1
|
Zhang Y, Zhao L, Jia Y, Zhang X, Han Y, Lu P, Yuan H. Mediation Mendelian randomisation study on the effects of shift work on coronary heart disease and traditional risk factors via gut microbiota. J Glob Health 2024; 14:04110. [PMID: 38803204 PMCID: PMC11130565 DOI: 10.7189/jogh.14.04110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Background Epidemiological evidence suggests that there is an increased risk of coronary heart disease (CHD) related to jobs involving shift work (JSW), but the causality of and mechanism underlying such a relationship remain unclear. Therefore, we aimed to explore the relationship between JSW and CHD, investigating both causality and potential mediating factors. Methods We performed univariate, multivariate, and mediation Mendelian randomisation (MR) analyses using data from large genome-wide association studies focussed on JSW and CHD, as well as data on some CHD risk factors (type 2 diabetes, hypertension, obesity, and lipids measurement) and 196 gut microbiota taxa. Single-nucleotide polymorphisms significantly associated with JSW acted as instrument variables. We used inverse-variance weighting as the primary method of analysis. Results Bidirectional MR analysis indicated a robust effect of JSW on increased CHD risk; however, the existence of CHD did not affect the choice of JSW. We identified a mediating effects of type 2 diabetes and hypertension in this relationship, accounting for 11.89% and 14.80% of the total effect of JSW on CHD, respectively. JSW were also causally associated with the risk of type 2 diabetes and hypertension and had an effect on nine microbial taxa. The mediating influence of the Eubacterium brachy group at the genus level explained 16.64% of the total effect of JSW on hypertension. We found limited evidence for the causal effect of JSW on obesity and lipids measurements. Conclusions Our findings suggest a causal effect of JSW on CHD, diabetes, and hypertension. We also found evidence for a significant connection between JSW and alterations in the gut microbiota. Considering that certain microbial taxa mediated the effect of JSW on hypertension risk, targeting gut microbiota through therapeutics could potentially mitigate high risks of hypertension and CHD associated with JSW.
Collapse
|
2
|
Abstract
Organophosphorus compounds play a vital role as nucleic acids, nucleotide coenzymes, metabolic intermediates and are involved in many biochemical processes. They are part of DNA, RNA, ATP and a number of important biological elements of living organisms. Synthetic compounds of this class have found practical application as agrochemicals, pharmaceuticals, bioregulators, and othrs. In recent years, a large number of phosphorus compounds containing P-O, P-N, P-C bonds have been isolated from natural sources. Many of them have shown interesting biological properties and have become the objects of intensive scientific research. Most of these compounds contain asymmetric centers, the absolute configurations of which have a significant effect on the biological properties of the products of their transformations. This area of research on natural phosphorus compounds is still little-studied, that prompted us to analyze and discuss it in our review. Moreover natural organophosphorus compounds represent interesting models for the development of new biologically active compounds, and a number of promising drugs and agrochemicals have already been obtained on their basis. The review also discusses the history of the development of ideas about the role of organophosphorus compounds and stereochemistry in the origin of life on Earth, starting from the prebiotic period, that allows us in a new way to consider this most important problem of fundamental science.
Collapse
|
3
|
Jiménez-Andreu MM, Lucía Quintana A, Aínsa JA, Sayago FJ, Cativiela C. Synthesis and biological activity of dehydrophos derivatives. Org Biomol Chem 2019; 17:1097-1112. [PMID: 30633297 DOI: 10.1039/c8ob03079k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of dehydrophos derivatives featuring modified peptide chains, characterized by the presence of substituents in the vinyl moiety, or possessing a phosphonic acid monoalkyl ester other than the monomethyl ester one, has been accomplished by a versatile procedure based on Horner-Wadsworth-Emmons olefination with suitable aldehydes and on the selective hydrolysis of the dialkyl phosphonate group. Such derivatives have been tested against a series of bacterial strains, using the naturally occurring peptide, dehydrophos, for comparison. Thus, the effects of the aforementioned structural variations on antimicrobial activity have been studied.
Collapse
Affiliation(s)
- M Mercedes Jiménez-Andreu
- Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea ISQCH, CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | | | | | | | | |
Collapse
|
4
|
Teixeira PF, Masuyer G, Pinho CM, Branca RMM, Kmiec B, Wallin C, Wärmländer SKTS, Berntsson RPA, Ankarcrona M, Gräslund A, Lehtiö J, Stenmark P, Glaser E. Mechanism of Peptide Binding and Cleavage by the Human Mitochondrial Peptidase Neurolysin. J Mol Biol 2017; 430:348-362. [PMID: 29183787 DOI: 10.1016/j.jmb.2017.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/02/2017] [Accepted: 11/21/2017] [Indexed: 11/29/2022]
Abstract
Proteolysis plays an important role in mitochondrial biogenesis, from the processing of newly imported precursor proteins to the degradation of mitochondrial targeting peptides. Disruption of peptide degradation activity in yeast, plant and mammalian mitochondria is known to have deleterious consequences for organism physiology, highlighting the important role of mitochondrial peptidases. In the present work, we show that the human mitochondrial peptidase neurolysin (hNLN) can degrade mitochondrial presequence peptides as well as other fragments up to 19 amino acids long. The crystal structure of hNLNE475Q in complex with the products of neurotensin cleavage at 2.7Å revealed a closed conformation with an internal cavity that restricts substrate length and highlighted the mechanism of enzyme opening/closing that is necessary for substrate binding and catalytic activity. Analysis of peptide degradation in vitro showed that hNLN cooperates with presequence protease (PreP or PITRM1) in the degradation of long targeting peptides and amyloid-β peptide, Aβ1-40, associated with Alzheimer disease, particularly cleaving the hydrophobic fragment Aβ35-40. These findings suggest that a network of proteases may be required for complete degradation of peptides localized in mitochondria.
Collapse
Affiliation(s)
- Pedro F Teixeira
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Stockholm, Sweden.
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Stockholm, Sweden
| | - Catarina M Pinho
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Science and Society, Karolinska Institutet, Stockholm, Sweden
| | - Rui M M Branca
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science for Life Laboratory and Karolinska Institutet, Stockholm, Sweden
| | - Beata Kmiec
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Stockholm, Sweden
| | - Cecilia Wallin
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Stockholm, Sweden
| | - Sebastian K T S Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Stockholm, Sweden
| | | | - Maria Ankarcrona
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Science and Society, Karolinska Institutet, Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Stockholm, Sweden
| | - Janne Lehtiö
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science for Life Laboratory and Karolinska Institutet, Stockholm, Sweden
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Stockholm, Sweden.
| | - Elzbieta Glaser
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Stockholm, Sweden.
| |
Collapse
|