1
|
Ribeiro IDA, Paes JA, Wendisch VF, Ferreira HB, Passaglia LMP. Proteome profiling of Paenibacillus sonchi genomovar Riograndensis SBR5 T under conventional and alternative nitrogen fixation. J Proteomics 2024; 294:105061. [PMID: 38154550 DOI: 10.1016/j.jprot.2023.105061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/30/2023]
Abstract
Paenibacillus sonchi SBR5T is a Gram-positive, endospore-forming facultative aerobic diazotrophic bacterium that can fix nitrogen via an alternative Fe-only nitrogenase (AnfHDGK). In several bacteria, this alternative system is expressed under molybdenum (Mo)-limiting conditions when the conventional Mo-dependent nitrogenase (NifHDK) production is impaired. The regulatory mechanisms, metabolic processes, and cellular functions of N2 fixation by alternative and/or conventional systems are poorly understood in the Paenibacillus genus. We conducted a comparative proteomic profiling study of P. sonchi SBR5T grown under N2-fixing conditions with and without Mo supply through an LC-MS/MS and label-free quantification analysis to address this gap. Protein abundances revealed overrepresented processes related to anaerobiosis growth adaption, Fe-S cluster biosynthesis, ammonia assimilation, electron transfer, and sporulation under N2-fixing conditions compared to non-fixing control. Under Mo limitation, the Fe-only nitrogenase components were overrepresented together with the Mo-transporter system, while the dinitrogenase component (NifDK) of Mo‑nitrogenase was underrepresented. The dinitrogenase reductase component (NifH) and accessory proteins encoded by the nif operon had no significant differential expression, suggesting post-transcriptional regulation of nif gene products in this strain. Overall, this was the first comprehensive proteomic analysis of a diazotrophic strain from the Paenibacillaceae family, and it provided insights related to alternative N2-fixation by Fe-only nitrogenase. SIGNIFICANCE: In this work, we try to understand how the alternative nitrogen fixation system, presented by some diazotrophic bacteria, works. For this, we used the SBR5 lineage of P. sonchi, which presents the alternative system in which the nitrogenase cofactor is composed only of iron. In addition, we tried to unravel the proteome of this strain in different situations of nitrogen fixation, since, for Gram-positive bacteria, these systems are little known. The results achieved, through LC-MS/MS and label-free quantitative analysis, showed an overrepresentation of proteins related to different processes involved with growth under stressful conditions in situations of nitrogen deficiency, in addition to suggesting that some encoded proteins by the nif operon may be regulated at post-transcriptional levels. Our findings represent important steps toward the elucidation of nitrogen fixation systems in Gram-positive diazotrophic bacteria.
Collapse
Affiliation(s)
- Igor Daniel Alves Ribeiro
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500 - Prédio 43312, Porto Alegre, RS, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Av. Bento Gonçalves, 9500 Porto Alegre, RS, Brazil
| | - Volker F Wendisch
- Institute for Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Av. Bento Gonçalves, 9500 Porto Alegre, RS, Brazil
| | - Luciane Maria Pereira Passaglia
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500 - Prédio 43312, Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Wendisch VF, Brito LF, Passaglia LM. Genome-based analyses to learn from and about Paenibacillus sonchi genomovar Riograndensis SBR5T. Genet Mol Biol 2024; 46:e20230115. [PMID: 38224489 PMCID: PMC10789242 DOI: 10.1590/1678-4685-gmb-2023-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/20/2023] [Indexed: 01/17/2024] Open
Abstract
Paenibacillus sonchi genomovar Riograndensis SBR5T is a plant growth-promoting rhizobacterium (PGPR) isolated in the Brazilian state of Rio Grande do Sul from the rhizosphere of Triticum aestivum. It fixes nitrogen, produces siderophores as well as the phytohormone indole-3-acetic acid, solubilizes phosphate and displays antagonist activity against Listeria monocytogenes and Pectobacterium carotovorum. Comprehensive omics analysis and the development of genetic tools are key to characterizing and engineering such non-model microorganisms. Therefore, the complete genome of SBR5T was sequenced, and shown to encode 6,705 proteins, 87 tRNAs, and 27 rRNAs and it enabled a landscape transcriptome analysis that unveiled conserved transcriptional and translational patterns and characterized operon structures and riboswitches. The pangenome of P. sonchi species is open with a stable core pangenome. At the same time, the analysis of genes coding for nitrogenases revealed that the trait of nitrogen fixation is sparse within the Paenibacillaceae family and the presence of Fe-only nitrogenase in the P. sonchi group was exclusive to SBR5T. The development of genetic tools for SBR5T enabled genetic transformation, plasmid construction for constitutive and inducible gene expression, and gene repression using the CRISPRi system. Altogether, the work with P. sonchi can guide the study of non-model bacteria with economic potential.
Collapse
Affiliation(s)
- Volker F. Wendisch
- Bielefeld University, Faculty of Biology, Genetics of Prokaryotes, Bielefeld, Germany
- Bielefeld University, Center for Biotechnology (CeBiTec), Bielefeld, Germany
| | - Luciana F. Brito
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, Trondheim, Norway
| | - Luciane M.P. Passaglia
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biociências, Departamento de Genética, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
He H, Li Y, Ma X, Xu S, Zhang L, Ding Z, Shi G. Design of a sorbitol-activated nitrogen metabolism-dependent regulatory system for redirection of carbon metabolism flow in Bacillus licheniformis. Nucleic Acids Res 2023; 51:11952-11966. [PMID: 37850640 PMCID: PMC10681722 DOI: 10.1093/nar/gkad859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 09/05/2023] [Accepted: 09/23/2023] [Indexed: 10/19/2023] Open
Abstract
Synthetic regulation of metabolic fluxes has emerged as a common strategy to improve the performance of microbial cell factories. The present regulatory toolboxes predominantly rely on the control and manipulation of carbon pathways. Nitrogen is an essential nutrient that plays a vital role in growth and metabolism. However, the availability of broadly applicable tools based on nitrogen pathways for metabolic regulation remains limited. In this work, we present a novel regulatory system that harnesses signals associated with nitrogen metabolism to redirect excess carbon flux in Bacillus licheniformis. By engineering the native transcription factor GlnR and incorporating a sorbitol-responsive element, we achieved a remarkable 99% inhibition of the expression of the green fluorescent protein reporter gene. Leveraging this system, we identified the optimal redirection point for the overflow carbon flux, resulting in a substantial 79.5% reduction in acetoin accumulation and a 2.6-fold increase in acetate production. This work highlight the significance of nitrogen metabolism in synthetic biology and its valuable contribution to metabolic engineering. Furthermore, our work paves the way for multidimensional metabolic regulation in future synthetic biology endeavors.
Collapse
Affiliation(s)
- Hehe He
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| | - Xufan Ma
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| |
Collapse
|
4
|
Zhao X, Song Y, Wang T, Hua C, Hu R, Shang Y, Shi H, Chen S. Glutamine synthetase and GlnR regulate nitrogen metabolism in Paenibacillus polymyxa WLY78. Appl Environ Microbiol 2023; 89:e0013923. [PMID: 37668407 PMCID: PMC10537745 DOI: 10.1128/aem.00139-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/12/2023] [Indexed: 09/06/2023] Open
Abstract
Paenibacillus polymyxa WLY78, a N2-fixing bacterium, has great potential use as a biofertilizer in agriculture. Recently, we have revealed that GlnR positively and negatively regulates the transcription of the nif (nitrogen fixation) operon (nifBHDKENXhesAnifV) in P. polymyxa WLY78 by binding to two loci of the nif promoter according to nitrogen availability. However, the regulatory mechanisms of nitrogen metabolism mediated by GlnR in the Paenibacillus genus remain unclear. In this study, we have revealed that glutamine synthetase (GS) and GlnR in P. polymyxa WLY78 play a key role in the regulation of nitrogen metabolism. P. polymyxa GS (encoded by glnA within glnRA) and GS1 (encoded by glnA1) belong to distinct groups: GSI-α and GSI-β. Both GS and GS1 have the enzyme activity to convert NH4+ and glutamate into glutamine, but only GS is involved in the repression by GlnR. GlnR represses transcription of glnRA under excess nitrogen, while it activates the expression of glnA1 under nitrogen limitation. GlnR simultaneously activates and represses the expression of amtBglnK and gcvH in response to nitrogen availability. Also, GlnR regulates the expression of nasA, nasD1D2, nasT, glnQHMP, and glnS. IMPORTANCE In this study, we have revealed that Paenibacillus polymyxa GlnR uses multiple mechanisms to regulate nitrogen metabolism. GlnR activates or represses or simultaneously activates and inhibits the transcription of nitrogen metabolism genes in response to nitrogen availability. The multiple regulation mechanisms employed by P. polymyxa GlnR are very different from Bacillus subtilis GlnR which represses nitrogen metabolism under excess nitrogen. Both GS encoded by glnA within the glnRA operon and GS1 encoded by glnA1 in P. polymyxa WLY78 are involved in ammonium assimilation, but only GS is required for regulating GlnR activity. The work not only provides significant insight into understanding the interplay of GlnR and GS in nitrogen metabolism but also provides guidance for improving nitrogen fixation efficiency by modulating nitrogen metabolism.
Collapse
Affiliation(s)
- Xiyun Zhao
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi Song
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tianshu Wang
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chongchong Hua
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Rui Hu
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yimin Shang
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Haowen Shi
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sanfeng Chen
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Genome-wide mapping of GlnR-binding sites reveals the global regulatory role of GlnR in controlling the metabolism of nitrogen and carbon in Paenibacillus polymyxa WLY78. BMC Genomics 2023; 24:85. [PMID: 36823556 PMCID: PMC9948412 DOI: 10.1186/s12864-023-09147-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/23/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Paenibacillus polymyxa WLY78 is a Gram-positive, endospore-forming and N2-fixing bacterium. Our previous study has demonstrated that GlnR acts as both an activator and a repressor to regulate the transcription of the nif (nitrogen fixation) operon (nifBHDKENXhesAnifV) according to nitrogen availability, which is achieved by binding to the two GlnR-binding sites located in the nif promoter region. However, further study on the GlnR-mediated global regulation in this bacterium is still needed. RESULTS In this study, global identification of the genes directly under GlnR control is determined by using chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) and electrophoretic mobility shift assays (EMSA). Our results reveal that GlnR directly regulates the transcription of 17 genes/operons, including a nif operon, 14 nitrogen metabolism genes/operons (glnRA, amtBglnK, glnA1, glnK1, glnQHMP, nasA, nasD1, nasD2EF, gcvH, ansZ, pucR, oppABC, appABCDF and dppABC) and 2 carbon metabolism genes (ldh3 and maeA1). Except for the glnRA and nif operon, the other 15 genes/operons are newly identified targets of GlnR. Furthermore, genome-wide transcription analyses reveal that GlnR not only directly regulates the expression of these 17 genes/operons, but also indirectly controls the expression of some other genes/operons involved in nitrogen fixation and the metabolisms of nitrogen and carbon. CONCLUSION This study provides a GlnR-mediated regulation network of nitrogen fixation and the metabolisms of nitrogen and carbon.
Collapse
|
6
|
Iskhakova ZI, Zhuravleva DE, Heim C, Hartmann MD, Laykov AV, Forchhammer K, Kayumov AR. PotN represents a novel energy‐state sensing PII subfamily, occurring in firmicutes. FEBS J 2022; 289:5305-5321. [DOI: 10.1111/febs.16431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 02/19/2022] [Accepted: 03/10/2022] [Indexed: 01/19/2023]
Affiliation(s)
| | | | - Christopher Heim
- Department of Protein Evolution Max Planck Institute for Developmental Biology Tübingen Germany
| | - Marcus D. Hartmann
- Department of Protein Evolution Max Planck Institute for Developmental Biology Tübingen Germany
| | | | - Karl Forchhammer
- Institut für Mikrobiologie Eberhard‐Karls‐Universität Tübingen Germany
| | | |
Collapse
|
7
|
Travis BA, Peck JV, Salinas R, Dopkins B, Lent N, Nguyen VD, Borgnia MJ, Brennan RG, Schumacher MA. Molecular dissection of the glutamine synthetase-GlnR nitrogen regulatory circuitry in Gram-positive bacteria. Nat Commun 2022; 13:3793. [PMID: 35778410 PMCID: PMC9249791 DOI: 10.1038/s41467-022-31573-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022] Open
Abstract
How bacteria sense and respond to nitrogen levels are central questions in microbial physiology. In Gram-positive bacteria, nitrogen homeostasis is controlled by an operon encoding glutamine synthetase (GS), a dodecameric machine that assimilates ammonium into glutamine, and the GlnR repressor. GlnR detects nitrogen excess indirectly by binding glutamine-feedback-inhibited-GS (FBI-GS), which activates its transcription-repression function. The molecular mechanisms behind this regulatory circuitry, however, are unknown. Here we describe biochemical and structural analyses of GS and FBI-GS-GlnR complexes from pathogenic and non-pathogenic Gram-positive bacteria. The structures show FBI-GS binds the GlnR C-terminal domain within its active-site cavity, juxtaposing two GlnR monomers to form a DNA-binding-competent GlnR dimer. The FBI-GS-GlnR interaction stabilizes the inactive GS conformation. Strikingly, this interaction also favors a remarkable dodecamer to tetradecamer transition in some GS, breaking the paradigm that all bacterial GS are dodecamers. These data thus unveil unique structural mechanisms of transcription and enzymatic regulation.
Collapse
Affiliation(s)
- Brady A Travis
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Jared V Peck
- Cryo-EM core, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Raul Salinas
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Brandon Dopkins
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Nicholas Lent
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Viet D Nguyen
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Richard G Brennan
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Maria A Schumacher
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
8
|
Stevenson CEM, Lawson DM. Analysis of Protein-DNA Interactions Using Surface Plasmon Resonance and a ReDCaT Chip. Methods Mol Biol 2021; 2263:369-379. [PMID: 33877608 DOI: 10.1007/978-1-0716-1197-5_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The recognition of specific DNA sequences by proteins is crucial to fundamental biological processes such as DNA replication, transcription, and gene regulation. The technique of surface plasmon resonance (SPR) is ideally suited for the measurement of these interactions because it is quantitative, simple to implement, reproducible, can be automated, and requires very little sample. This typically involves the direct capture of biotinylated DNA to a streptavidin (SA) chip before flowing over the protein of interest and monitoring the interaction. However, once the DNA has been immobilized on the chip, it cannot be removed without damaging the chip surface. Moreover, if the protein-DNA interaction is strong, then it may not be possible to remove the protein from the DNA without damaging the chip surface. Given that the chips are costly, this will limit the number of samples that can be tested. Therefore, we have developed a Reusable DNA Capture Technology, or ReDCaT chip, that enables a single streptavidin chip to be used multiple times making the technique simple, quick, and cost effective. The general steps to prepare the ReDCaT chip, run a simple binding experiment, and analysis of data will be described in detail. Some additional applications will also be introduced.
Collapse
Affiliation(s)
- Clare E M Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK.
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
9
|
do Carmo Dias B, da Mota FF, Jurelevicius D, Seldin L. Genetics and regulation of nitrogen fixation in Paenibacillus brasilensis PB24. Microbiol Res 2020; 243:126647. [PMID: 33290933 DOI: 10.1016/j.micres.2020.126647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 12/23/2022]
Abstract
Biological nitrogen fixation (BNF), performed by diazotrophic prokaryotes, is responsible for reducing dinitrogen (N2) present in the biosphere into biologically available forms of nitrogen. Paenibacillus brasilensis PB24 is a diazotrophic Gram-positive bacterium and is considered ecologically and industrially important because it is able to produce antimicrobial substances and 2,3-butanediol. However, the genetics and regulation of its nitrogen fixing (nif) genes have never been assessed so far. Therefore, the present study aimed to (i) identify the structural and regulatory genes related to BNF in the PB24 genome, (ii) perform comparative genomics analysis of the nif operon among different Paenibacillus species and (iii) study the expression of these genes in the presence and absence of NH4. Strain PB24 showed a nif operon composed of nine genes (nifBHDKENXhesAV), with a conserved synteny (with small variations) among the Paenibacillus species evaluated. BNF regulatory genes, glnK and amtB (encoding GlnK signal transduction protein and AmtB transmembrane protein, respectively) and glnR and glnA genes (encoding the transcription factor GlnR and glutamine synthetase) were found in the PB24 genome. Primers were designed for qPCR amplification of the nitrogenase structural (nifH, nifD and nifK) and regulatory (glnA and amtB) BNF genes. The structural gene expression in PB24 was up- and downregulated in the absence and presence of NH4, respectively. The gene expression levels indicated a GlnR-mediated repression of genes associated with ammonium import (amtBglnK) and BNF (nif genes). Additionally, the regulatory mechanism of GlnR in P. brasilensis PB24 differed from the other Paenibacillus evaluated, considering the different distribution of binding sites recognized by GlnR.
Collapse
Affiliation(s)
- Beatriz do Carmo Dias
- Laboratório de Genética Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabio Faria da Mota
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Diogo Jurelevicius
- Laboratório de Genética Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Lucy Seldin
- Laboratório de Genética Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Complete Genome Sequence of Lactobacillus hilgardii LMG 7934, Carrying the Gene Encoding for the Novel PII-Like Protein PotN. Curr Microbiol 2020; 77:3538-3545. [PMID: 32803419 DOI: 10.1007/s00284-020-02161-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/07/2020] [Indexed: 02/02/2023]
Abstract
Lactic acid bacteria are widespread in various ecological niches with the excess of nutrients and have reduced capabilities to adapt to starvation. Among more than 280 Lactobacillus species known to the date, only five, including Lactobacillus hilgardii, carry in their genome the gene encoding for PII-like protein, one of the central regulators of cellular metabolism generally responding to energy- and carbon-nitrogen status in many free-living Bacteria, Archaea and in plant chloroplasts. In contrast to the classical PII encoding genes, in L. hilgardii genome the gene for PII homologue is located within the potABCD operon, encoding the ABC transporter for polyamines. Based on the unique genetic context and low sequence identity with genes of any other so-far characterized PII subfamilies, we termed this gene potN (Pot-protein, Nucleotide-binding). The second specific feature of L. hilgardii genome is that many genes encoding the proteins with similar function are present in two copies, while with low mutual identity. Thus, L. hilgardii LMG 7934 genome carries two genes of glutamine synthetase with 55% identity. One gene is located within classical glnRA operon with the gene of GlnR-like transcriptional regulator, while the second is monocistronic. Together with the relative large genome of L. hilgardii as compared to other Lactobacilli (2.771.862 bp vs ~ 2.2 Mbp in median), these data suggest significant re-arrangements of the genome and a wider range of adaptive capabilities of L. hilgardii in comparison to other bacteria of the genus Lactobacillus.
Collapse
|
11
|
Rakovitsky N, Bar Oz M, Goldberg K, Gibbons S, Zimhony O, Barkan D. The Unexpected Essentiality of glnA2 in Mycobacterium smegmatis Is Salvaged by Overexpression of the Global Nitrogen Regulator glnR, but Not by L-, D- or Iso-Glutamine. Front Microbiol 2018; 9:2143. [PMID: 30271391 PMCID: PMC6142876 DOI: 10.3389/fmicb.2018.02143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/21/2018] [Indexed: 01/14/2023] Open
Abstract
Nitrogen metabolism plays a central role in the physiology of microorganisms, and Glutamine Synthetase (GS) genes are present in virtually all bacteria. In M. tuberculosis, four GS genes are present, but only glnA1 is essential, whereas glnA2 was shown to be non-essential for in-vitro as well as in-vivo growth and pathogenesis, and is postulated to be involved in D-glutamine and iso-glutamine synthesis. Whilst investigating the activity of an antimicrobial compound in M. smegmatis, we found a spontaneous temperature-sensitive mutant in glnA2 (I133F), and used it to investigate the role of glnA2 in M. smegmatis. We deleted the native glnA2 and replaced it with a mutated allele. This re-created the temperature sensitivity—as after 3–4 seemingly normal division cycles, glnA2 became essential for growth. This essentiality could not be salvaged by neither L, D- nor iso-glutamine, suggesting an additional role of glnA2 in M. smegmatis over its role in M. tuberculosis. We also found that overexpression of the global nitrogen regulator glnR enabled bypassing the essentiality of glnA2, allowing the creation of a complete deletion mutant. The discrepancy between the importance of glnA2 in Mtb and M. smegmatis stresses the caution in which results in one are extrapolated to the other.
Collapse
Affiliation(s)
- Nadya Rakovitsky
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Bar Oz
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Karin Goldberg
- Department of Pharmaceutical Engineering, Azrieli College of Engineering, Jerusalem, Israel
| | - Simon Gibbons
- Research Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, London, United Kingdom
| | - Oren Zimhony
- Kaplan Medical Center, Rehovot, Israel.,The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Barkan
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
12
|
Wang T, Zhao X, Shi H, Sun L, Li Y, Li Q, Zhang H, Chen S, Li J. Positive and negative regulation of transferred nif genes mediated by indigenous GlnR in Gram-positive Paenibacillus polymyxa. PLoS Genet 2018; 14:e1007629. [PMID: 30265664 PMCID: PMC6191146 DOI: 10.1371/journal.pgen.1007629] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 10/16/2018] [Accepted: 08/14/2018] [Indexed: 12/29/2022] Open
Abstract
Ammonia is a major signal that regulates nitrogen fixation in most diazotrophs. Regulation of nitrogen fixation by ammonia in the Gram-negative diazotrophs is well-characterized. In these bacteria, this regulation occurs mainly at the level of nif (nitrogen fixation) gene transcription, which requires a nif-specific activator, NifA. Although Gram-positive and diazotrophic Paenibacilli have been extensively used as a bacterial fertilizer in agriculture, how nitrogen fixation is regulated in response to nitrogen availability in these bacteria remains unclear. An indigenous GlnR and GlnR/TnrA-binding sites in the promoter region of the nif cluster are conserved in these strains, indicating the role of GlnR as a regulator of nitrogen fixation. In this study, we for the first time reveal that GlnR of Paenibacillus polymyxa WLY78 is essentially required for nif gene transcription under nitrogen limitation, whereas both GlnR and glutamine synthetase (GS) encoded by glnA within glnRA operon are required for repressing nif expression under excess nitrogen. Dimerization of GlnR is necessary for binding of GlnR to DNA. GlnR in P. polymyxa WLY78 exists in a mixture of dimers and monomers. The C-terminal region of GlnR monomer is an autoinhibitory domain that prevents GlnR from binding DNA. Two GlnR-biding sites flank the -35/-10 regions of the nif promoter of the nif operon (nifBHDKENXhesAnifV). The GlnR-binding site Ⅰ (located upstream of -35/-10 regions of the nif promoter) is specially required for activating nif transcription, while GlnR-binding siteⅡ (located downstream of -35/-10 regions of the nif promoter) is for repressing nif expression. Under nitrogen limitation, GlnR dimer binds to GlnR-binding siteⅠ in a weak and transient association way and then activates nif transcription. During excess nitrogen, glutamine binds to and feedback inhibits GS by forming the complex FBI-GS. The FBI-GS interacts with the C-terminal domain of GlnR and stabilizes the binding affinity of GlnR to GlnR-binding site Ⅱ and thus represses nif transcription. GlnR is a global transcription regulator of nitrogen metabolism in Bacillus and other Gram-positive bacteria. GlnR generally functions as repressor and inhibits gene transcription under excess nitrogen. Our study for the first time reveals that GlnR simultaneously acted as an activator and a repressor for nitrogen fixation of Paenibacillus by binding to different loci of the single nif promoter region according to nitrogen availability. In excess glutamine, the feedback inhibited form of glutamine synthetase (GS) encoded by glnA within glnRA operon directly interacts with the C-terminal domain of GlnR and then controls the GlnR activity. Also, overexpression of glnR or deletion of glnA or mutagenesis of GlnR-binding site Ⅱ led to constitutive nif expression in the absence or presence of high (100 mM) concentration of ammonia. This work represents the first instance of a dual positive and negative regulatory mechanism of nitrogen fixation.
Collapse
Affiliation(s)
- Tianshu Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Xiyun Zhao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Haowen Shi
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Li Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Yongbin Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Qin Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Haowei Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Sanfeng Chen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
- * E-mail:
| | - Jilun Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| |
Collapse
|