.3390/ijms252312951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
All living organisms regulate biological activities by proteins. When plants encounter pest invasions, the delicate balance between protein synthesis and degradation becomes even more pivotal for mounting an effective defense response. In this review, we summarize the mechanisms by which plants regulate their proteins to effectively coordinate immune responses during plant-pest interactions. Additionally, we discuss the main pathway proteins through which pest effectors manipulate host protein homeostasis in plants to facilitate their infestation. Understanding these processes at the molecular level not only deepens our knowledge of plant immunity but also holds the potential to inform strategies for developing pest-resistant crops, contributing to sustainable and resilient agriculture.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yanru Wang
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Cocco E, Farci D, Guadalupi G, Manconi B, Maxia A, Piano D. The elongation factor 1-alpha as storage reserve and environmental sensor in Nicotiana tabacum L. seeds. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 345:112113. [PMID: 38729437 DOI: 10.1016/j.plantsci.2024.112113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/30/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Given their critical role in plant reproduction and survival, seeds demand meticulous regulatory mechanisms to effectively store and mobilize reserves. Within seeds, the condition of storage reserves heavily depends on environmental stimuli and hormonal activation. Unlike non-protein reserves that commonly employ dedicated regulatory proteins for signaling, proteinaceous reserves may show a unique form of 'self-regulation', amplifying efficiency and precision in this process. Proteins rely on stability to carry out their functions. However, in specific physiological contexts, particularly in seed germination, protein instability becomes essential, fulfilling roles from signaling to regulation. In this study, the elongation factor 1-alpha has been identified as a main proteinaceous reserve in Nicotiana tabacum L. seeds and showed peculiar changes in stability based on tested chemical and physical conditions. A detailed biochemical analysis followed these steps to enhance our understanding of these protein attributes. The protein varied its behavior under different conditions of pH, temperature, and salt concentration, exhibiting shifts within physiological ranges. Notably, distinct solubility transitions were observed, with the elongation factor 1-alpha becoming insoluble upon reaching specific thresholds determined by the tested chemical and physical conditions. The findings are discussed within the context of seed signaling in response to environmental conditions during the key transitions of dormancy and germination.
Collapse
Affiliation(s)
- Emma Cocco
- Laboratory of Plant Physiology and Photobiology, Department of Life and Environmental Sciences, University of Cagliari, Viale S. Ignazio da Laconi 13, Cagliari 09123, Italy; Laboratory of Economic and Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, Viale S. Ignazio da Laconi 13, Cagliari 09123, Italy
| | - Domenica Farci
- Laboratory of Plant Physiology and Photobiology, Department of Life and Environmental Sciences, University of Cagliari, Viale S. Ignazio da Laconi 13, Cagliari 09123, Italy; Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Nowoursynowska Str.159, Warsaw 02-776, Poland.
| | - Giulia Guadalupi
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari 09124, Italy
| | - Barbara Manconi
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari 09124, Italy
| | - Andrea Maxia
- Laboratory of Economic and Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, Viale S. Ignazio da Laconi 13, Cagliari 09123, Italy
| | - Dario Piano
- Laboratory of Plant Physiology and Photobiology, Department of Life and Environmental Sciences, University of Cagliari, Viale S. Ignazio da Laconi 13, Cagliari 09123, Italy.
| |
Collapse
|
3
|
Li W, Wu M, Li Y, Shen J. Reactive nitrogen species as therapeutic targets for autophagy/mitophagy modulation to relieve neurodegeneration in multiple sclerosis: Potential application for drug discovery. Free Radic Biol Med 2023; 208:37-51. [PMID: 37532065 DOI: 10.1016/j.freeradbiomed.2023.07.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease with limited therapeutic effects, eventually developing into handicap. Seeking novel therapeutic strategies for MS is timely important. Active autophagy/mitophagy could mediate neurodegeneration, while its roles in MS remain controversial. To elucidate the exact roles of autophagy/mitophagy and reveal its in-depth regulatory mechanisms, we conduct a systematic literature study and analyze the factors that might be responsible for divergent results obtained. The dynamic change levels of autophagy/mitophagy appear to be a determining factor for final neuron fate during MS pathology. Excessive neuronal autophagy/mitophagy contributes to neurodegeneration after disease onset at the active MS phase. Reactive nitrogen species (RNS) serve as key regulators for redox-related modifications and participate in autophagy/mitophagy modulation in MS. Nitric oxide (•NO) and peroxynitrite (ONOO-), two representative RNS, could nitrate or nitrosate Drp1/parkin/PINK1 pathway, activating excessive mitophagy and aggravating neuronal injury. Targeting RNS-mediated excessive autophagy/mitophagy could be a promising strategy for developing novel anti-MS drugs. In this review, we highlight the important roles of RNS-mediated autophagy/mitophagy in neuronal injury and review the potential therapeutic compounds with the bioactivities of inhibiting RNS-mediated autophagy/mitophagy activation and attenuating MS progression. Overall, we conclude that reactive nitrogen species could be promising therapeutic targets to regulate autophagy/mitophagy for multiple sclerosis treatment.
Collapse
Affiliation(s)
- Wenting Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| | - Meiling Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Yuzhen Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
4
|
Zhao K, Nan S, Li Y, Yu C, Zhou L, Hu J, Jin X, Han Y, Wang S. Comprehensive Analysis and Characterization of the GATA Gene Family, with Emphasis on the GATA6 Transcription Factor in Poplar. Int J Mol Sci 2023; 24:14118. [PMID: 37762421 PMCID: PMC10532138 DOI: 10.3390/ijms241814118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
GATA transcription factors are ubiquitously present in eukaryotic organisms and play a crucial role in multiple biological processes, such as plant growth, stress response, and hormone signaling. However, the study of GATA factors in poplar is currently limited to a small number of proteins, despite their evident functional importance. In this investigation, we utilized the most recent genome annotation and stringent criteria to identify 38 GATA transcription factor genes in poplar. Subsequently, we conducted a comprehensive analysis of this gene family, encompassing phylogenetic classification, protein characterization, analysis of promoter cis-acting elements, and determination of chromosomal location. Our examination of gene duplication events indicated that both tandem and segmental duplications have contributed to the expansion of the GATA gene family in poplar, with segmental duplication potentially being a major driving force. By performing collinearity analysis of genes across six different species, we identified 74 pairs of co-linear genes, which provide valuable insights for predicting gene functions from a comparative genomics perspective. Furthermore, through the analysis of gene expression patterns, we identified five GATA genes that exhibited differential expression in leaf-stem-root tissues and eight genes that were responsive to salt stress. Of particular interest was GATA6, which displayed strong induction by salt stress and overlapped between the two gene sets. We discovered that GATA6 encodes a nuclear-localized protein with transcription activation activity, which is continuously induced by salt stress in leaf and root tissues. Moreover, we constructed a co-expression network centered around GATA6, suggesting the potential involvement of these genes in the growth, development, and response to abiotic stress processes in poplar through cell transport systems and protein modification mechanisms, such as vesicle-mediated transport, intracellular transport, ubiquitination, and deubiquitination. This research provides a foundation for further exploration of the functions and mechanisms of GATA transcription factors in poplar.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shengji Wang
- College of Forestry, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
5
|
van Wijk KJ, Leppert T, Sun Z, Deutsch EW. Does the Ubiquitination Degradation Pathway Really Reach inside of the Chloroplast? A Re-Evaluation of Mass Spectrometry-Based Assignments of Ubiquitination. J Proteome Res 2023. [PMID: 37092802 DOI: 10.1021/acs.jproteome.3c00178] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
A recent paper in Science Advances by Sun et al. claims that intra-chloroplast proteins in the model plant Arabidopsis can be polyubiquitinated and then extracted into the cytosol for subsequent degradation by the proteasome. Most of this conclusion hinges on several sets of mass spectrometry (MS) data. If the proposed results and conclusion are true, this would be a major change in the proteolysis/proteostasis field, breaking the long-standing dogma that there are no polyubiquitination mechanisms within chloroplast organelles (nor in mitochondria). Given its importance, we reanalyzed their raw MS data using both open and closed sequence database searches and encountered many issues not only with the results but also discrepancies between stated methods (e.g., use of alkylating agent iodoacetamide (IAA)) and observed mass modifications. Although there is likely enrichment of ubiquitination signatures in a subset of the data (probably from ubiquitination in the cytosol), we show that runaway alkylation with IAA caused extensive artifactual modifications of N termini and lysines to the point that a large fraction of the desired ubiquitination signatures is indistinguishable from artifactual acetamide signatures, and thus, no intra-chloroplast polyubiquitination conclusions can be drawn from these data. We provide recommendations on how to avoid such perils in future work.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Tami Leppert
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| | - Zhi Sun
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| | - Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| |
Collapse
|
6
|
The role of Atg16 in autophagy, anthocyanin biosynthesis, and programmed cell death in leaves of the lace plant (Aponogeton madagascariensis). PLoS One 2023; 18:e0281668. [PMID: 36795694 PMCID: PMC9934333 DOI: 10.1371/journal.pone.0281668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/29/2023] [Indexed: 02/17/2023] Open
Abstract
Aponogeton madagascariensis, commonly known as the lace plant, produces leaves that form perforations by programmed cell death (PCD). Leaf development is divided into several stages beginning with "pre-perforation" furled leaves enriched with red pigmentation from anthocyanins. The leaf blade is characterized by a series of grids known as areoles bounded by veins. As leaves develop into the "window stage", anthocyanins recede from the center of the areole towards the vasculature creating a gradient of pigmentation and cell death. Cells in the middle of the areole that lack anthocyanins undergo PCD (PCD cells), while cells that retain anthocyanins (non-PCD cells) maintain homeostasis and persist in the mature leaf. Autophagy has reported roles in survival or PCD promotion across different plant cell types. However, the direct involvement of autophagy in PCD and anthocyanin levels during lace plant leaf development has not been determined. Previous RNA sequencing analysis revealed the upregulation of autophagy-related gene Atg16 transcripts in pre-perforation and window stage leaves, but how Atg16 affects PCD in lace plant leaf development is unknown. In this study, we investigated the levels of Atg16 in lace plant PCD by treating whole plants with either an autophagy promoter rapamycin or inhibitors concanamycin A (ConA) or wortmannin. Following treatments, window and mature stage leaves were harvested and analyzed using microscopy, spectrophotometry, and western blotting. Western blotting showed significantly higher Atg16 levels in rapamycin-treated window leaves, coupled with lower anthocyanin levels. Wortmannin-treated leaves had significantly lower Atg16 protein and higher anthocyanin levels compared to the control. Mature leaves from rapamycin-treated plants generated significantly fewer perforations compared to control, while wortmannin had the opposite effect. However, ConA treatment did not significantly change Atg16 levels, nor the number of perforations compared to the control, but anthocyanin levels did increase significantly in window leaves. We propose autophagy plays a dual role in promoting cell survival in NPCD cells by maintaining optimal anthocyanin levels and mediating a timely cell death in PCD cells in developing lace plant leaves. How autophagy specifically affects anthocyanin levels remained unexplained.
Collapse
|
7
|
Langin G, Üstün S. A Pipeline to Monitor Proteasome Homeostasis in Plants. Methods Mol Biol 2023; 2581:351-363. [PMID: 36413330 DOI: 10.1007/978-1-0716-2784-6_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The proteasome is a key component for regulation of protein turnover across kingdoms. The proteasome has been shown to be involved in or affected by various stress conditions in multiple model organisms in plants. As such, studying proteasome homeostasis is crucial to understand its participation in different cellular conditions. However, the involvement of the proteasome in many cellular processes and its interplay with other degradation pathways hamper the interpretation of experiments based on a single approach. Thus, it is crucial to formulate a framework to investigate proteasome dynamics in different model organisms including plants. Here, we describe a pipeline to monitor proteasome homeostasis using four different methods including (i) luminescent-based proteasome activity measurement, (ii) immunoblot analysis of ubiquitinated proteins, (iii) evaluation of proteasome subunit protein levels, and (iv) monitoring of the proteasome stress regulon on mRNA levels using quantitative real-time PCR (polymerase chain reaction).
Collapse
Affiliation(s)
- Gautier Langin
- University of Tübingen, Center for Plant Molecular Biology (ZMBP), Tübingen, Germany.
| | - Suayib Üstün
- University of Tübingen, Center for Plant Molecular Biology (ZMBP), Tübingen, Germany.
- Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Bochum, Germany.
| |
Collapse
|
8
|
Degradation Mechanism of Autophagy-Related Proteins and Research Progress. Int J Mol Sci 2022; 23:ijms23137301. [PMID: 35806307 PMCID: PMC9266641 DOI: 10.3390/ijms23137301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/21/2022] Open
Abstract
In all eukaryotes, autophagy is the main pathway for nutrient recycling, which encapsulates parts of the cytoplasm and organelles in double-membrane vesicles, and then fuses with lysosomes/vacuoles to degrade them. Autophagy is a highly dynamic and relatively complex process influenced by multiple factors. Under normal growth conditions, it is maintained at basal levels. However, when plants are subjected to biotic and abiotic stresses, such as pathogens, drought, waterlogging, nutrient deficiencies, etc., autophagy is activated to help cells to survive under stress conditions. At present, the regulation of autophagy is mainly reflected in hormones, second messengers, post-transcriptional regulation, and protein post-translational modification. In recent years, the degradation mechanism of autophagy-related proteins has attracted much attention. In this review, we have summarized how autophagy-related proteins are degraded in yeast, animals, and plants, which will help us to have a more comprehensive and systematic understanding of the regulation mechanisms of autophagy. Moreover, research progress on the degradation of autophagy-related proteins in plants has been discussed.
Collapse
|
9
|
B B, Zeng Z, Zhou C, Lian G, Guo F, Wang J, Han N, Zhu M, Bian H. Identification of New ATG8s-Binding Proteins with Canonical LC3-Interacting Region in Autophagosomes of Barley Callus. PLANT & CELL PHYSIOLOGY 2022:pcac015. [PMID: 35134996 DOI: 10.1093/pcp/pcac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Autophagy is essential to maintain cellular homeostasis for normal cell growth and development. In selective autophagy, ATG8 plays a crucial role in cargo target recognition by binding to various adaptors and receptors with the ATG8-interacting motif, also known as the LC3-interacting region (LIR). However, the process of autophagy in the callus, as a proliferating cell type, is largely unknown. In this study, we overexpressed green fluorescent protein (GFP)-ATG8a and GFP-ATG8b transgenic barley callus and checked their autophagic activities. We identified five new ATG8 candidate interactors containing the canonical LIR motif by using immunoprecipitation coupled with mass spectrometry: RPP3, COPE, NCLN, RAE1, and CTSL. The binding activities between these candidate interactors and ATG8 were further demonstrated in the punctate structure. Notably, RPP3 was colocalized in ATG8-labeled autophagosomes under tunicamycin-induced ER stress. GST pull-down assays showed that the interaction between RPP3 and ATG8 could be prevented by mutating the LIRs region of RPP3 or the LIR docking site (LDS) of ATG8, suggesting that RPP3 directly interacted with ATG8 in an LIR-dependent manner via the LDS. Our findings would provide the basis for further investigations on novel receptors and functions of autophagy in plants, especially in the physiological state of cell de-differentiation.
Collapse
|
10
|
Dash A, Ghag SB. Genome-wide in silico characterization and stress induced expression analysis of BcL-2 associated athanogene (BAG) family in Musa spp. Sci Rep 2022; 12:625. [PMID: 35022483 PMCID: PMC8755836 DOI: 10.1038/s41598-021-04707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022] Open
Abstract
Programmed cell death (PCD) is a genetically controlled process for the selective removal of damaged cells. Though understanding about plant PCD has improved over years, the mechanisms are yet to be fully deciphered. Among the several molecular players of PCD in plants, B cell lymphoma 2 (Bcl-2)-associated athanogene (BAG) family of co-chaperones are evolutionary conserved and regulate cell death, growth and development. In this study, we performed a genome-wide in silico analysis of the MusaBAG gene family in a globally important fruit crop banana. Thirteen MusaBAG genes were identified, out of which MusaBAG1, 7 and 8 genes were found to have multiple copies. MusaBAG genes were distributed on seven out of 11 chromosomes in banana. Except for one paralog of MusaBAG8 all the other 12 proteins have characteristic BAG domain. MusaBAG1, 2 and 4 have an additional ubiquitin-like domain whereas MusaBAG5-8 have a calmodulin binding motif. Most of the MusaBAG proteins were predicted to be localized in the nucleus and mitochondria or chloroplast. The in silico cis-regulatory element analysis suggested regulation associated with photoperiodic control, abiotic and biotic stress. The phylogenetic analysis revealed 2 major clusters. Digital gene expression analysis and quantitative real-time RT-PCR depicted the differential expression pattern of MusaBAG genes under abiotic and biotic stress conditions. Further studies are warranted to uncover the role of each of these proteins in growth, PCD and stress responses so as to explore them as candidate genes for engineering transgenic banana plants with improved agronomic traits.
Collapse
Affiliation(s)
- Ashutosh Dash
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Campus, Kalina, Santacruz (East), Mumbai, 400 098, India
| | - Siddhesh B Ghag
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Campus, Kalina, Santacruz (East), Mumbai, 400 098, India.
| |
Collapse
|
11
|
Chinnathambi S, Gorantla NV. Implications of Valosin-containing Protein in Promoting Autophagy to Prevent Tau Aggregation. Neuroscience 2021; 476:125-134. [PMID: 34509548 DOI: 10.1016/j.neuroscience.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/14/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022]
Abstract
Chaperones and cellular degradative mechanisms modulate Tau aggregation. During aging and neurodegenerative disorders, the cellular proteostasis is disturbed due to impaired protective mechanisms. This results in accumulation of aberrant Tau aggregates in the neuron that leads to microtubule destabilization and neuronal degeneration. The intricate mechanisms to prevent Tau aggregation involve chaperones, autophagy, and proteasomal system have gained main focus about concerning to therapeutic intervention. However, the thorough understanding of other key proteins, such as Valosin-containing protein (VCP), is limited. In various neurodegenerative diseases, the chaperone-like activity of VCP is involved in preventing protein aggregation and mediating the degradation of aberrant proteins by proteasome and autophagy. In the case of Tau aggregation associated with Alzheimer's disease, the importance of VCP is poorly understood. VCP is known to co-localize with Tau, and alterations in VCP cause aberrant accumulation of Tau. Nevertheless, the direct mechanism of VCP in altering Tau aggregation is not known. Hence, we speculate that VCP might be one of the key modulators in preventing Tau aggregation and can disintegrate Tau aggregates by directing its clearance by autophagy.
Collapse
Affiliation(s)
- Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Nalini Vijay Gorantla
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
Rehman NU, Zeng P, Mo Z, Guo S, Liu Y, Huang Y, Xie Q. Conserved and Diversified Mechanism of Autophagy between Plants and Animals upon Various Stresses. Antioxidants (Basel) 2021; 10:1736. [PMID: 34829607 PMCID: PMC8615172 DOI: 10.3390/antiox10111736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/01/2023] Open
Abstract
Autophagy is a highly conserved degradation mechanism in eukaryotes, executing the breakdown of unwanted cell components and subsequent recycling of cellular material for stress relief through vacuole-dependence in plants and yeast while it is lysosome-dependent in animal manner. Upon stress, different types of autophagy are stimulated to operate certain biological processes by employing specific selective autophagy receptors (SARs), which hijack the cargo proteins or organelles to the autophagy machinery for subsequent destruction in the vacuole/lysosome. Despite recent advances in autophagy, the conserved and diversified mechanism of autophagy in response to various stresses between plants and animals still remain a mystery. In this review, we intend to summarize and discuss the characterization of the SARs and their corresponding processes, expectantly advancing the scope and perspective of the evolutionary fate of autophagy between plants and animals.
Collapse
Affiliation(s)
- Naveed Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| | - Peichun Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| | - Zulong Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| | - Shaoying Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| | - Yunfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences and Technology, Guangxi University, Nanning 530004, China;
| | - Yifeng Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310001, China
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| |
Collapse
|
13
|
The Rab Geranylgeranyl Transferase Beta Subunit Is Essential for Embryo and Seed Development in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22157907. [PMID: 34360673 PMCID: PMC8347404 DOI: 10.3390/ijms22157907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
Auxin is a key regulator of plant development affecting the formation and maturation of reproductive structures. The apoplastic route of auxin transport engages influx and efflux facilitators from the PIN, AUX and ABCB families. The polar localization of these proteins and constant recycling from the plasma membrane to endosomes is dependent on Rab-mediated vesicular traffic. Rab proteins are anchored to membranes via posttranslational addition of two geranylgeranyl moieties by the Rab Geranylgeranyl Transferase enzyme (RGT), which consists of RGTA, RGTB and REP subunits. Here, we present data showing that seed development in the rgtb1 mutant, with decreased vesicular transport capacity, is disturbed. Both pre- and post-fertilization events are affected, leading to a decrease in seed yield. Pollen tube recognition at the stigma and its guidance to the micropyle is compromised and the seed coat forms incorrectly. Excess auxin in the sporophytic tissues of the ovule in the rgtb1 plants leads to an increased tendency of autonomous endosperm formation in unfertilized ovules and influences embryo development in a maternal sporophytic manner. The results show the importance of vesicular traffic for sexual reproduction in flowering plants, and highlight RGTB1 as a key component of sporophytic-filial signaling.
Collapse
|
14
|
Sirko A, Wawrzyńska A, Brzywczy J, Sieńko M. Control of ABA Signaling and Crosstalk with Other Hormones by the Selective Degradation of Pathway Components. Int J Mol Sci 2021; 22:4638. [PMID: 33924944 PMCID: PMC8125534 DOI: 10.3390/ijms22094638] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
A rapid and appropriate genetic and metabolic acclimation, which is crucial for plants' survival in a changing environment, is maintained due to the coordinated action of plant hormones and cellular degradation mechanisms influencing proteostasis. The plant hormone abscisic acid (ABA) rapidly accumulates in plants in response to environmental stress and plays a pivotal role in the reaction to various stimuli. Increasing evidence demonstrates a significant role of autophagy in controlling ABA signaling. This field has been extensively investigated and new discoveries are constantly being provided. We present updated information on the components of the ABA signaling pathway, particularly on transcription factors modified by different E3 ligases. Then, we focus on the role of selective autophagy in ABA pathway control and review novel evidence on the involvement of autophagy in different parts of the ABA signaling pathway that are important for crosstalk with other hormones, particularly cytokinins and brassinosteroids.
Collapse
Affiliation(s)
- Agnieszka Sirko
- Laboratory of Plant Protein Homeostasis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106 Warsaw, Poland; (J.B.); (M.S.)
| | - Anna Wawrzyńska
- Laboratory of Plant Protein Homeostasis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106 Warsaw, Poland; (J.B.); (M.S.)
| | | | | |
Collapse
|
15
|
Robert G, Yagyu M, Koizumi T, Naya L, Masclaux-Daubresse C, Yoshimoto K. Ammonium stress increases microautophagic activity while impairing macroautophagic flux in Arabidopsis roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1083-1097. [PMID: 33222335 DOI: 10.1111/tpj.15091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
Plant responses to NH4+ stress are complex, and multiple mechanisms underlying NH4+ sensitivity and tolerance in plants may be involved. Here, we demonstrate that macro- and microautophagic activities are oppositely affected in plants grown under NH4+ toxicity conditions. When grown under NH4+ stress conditions, macroautophagic activity was impaired in roots. Root cells accumulated autophagosomes in the cytoplasm, but showed less autophagic flux, indicating that late steps of the macroautophagy process are affected under NH4+ stress conditions. Under this scenario, we also found that the CCZ1-MON1 complex, a critical factor for vacuole delivery pathways, functions in the late step of the macroautophagic pathway in Arabidopsis. In contrast, an accumulation of tonoplast-derived vesicles was observed in vacuolar lumens of root cells of NH4+ -stressed plants, suggesting the induction of a microautophagy-like process. In this sense, some SYP22-, but mainly VAMP711-positive vesicles were observed inside vacuole in roots of NH4+ -stressed plants. Consistent with the increased tonoplast degradation and the reduced membrane flow to the vacuole due to the impaired macroautophagic flux, the vacuoles of root cells of NH4+ -stressed plants showed a simplified structure and lower tonoplast content. Taken together, this study presents evidence that postulates late steps of the macroautophagic process as a relevant physiological mechanism underlying the NH4+ sensitivity response in Arabidopsis, and additionally provides insights into the molecular tools for studying microautophagy in plants.
Collapse
Affiliation(s)
- Germán Robert
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
- Instituto Nacional de Tecnología Agropecuaria (INTA) - Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Av. 11 de Septiembre, Córdoba, 4755-X5020ICA, Argentina
- Unidad de doble dependencia INTA-CONICET (UDEA), Av. 11 de Septiembre, Córdoba, 4755-X5020ICA, Argentina
| | - Mako Yagyu
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan
| | - Takaya Koizumi
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan
| | - Loreto Naya
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Céline Masclaux-Daubresse
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Kohki Yoshimoto
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan
| |
Collapse
|
16
|
Su T, Yang M, Wang P, Zhao Y, Ma C. Interplay between the Ubiquitin Proteasome System and Ubiquitin-Mediated Autophagy in Plants. Cells 2020; 9:cells9102219. [PMID: 33019500 PMCID: PMC7600366 DOI: 10.3390/cells9102219] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
All eukaryotes rely on the ubiquitin-proteasome system (UPS) and autophagy to control the abundance of key regulatory proteins and maintain a healthy intracellular environment. In the UPS, damaged or superfluous proteins are ubiquitinated and degraded in the proteasome, mediated by three types of ubiquitin enzymes: E1s (ubiquitin activating enzymes), E2s (ubiquitin conjugating enzymes), and E3s (ubiquitin protein ligases). Conversely, in autophagy, a vesicular autophagosome is formed that transfers damaged proteins and organelles to the vacuole, mediated by a series of ATGs (autophagy related genes). Despite the use of two completely different componential systems, the UPS and autophagy are closely interconnected and mutually regulated. During autophagy, ATG8 proteins, which are autophagosome markers, decorate the autophagosome membrane similarly to ubiquitination of damaged proteins. Ubiquitin is also involved in many selective autophagy processes and is thus a common factor of the UPS and autophagy. Additionally, the components of the UPS, such as the 26S proteasome, can be degraded via autophagy, and conversely, ATGs can be degraded by the UPS, indicating cross regulation between the two pathways. The UPS and autophagy cooperate and jointly regulate homeostasis of cellular components during plant development and stress response.
Collapse
Affiliation(s)
| | | | | | | | - Changle Ma
- Correspondence: ; Tel.: +86-0531-86180792
| |
Collapse
|
17
|
A selective autophagy cargo receptor NBR1 modulates abscisic acid signalling in Arabidopsis thaliana. Sci Rep 2020; 10:7778. [PMID: 32385330 PMCID: PMC7211012 DOI: 10.1038/s41598-020-64765-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 04/18/2020] [Indexed: 12/17/2022] Open
Abstract
The plant selective autophagy cargo receptor neighbour of breast cancer 1 gene (NBR1) has been scarcely studied in the context of abiotic stress. We wanted to expand this knowledge by using Arabidopsis thaliana lines with constitutive ectopic overexpression of the AtNBR1 gene (OX lines) and the AtNBR1 Knock-Out (KO lines). Transcriptomic analysis of the shoots and roots of one representative OX line indicated differences in gene expression relative to the parental (WT) line. In shoots, many differentially expressed genes, either up- or down-regulated, were involved in responses to stimuli and stress. In roots the most significant difference was observed in a set of downregulated genes that is mainly related to translation and formation of ribonucleoprotein complexes. The link between AtNBR1 overexpression and abscisic acid (ABA) signalling was suggested by an interaction network analysis of these differentially expressed genes. Most hubs of this network were associated with ABA signalling. Although transcriptomic analysis suggested enhancement of ABA responses, ABA levels were unchanged in the OX shoots. Moreover, some of the phenotypes of the OX (delayed germination, increased number of closed stomata) and the KO lines (increased number of lateral root initiation sites) indicate that AtNBR1 is essential for fine-tuning of the ABA signalling pathway. The interaction of AtNBR1 with three regulatory proteins of ABA pathway (ABI3, ABI4 and ABI5) was observed in planta. It suggests that AtNBR1 might play role in maintaining the balance of ABA signalling by controlling their level and/or activity.
Collapse
|
18
|
Moulinier-Anzola J, Schwihla M, De-Araújo L, Artner C, Jörg L, Konstantinova N, Luschnig C, Korbei B. TOLs Function as Ubiquitin Receptors in the Early Steps of the ESCRT Pathway in Higher Plants. MOLECULAR PLANT 2020; 13:717-731. [PMID: 32087370 DOI: 10.1016/j.molp.2020.02.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/17/2020] [Accepted: 02/13/2020] [Indexed: 05/21/2023]
Abstract
Protein abundance and localization at the plasma membrane (PM) shapes plant development and mediates adaptation to changing environmental conditions. It is regulated by ubiquitination, a post-translational modification crucial for the proper sorting of endocytosed PM proteins to the vacuole for subsequent degradation. To understand the significance and the variety of roles played by this reversible modification, the function of ubiquitin receptors, which translate the ubiquitin signature into a cellular response, needs to be elucidated. In this study, we show that TOL (TOM1-like) proteins function in plants as multivalent ubiquitin receptors, governing ubiquitinated cargo delivery to the vacuole via the conserved Endosomal Sorting Complex Required for Transport (ESCRT) pathway. TOL2 and TOL6 interact with components of the ESCRT machinery and bind to K63-linked ubiquitin via two tandemly arranged conserved ubiquitin-binding domains. Mutation of these domains results not only in a loss of ubiquitin binding but also altered localization, abolishing TOL6 ubiquitin receptor activity. Function and localization of TOL6 is itself regulated by ubiquitination, whereby TOL6 ubiquitination potentially modulates degradation of PM-localized cargoes, assisting in the fine-tuning of the delicate interplay between protein recycling and downregulation. Taken together, our findings demonstrate the function and regulation of a ubiquitin receptor that mediates vacuolar degradation of PM proteins in higher plants.
Collapse
Affiliation(s)
- Jeanette Moulinier-Anzola
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Maximilian Schwihla
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Lucinda De-Araújo
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Christina Artner
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Lisa Jörg
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Nataliia Konstantinova
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Christian Luschnig
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Barbara Korbei
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
19
|
Wawrzyńska A, Sirko A. The Role of Selective Protein Degradation in the Regulation of Iron and Sulfur Homeostasis in Plants. Int J Mol Sci 2020; 21:E2771. [PMID: 32316330 PMCID: PMC7215296 DOI: 10.3390/ijms21082771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Plants are able to synthesize all essential metabolites from minerals, water, and light to complete their life cycle. This plasticity comes at a high energy cost, and therefore, plants need to tightly allocate resources in order to control their economy. Being sessile, plants can only adapt to fluctuating environmental conditions, relying on quality control mechanisms. The remodeling of cellular components plays a crucial role, not only in response to stress, but also in normal plant development. Dynamic protein turnover is ensured through regulated protein synthesis and degradation processes. To effectively target a wide range of proteins for degradation, plants utilize two mechanistically-distinct, but largely complementary systems: the 26S proteasome and the autophagy. As both proteasomal- and autophagy-mediated protein degradation use ubiquitin as an essential signal of substrate recognition, they share ubiquitin conjugation machinery and downstream ubiquitin recognition modules. Recent progress has been made in understanding the cellular homeostasis of iron and sulfur metabolisms individually, and growing evidence indicates that complex crosstalk exists between iron and sulfur networks. In this review, we highlight the latest publications elucidating the role of selective protein degradation in the control of iron and sulfur metabolism during plant development, as well as environmental stresses.
Collapse
Affiliation(s)
- Anna Wawrzyńska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | | |
Collapse
|
20
|
Stefaniak S, Wojtyla Ł, Pietrowska-Borek M, Borek S. Completing Autophagy: Formation and Degradation of the Autophagic Body and Metabolite Salvage in Plants. Int J Mol Sci 2020; 21:E2205. [PMID: 32210003 PMCID: PMC7139740 DOI: 10.3390/ijms21062205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionarily conserved process that occurs in yeast, plants, and animals. Despite many years of research, some aspects of autophagy are still not fully explained. This mostly concerns the final stages of autophagy, which have not received as much interest from the scientific community as the initial stages of this process. The final stages of autophagy that we take into consideration in this review include the formation and degradation of the autophagic bodies as well as the efflux of metabolites from the vacuole to the cytoplasm. The autophagic bodies are formed through the fusion of an autophagosome and vacuole during macroautophagy and by vacuolar membrane invagination or protrusion during microautophagy. Then they are rapidly degraded by vacuolar lytic enzymes, and products of the degradation are reused. In this paper, we summarize the available information on the trafficking of the autophagosome towards the vacuole, the fusion of the autophagosome with the vacuole, the formation and decomposition of autophagic bodies inside the vacuole, and the efflux of metabolites to the cytoplasm. Special attention is given to the formation and degradation of autophagic bodies and metabolite salvage in plant cells.
Collapse
Affiliation(s)
- Szymon Stefaniak
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (S.S.); (Ł.W.)
| | - Łukasz Wojtyla
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (S.S.); (Ł.W.)
| | - Małgorzata Pietrowska-Borek
- Department of Biochemistry and Biotechnology, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Sławomir Borek
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (S.S.); (Ł.W.)
| |
Collapse
|
21
|
Fan T, Yang W, Zeng X, Xu X, Xu Y, Fan X, Luo M, Tian C, Xia K, Zhang M. A Rice Autophagy Gene OsATG8b Is Involved in Nitrogen Remobilization and Control of Grain Quality. FRONTIERS IN PLANT SCIENCE 2020; 11:588. [PMID: 32582228 PMCID: PMC7287119 DOI: 10.3389/fpls.2020.00588] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/20/2020] [Indexed: 05/03/2023]
Abstract
Enhancing nitrogen (N) use efficiency is a potential way to reduce excessive nitrogen application and increase yield. Autophagy is a conserved degradation system in the evolution of eukaryotic cells and plays an important role in plant development and stress response. Autophagic cores have two conjugation pathways that attach the product of autophagy-related gene 8 (ATG8) to phosphatidylethanolamine (PE) and ATG5 to ATG12, respectively, which then help with vesicle elongation and enclosure. Rice has six ATG8 genes, which have not been functionally confirmed so far. We identified the rice gene OsATG8b and characterized its role in N remobilization to affect grain quality by generating transgenic plants with its over-expression and knockdown. Our study confirmed the autophagy activity of OsATG8b through the complementation of the yeast autophagy-defective mutant scatg8 and by observation of autophagosome formation in rice. The autophagy activity is higher in OsATG8b-OE lines and lower in OsATG8b-RNAi than that in wild type (ZH11). 15N pulse-chase analysis revealed that OsATG8b-OE plants conferred higher N recycling efficiency to grains, while OsATG8b-RNAi transgenic plants exhibited lower N recycling efficiency and poorer grain quality. The autophagic role of OsATG8b was experimentally confirmed, and it was concluded that OsATG8b-mediated autophagy is involved in N recycling to grains and contributes to the grain quality, indicating that OsATG8b may be a potential gene for molecular breeding and cultivation of rice.
Collapse
Affiliation(s)
- Tian Fan
- School of Life Sciences, Guangzhou University, Guangzhou, China
- Innovation Academy for Seed Design, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Wu Yang
- Innovation Academy for Seed Design, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xuan Zeng
- Innovation Academy for Seed Design, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xinlan Xu
- Innovation Academy for Seed Design, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yanling Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Ming Luo
- Innovation Academy for Seed Design, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Changen Tian
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Kuaifei Xia
- Innovation Academy for Seed Design, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Mingyong Zhang
- Innovation Academy for Seed Design, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Mingyong Zhang,
| |
Collapse
|
22
|
Huang YP, Huang YW, Hsiao YJ, Li SC, Hsu YH, Tsai CH. Autophagy is involved in assisting the replication of Bamboo mosaic virus in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4657-4670. [PMID: 31552430 PMCID: PMC6760330 DOI: 10.1093/jxb/erz244] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Indexed: 05/20/2023]
Abstract
Autophagy plays a critical role in plants under biotic stress, including the response to pathogen infection. We investigated whether autophagy-related genes (ATGs) are involved in infection with Bamboo mosaic virus (BaMV), a single-stranded positive-sense RNA virus. Initially, we observed that BaMV infection in Nicotiana benthamiana leaves upregulated the expression of ATGs but did not trigger cell death. The induction of ATGs, which possibly triggers autophagy, increased rather than diminished BaMV accumulation in the leaves, as revealed by gene knockdown and transient expression experiments. Furthermore, the inhibitor 3-methyladenine blocked autophagosome formation and the autophagy inducer rapamycin, which negatively and positively affected BaMV accumulation, respectively. Pull-down experiments with an antibody against orange fluorescent protein (OFP)-NbATG8f, an autophagosome marker protein, showed that both plus- and minus-sense BaMV RNAs could associate with NbATG8f. Confocal microscopy revealed that ATG8f-enriched vesicles possibly derived from chloroplasts contained both the BaMV viral RNA and its replicase. Thus, BaMV infection may induce the expression of ATGs possibly via autophagy to selectively engulf a portion of viral RNA-containing chloroplast. Virus-induced vesicles enriched with ATG8f could provide an alternative site for viral RNA replication or a shelter from the host silencing mechanism.
Collapse
Affiliation(s)
- Ying-Ping Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yung-Jen Hsiao
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Siou-Cen Li
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yau-Huei Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
23
|
Olmedilla A, Sandalio LM. Selective Autophagy of Peroxisomes in Plants: From Housekeeping to Development and Stress Responses. FRONTIERS IN PLANT SCIENCE 2019; 10:1021. [PMID: 31555306 PMCID: PMC6722239 DOI: 10.3389/fpls.2019.01021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/22/2019] [Indexed: 05/21/2023]
Abstract
Peroxisomes are dynamic organelles involved in multiple functions, including oxygen and nitrogen reactive species metabolism. In plants, these organelles have a close relationship with chloroplasts and mitochondria, characterized by intense metabolic activity and signal transduction. Peroxisomes undergo rapid changes in size, morphology, and abundance depending on the plant development stage and environmental conditions. As peroxisomes are essential not only for redox homeostasis but also for sensing stress, signaling transduction, and cell survival, their formation and degradation need to be rigorously regulated. In this review, new insights into the regulation of plant peroxisomes are briefly described, with a particular emphasis on pexophagy components and their regulation.
Collapse
Affiliation(s)
- Adela Olmedilla
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Luisa M. Sandalio
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
24
|
The Roles of Ubiquitin-Binding Protein Shuttles in the Degradative Fate of Ubiquitinated Proteins in the Ubiquitin-Proteasome System and Autophagy. Cells 2019; 8:cells8010040. [PMID: 30634694 PMCID: PMC6357184 DOI: 10.3390/cells8010040] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 12/15/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) and autophagy are the two major intracellular protein quality control (PQC) pathways that are responsible for cellular proteostasis (homeostasis of the proteome) by ensuring the timely degradation of misfolded, damaged, and unwanted proteins. Ubiquitination serves as the degradation signal in both these systems, but substrates are precisely targeted to one or the other pathway. Determining how and when cells target specific proteins to these two alternative PQC pathways and control the crosstalk between them are topics of considerable interest. The ubiquitin (Ub) recognition code based on the type of Ub-linked chains on substrate proteins was believed to play a pivotal role in this process, but an increasing body of evidence indicates that the PQC pathway choice is also made based on other criteria. These include the oligomeric state of the Ub-binding protein shuttles, their conformation, protein modifications, and the presence of motifs that interact with ATG8/LC3/GABARAP (autophagy-related protein 8/microtubule-associated protein 1A/1B-light chain 3/GABA type A receptor-associated protein) protein family members. In this review, we summarize the current knowledge regarding the Ub recognition code that is bound by Ub-binding proteasomal and autophagic receptors. We also discuss how cells can modify substrate fate by modulating the structure, conformation, and physical properties of these receptors to affect their shuttling between both degradation pathways.
Collapse
|
25
|
Watanabe M, Netzer F, Tohge T, Orf I, Brotman Y, Dubbert D, Fernie AR, Rennenberg H, Hoefgen R, Herschbach C. Metabolome and Lipidome Profiles of Populus × canescens Twig Tissues During Annual Growth Show Phospholipid-Linked Storage and Mobilization of C, N, and S. FRONTIERS IN PLANT SCIENCE 2018; 9:1292. [PMID: 30233628 PMCID: PMC6133996 DOI: 10.3389/fpls.2018.01292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/16/2018] [Indexed: 05/06/2023]
Abstract
The temperate climax tree species Fagus sylvatica and the floodplain tree species Populus × canescens possess contrasting phosphorus (P) nutrition strategies. While F. sylvatica has been documented to display P storage and mobilization (Netzer et al., 2017), this was not observed for Populus × canescens (Netzer et al., 2018b). Nevertheless, changes in the abundance of organic bound P in gray poplar trees indicated adaptation of the P nutrition to different needs during annual growth. The present study aimed at characterizing seasonal changes in metabolite and lipid abundances in gray poplar and uncovering differences in metabolite requirement due to specific needs depending on the season. Seasonal variations in the abundance of (i) sugar-Ps and phospholipids, (ii) amino acids, (iii) sulfur compounds, and (iv) carbon metabolites were expected. It was hypothesized that seasonal changes in metabolite levels relate to N, S, and C storage and mobilization. Changes in organic metabolites binding Pi (Porg) are supposed to support these processes. Variation in triacylglycerols, in sugar-phosphates, in metabolites of the TCA cycle and in the amino acid abundance of poplar twig buds, leaves, bark, and wood were found to be linked to changes in metabolite abundances as well as to C, N, and S storage and mobilization processes. The observed changes support the view of a lack of any P storage in poplar. Yet, during dormancy, contents of phospholipids in twig bark and wood were highest probably due to frost-hardening and to its function in extra-plastidic membranes such as amyloplasts, oleosomes, and protein bodies. Consistent with this assumption, in spring sugar-Ps increased when phospholipids declined and poplar plants entering the vegetative growth period and, hence, metabolic activity increases. These results indicate that poplar trees adopt a policy of P nutrition without P storage and mobilization that is different from their N- and S-nutrition strategies.
Collapse
Affiliation(s)
- Mutsumi Watanabe
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany
- NARA Institute of Science and Technology, Ikoma, Japan
| | - Florian Netzer
- Chair of Tree Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany
- Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany
- NARA Institute of Science and Technology, Ikoma, Japan
| | - Isabel Orf
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - David Dubbert
- Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany
| | - Cornelia Herschbach
- Chair of Tree Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany
- Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany
| |
Collapse
|
26
|
Lu M, Hellmann HA, Liu Y, Wang W. Editorial: Protein Quality Controlling Systems in Plant Responses to Environmental Stresses. FRONTIERS IN PLANT SCIENCE 2018; 9:908. [PMID: 30008731 PMCID: PMC6034088 DOI: 10.3389/fpls.2018.00908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/08/2018] [Indexed: 05/24/2023]
Affiliation(s)
- Minghui Lu
- College of Horticulture, Northwest A&F University, Shaanxi, China
| | - Hanjo A. Hellmann
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Wang
- College of Life Sciences, State Key Lab of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
27
|
Havé M, Balliau T, Cottyn-Boitte B, Dérond E, Cueff G, Soulay F, Lornac A, Reichman P, Dissmeyer N, Avice JC, Gallois P, Rajjou L, Zivy M, Masclaux-Daubresse C. Increases in activity of proteasome and papain-like cysteine protease in Arabidopsis autophagy mutants: back-up compensatory effect or cell-death promoting effect? JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1369-1385. [PMID: 29281085 PMCID: PMC6037082 DOI: 10.1093/jxb/erx482] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/14/2017] [Indexed: 05/18/2023]
Abstract
Autophagy is essential for protein degradation, nutrient recycling, and nitrogen remobilization. Autophagy is induced during leaf ageing and in response to nitrogen starvation, and is known to play a fundamental role in nutrient recycling for remobilization and seed filling. Accordingly, ageing leaves of Arabidopsis autophagy mutants (atg) have been shown to over-accumulate proteins and peptides, possibly because of a reduced protein degradation capacity. Surprisingly, atg leaves also displayed higher protease activities. The work reported here aimed at identifying the nature of the proteases and protease activities that accumulated differentially (higher or lower) in the atg mutants. Protease identification was performed using shotgun LC-MS/MS proteome analyses and activity-based protein profiling (ABPP). The results showed that the chloroplast FTSH (FILAMENTATION TEMPERATURE SENSITIVE H) and DEG (DEGRADATION OF PERIPLASMIC PROTEINS) proteases and several extracellular serine proteases [subtilases (SBTs) and serine carboxypeptidase-like (SCPL) proteases] were less abundant in atg5 mutants. By contrast, proteasome-related proteins and cytosolic or vacuole cysteine proteases were more abundant in atg5 mutants. Rubisco degradation assays and ABPP showed that the activities of proteasome and papain-like cysteine protease were increased in atg5 mutants. Whether these proteases play a back-up role in nutrient recycling and remobilization in atg mutants or act to promote cell death is discussed in relation to their accumulation patterns in the atg5 mutant compared with the salicylic acid-depleted atg5/sid2 double-mutant, and in low nitrate compared with high nitrate conditions. Several of the proteins identified are indeed known as senescence- and stress-related proteases or as spontaneous cell-death triggering factors.
Collapse
Affiliation(s)
- Marien Havé
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, France
| | - Thierry Balliau
- UMR GQE- le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, France
| | | | - Emeline Dérond
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, France
| | - Gwendal Cueff
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, France
| | | | - Aurélia Lornac
- UCBN, INRA, UMR INRA-UBCN 950 Ecophysiologie Végétale, Agronomie & Nutrition N.C.S., Université de Caen Normandie, France
| | - Pavel Reichman
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, Halle (Saale), Germany and Science Campus Halle – Plant-based Bioeconomy, Germany
| | - Nico Dissmeyer
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, Halle (Saale), Germany and Science Campus Halle – Plant-based Bioeconomy, Germany
| | - Jean-Christophe Avice
- UCBN, INRA, UMR INRA-UBCN 950 Ecophysiologie Végétale, Agronomie & Nutrition N.C.S., Université de Caen Normandie, France
| | - Patrick Gallois
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Loïc Rajjou
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, France
| | - Michel Zivy
- UMR GQE- le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, France
| | | |
Collapse
|
28
|
Goring DR. Exocyst, exosomes, and autophagy in the regulation of Brassicaceae pollen-stigma interactions. JOURNAL OF EXPERIMENTAL BOTANY 2017; 69:69-78. [PMID: 29036428 DOI: 10.1093/jxb/erx340] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Brassicaceae pollen-stigma interactions have been extensively studied in Brassica and Arabidopsis species to identify cellular events triggered in the stigmatic papillae by pollen contact. Compatible pollinations are linked to the activation of basal cellular responses in the stigmatic papillae, which include calcium gradients, actin networks, and polarized secretion. The occurrence of these cellular events in stigmatic papillae coincides with the stages of pollen hydration and pollen tube entry into the stigmatic papillar cell wall. However, the form of the vesicle trafficking appears to differ between species, with vesicle-like structures detected in Arabidopsis species while exosomes were found to be secreted in Brassica species. Around the same timeframe, self-incompatible pollen recognition leads altered cellular responses in the stigmatic papillae to interfere with basal compatible pollen responses and disrupt regulated secretion, causing self-pollen rejection. Here, the literature on the changing cellular dynamics in the stigmatic papillae following pollination is reviewed and discussed in the context of other well-characterized examples of polarized secretion in plants.
Collapse
Affiliation(s)
- Daphne R Goring
- Department of Cell & Systems Biology, University of Toronto, Canada M5S 3B2
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Canada M5S 3B2
| |
Collapse
|
29
|
Barros JAS, Cavalcanti JHF, Medeiros DB, Nunes-Nesi A, Avin-Wittenberg T, Fernie AR, Araújo WL. Commonalities and differences in plants deficient in autophagy and alternative pathways of respiration on response to extended darkness. PLANT SIGNALING & BEHAVIOR 2017; 12:e1377877. [PMID: 28933654 PMCID: PMC5703242 DOI: 10.1080/15592324.2017.1377877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Autophagy is a highly conserved cellular mechanism in eukaryotes allowing the degradation of cell constituents. It is of crucial significance in both cellular homeostasis and nutrient recycling. During energy limited conditions plant cells can metabolize alternative respiratory substrates, such as amino acids, providing electrons to the mitochondrial metabolism via the tricarboxylic acid (TCA) cycle or electron transfer flavoprotein/ electron transfer flavoprotein ubiquinone oxidoreductase (ETF/ETFQO) system. Our recent study reveals the importance of autophagy in the supply of amino acids to provide energy through alternative pathways of respiration during carbon starvation. This fact apart, autophagy seems to have more generalized effects related not only to amino acid catabolism but also to metabolism in general. By further comparing the metabolic data obtained with atg mutants with those of mutants involved in the alternative pathways of respiration, we observed clear differences between these mutants, pointing out additional effects of the autophagy deficiency on metabolism of Arabidopsis leaves. Collectively, our data point to an interdependence between mitochondrial metabolism and autophagy and suggest an exquisite regulation of primary metabolism under low energetic conditions.
Collapse
Affiliation(s)
- Jessica A. S. Barros
- Max Planck Partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - João Henrique F. Cavalcanti
- Max Planck Partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - David B. Medeiros
- Max Planck Partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Adriano Nunes-Nesi
- Max Planck Partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Tamar Avin-Wittenberg
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, Germany
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, Germany
| | - Wagner L. Araújo
- Max Planck Partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- CONTACT Wagner L. Araújo Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570–900 Viçosa, Minas Gerais, Brazil
| |
Collapse
|
30
|
Masclaux-Daubresse C, Chen Q, Havé M. Regulation of nutrient recycling via autophagy. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:8-17. [PMID: 28528166 DOI: 10.1016/j.pbi.2017.05.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/24/2017] [Accepted: 05/05/2017] [Indexed: 05/18/2023]
Abstract
Autophagy is a universal mechanism in eukaryotes that promotes cell longevity and nutrient recycling through the degradation of unwanted organelles, proteins and damaged cytoplasmic compounds. Autophagy is important in plant resistance to stresses and starvations and in remobilization. Autophagy facilitates bulk and selective degradations, through the delivery of cell material to the vacuole where hydrolases and proteases reside. Large metabolite modifications are observed in autophagy mutants showing the important role of autophagy in cell homeostasis. The control of autophagic activity by nutrients and energy status is supported by several studies in plant and animal. We review how autophagy contributes to nutrient management in plants and how nutrient status control this degradation pathway for adaptation to the environment.
Collapse
Affiliation(s)
- Céline Masclaux-Daubresse
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, Versailles, France.
| | - Qinwu Chen
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, Versailles, France
| | - Marien Havé
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, Versailles, France
| |
Collapse
|
31
|
Ghan R, Petereit J, Tillett RL, Schlauch KA, Toubiana D, Fait A, Cramer GR. The common transcriptional subnetworks of the grape berry skin in the late stages of ripening. BMC PLANT BIOLOGY 2017; 17:94. [PMID: 28558655 PMCID: PMC5450095 DOI: 10.1186/s12870-017-1043-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 05/22/2017] [Indexed: 05/16/2023]
Abstract
BACKGROUND Wine grapes are important economically in many countries around the world. Defining the optimum time for grape harvest is a major challenge to the grower and winemaker. Berry skins are an important source of flavor, color and other quality traits in the ripening stage. Senescent-like processes such as chloroplast disorganization and cell death characterize the late ripening stage. RESULTS To better understand the molecular and physiological processes involved in the late stages of berry ripening, RNA-seq analysis of the skins of seven wine grape cultivars (Cabernet Franc, Cabernet Sauvignon, Merlot, Pinot Noir, Chardonnay, Sauvignon Blanc and Semillon) was performed. RNA-seq analysis identified approximately 2000 common differentially expressed genes for all seven cultivars across four different berry sugar levels (20 to 26 °Brix). Network analyses, both a posteriori (standard) and a priori (gene co-expression network analysis), were used to elucidate transcriptional subnetworks and hub genes associated with traits in the berry skins of the late stages of berry ripening. These independent approaches revealed genes involved in photosynthesis, catabolism, and nucleotide metabolism. The transcript abundance of most photosynthetic genes declined with increasing sugar levels in the berries. The transcript abundance of other processes increased such as nucleic acid metabolism, chromosome organization and lipid catabolism. Weighted gene co-expression network analysis (WGCNA) identified 64 gene modules that were organized into 12 subnetworks of three modules or more and six higher order gene subnetworks. Some gene subnetworks were highly correlated with sugar levels and some subnetworks were highly enriched in the chloroplast and nucleus. The petal R package was utilized independently to construct a true small-world and scale-free complex gene co-expression network model. A subnetwork of 216 genes with the highest connectivity was elucidated, consistent with the module results from WGCNA. Hub genes in these subnetworks were identified including numerous members of the core circadian clock, RNA splicing, proteolysis and chromosome organization. An integrated model was constructed linking light sensing with alternative splicing, chromosome remodeling and the circadian clock. CONCLUSIONS A common set of differentially expressed genes and gene subnetworks from seven different cultivars were examined in the skin of the late stages of grapevine berry ripening. A densely connected gene subnetwork was elucidated involving a complex interaction of berry senescent processes (autophagy), catabolism, the circadian clock, RNA splicing, proteolysis and epigenetic regulation. Hypotheses were induced from these data sets involving sugar accumulation, light, autophagy, epigenetic regulation, and fruit development. This work provides a better understanding of berry development and the transcriptional processes involved in the late stages of ripening.
Collapse
Affiliation(s)
- Ryan Ghan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Juli Petereit
- Nevada INBRE Bioinformatics Core, University of Nevada, Reno, NV 89557 USA
| | - Richard L. Tillett
- Nevada INBRE Bioinformatics Core, University of Nevada, Reno, NV 89557 USA
| | - Karen A. Schlauch
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
- Nevada INBRE Bioinformatics Core, University of Nevada, Reno, NV 89557 USA
| | - David Toubiana
- Telekom Innovation, Laboratories and Cyber Security Research Center, Department of Information, Systems Engineering, Ben Gurion University, Beer Sheva, Israel
| | - Aaron Fait
- Ben-Gurion University of the Negev, Jacob Blaustein Institutes for Desert Research, 84990 Midreshet Ben-Gurion, Israel
| | - Grant R. Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| |
Collapse
|