1
|
Fugio LB, Silva G, Ferraz CL, Trevisan GL, Coeli-Lacchini FB, Garcia CB, Sousa LO, Malta TM, Gil CD, Leopoldino AM. Accumulation of sphingosine kinase 2 protein induces malignant transformation in oral keratinocytes associated with stemness, autophagy, senescence, and proliferation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119616. [PMID: 37898377 DOI: 10.1016/j.bbamcr.2023.119616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Sphingosine-1-phosphate (S1P) signaling has been widely explored as a therapeutic target in cancer. Sphingosine kinase 2 (SK2), one of the kinases that phosphorylate sphingosine, has a cell type and cell location-dependent mechanism of action, so the ability of SK2 to induce cell cycle arrest, apoptosis, proliferation, and survival is strongly influenced by the cell-context. In contrast to SK1, which is widely studied in different types of cancer, including head and neck cancer, the role of SK2 in the development and progression of oral cancer is still poorly understood. In order to elucidate SK2 role in oral cancer, we performed the overexpression of SK2 in non-tumor oral keratinocyte cell (NOK SK2) and in oral squamous cell carcinoma (HN12 SK2), and RNA interference for SK2 in another oral squamous cell carcinoma (HN13 shSK2). In our study we demonstrate for the first time that accumulation of SK2 can be a starting point for oncogenesis and transforms a non-tumor oral keratinocyte (NOK-SI) into highly aggressive tumor cells, even acting on cell plasticity. Furthermore, in oral metastatic cell line (HN12), SK2 contributed even more to the tumorigenesis, inducing proliferation and tumor growth. Our work reveals the intriguing role of SK2 as an oral tumor promoter and regulator of different pathways and cellular processes.
Collapse
Affiliation(s)
- Lais Brigliadori Fugio
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Gabriel Silva
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Camila Lopes Ferraz
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Glauce Lunardelli Trevisan
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Fernanda Borchers Coeli-Lacchini
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Cristiana Bernadelli Garcia
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Lucas Oliveira Sousa
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Tathiane Maistro Malta
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Cristiane Damas Gil
- Department of Cell Biology, Federal University of the State of São Paulo, Brazil
| | - Andréia Machado Leopoldino
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil.
| |
Collapse
|
2
|
Bodoni AF, Coeli-Lacchini FB, Gebenlian JL, Sobral LM, Garcia CB, Silva WA, Peronni KC, Ramalho LNZ, Ramalho FS, Moreira AC, de Castro M, Leopoldino AM, Antonini SRR. Nicotinamide Nucleotide Transhydrogenase (NNT) is essential for adrenal steroidogenesis: clinical and in vitro lessons. J Clin Endocrinol Metab 2022; 108:1464-1474. [PMID: 36478070 DOI: 10.1210/clinem/dgac705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Nicotinamide nucleotide transhydrogenase (NNT) acts as an antioxidant defense mechanism. NNT mutations cause familial glucocorticoid deficiency (FGD). How impaired oxidative stress disrupts adrenal steroidogenesis remains poorly understood. OBJECTIVE To ascertain the role played by NNT in adrenal steroidogenesis. METHODS The genotype-phenotype association of a novel pathogenic NNT variant was evaluated in a boy with FGD. Under basal and oxidative stress (OS) induced conditions, transient cell cultures of the patient's and controls wild type (WT) mononuclear blood cells were used to evaluate antioxidant mechanisms and mitochondrial parameters [reactive oxygen species (ROS) production, reduced glutathione (GSH), and mitochondrial mass]. Using CRISPR/Cas9, a stable NNT gene knockdown model was built in H295R adrenocortical carcinoma cells to determine the role played by NNT in mitochondrial parameters and steroidogenesis. NNT immunohistochemistry was assessed in fetal and post-natal human adrenals. RESULTS The homozygous NNT p.G866D variant segregated with the FGD phenotype. Under basal and OS conditions, p.G866D homozygous mononuclear blood cells exhibited increased ROS production, and decreased GSH levels and mitochondrial mass when compared to WT NNT cells. In line, H295R NNT knocked-down cells presented impaired NNT protein expression, increased ROS production, decreased the mitochondrial mass, as well as the size and the density of cholesterol lipid droplets. NNT knockdown affected steroidogenic enzyme expression, impairing cortisol and aldosterone secretion. In human adrenals, NNT is abundantly expressed in the transition fetal zone and in zona fasciculata. CONCLUSION Together, these studies demonstrate the essential role of NNT in adrenal redox homeostasis and steroidogenesis.
Collapse
Affiliation(s)
- Aline Faccioli Bodoni
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Juliana Lourenço Gebenlian
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Lays Martin Sobral
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Cristiana Bernadelli Garcia
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Wilson Araújo Silva
- Department of Genetics, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirao Preto, Brazil
- Center for Cell Based Therapy, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirao Preto, Brazil
- Center for Medical Genomics at Clinical Hospital of the Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Kamila Chagas Peronni
- Department of Genetics, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirao Preto, Brazil
- Center for Cell Based Therapy, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirao Preto, Brazil
- Center for Medical Genomics at Clinical Hospital of the Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Leandra Náira Zambelli Ramalho
- Department of Pathology and Forensic Medicine, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Fernando Silva Ramalho
- Department of Pathology and Forensic Medicine, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Ayrton C Moreira
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Margaret de Castro
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Andreia Machado Leopoldino
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | | |
Collapse
|
3
|
Di Mambro A, Esposito M. Thirty years of SET/TAF1β/I2PP2A: from the identification of the biological functions to its implications in cancer and Alzheimer's disease. Biosci Rep 2022; 42:BSR20221280. [PMID: 36345878 PMCID: PMC9679398 DOI: 10.1042/bsr20221280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 10/29/2023] Open
Abstract
The gene encoding for the protein SE translocation (SET) was identified for the first time 30 years ago as part of a chromosomal translocation in a patient affected by leukemia. Since then, accumulating evidence have linked overexpression of SET, aberrant SET splicing, and cellular localization to cancer progression and development of neurodegenerative tauopathies such as Alzheimer's disease. Molecular biology tools, such as targeted genetic deletion, and pharmacological approaches based on SET antagonist peptides, have contributed to unveil the molecular functions of SET and its implications in human pathogenesis. In this review, we provide an overview of the functions of SET as inhibitor of histone and non-histone protein acetylation and as a potent endogenous inhibitor of serine-threonine phosphatase PP2A. We discuss the role of SET in multiple cellular processes, including chromatin remodelling and gene transcription, DNA repair, oxidative stress, cell cycle, apoptosis cell migration and differentiation. We review the molecular mechanisms linking SET dysregulation to tumorigenesis and discuss how SET commits neurons to progressive cell death in Alzheimer's disease, highlighting the rationale of exploiting SET as a therapeutic target for cancer and neurodegenerative tauopathies.
Collapse
Affiliation(s)
- Antonella Di Mambro
- The Centre for Integrated Research in Life and Health Sciences, School of Health and Life Science, University of Roehampton, London, U.K
| | - Maria Teresa Esposito
- The Centre for Integrated Research in Life and Health Sciences, School of Health and Life Science, University of Roehampton, London, U.K
| |
Collapse
|
4
|
Synergic effect of OP449 and FTY720 on oral squamous cell carcinoma. Eur J Pharmacol 2020; 882:173268. [DOI: 10.1016/j.ejphar.2020.173268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
|
5
|
Harsha C, Banik K, Ang HL, Girisa S, Vikkurthi R, Parama D, Rana V, Shabnam B, Khatoon E, Kumar AP, Kunnumakkara AB. Targeting AKT/mTOR in Oral Cancer: Mechanisms and Advances in Clinical Trials. Int J Mol Sci 2020; 21:ijms21093285. [PMID: 32384682 PMCID: PMC7246494 DOI: 10.3390/ijms21093285] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 12/18/2022] Open
Abstract
Oral cancer (OC) is a devastating disease that takes the lives of lots of people globally every year. The current spectrum of treatment modalities does not meet the needs of the patients. The disease heterogeneity demands personalized medicine or targeted therapies. Therefore, there is an urgent need to identify potential targets for the treatment of OC. Abundant evidence has suggested that the components of the protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) pathway are intrinsic factors for carcinogenesis. The AKT protein is central to the proliferation and survival of normal and cancer cells, and its downstream protein, mTOR, also plays an indispensable role in the cellular processes. The wide involvement of the AKT/mTOR pathway has been noted in oral squamous cell carcinoma (OSCC). This axis significantly regulates the various hallmarks of cancer, like proliferation, survival, angiogenesis, invasion, metastasis, autophagy, and epithelial-to-mesenchymal transition (EMT). Activated AKT/mTOR signaling is also associated with circadian signaling, chemoresistance and radio-resistance in OC cells. Several miRNAs, circRNAs and lncRNAs also modulate this pathway. The association of this axis with the process of tumorigenesis has culminated in the identification of its specific inhibitors for the prevention and treatment of OC. In this review, we discussed the significance of AKT/mTOR signaling in OC and its potential as a therapeutic target for the management of OC. This article also provided an update on several AKT/mTOR inhibitors that emerged as promising candidates for therapeutic interventions against OC/head and neck cancer (HNC) in clinical studies.
Collapse
Affiliation(s)
- Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Rajesh Vikkurthi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Bano Shabnam
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Elina Khatoon
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Correspondence: (A.P.K.); (A.B.K.); Tel.: +65-6516-5456 (A.P.K.); +91-361-258-2231 (A.B.K.); Fax: +65-6873-9664 (A.P.K.); +91-361-258-2249 (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
- Correspondence: (A.P.K.); (A.B.K.); Tel.: +65-6516-5456 (A.P.K.); +91-361-258-2231 (A.B.K.); Fax: +65-6873-9664 (A.P.K.); +91-361-258-2249 (A.B.K.)
| |
Collapse
|
6
|
Liu Y, Jia Y, Fu X, He P. TAF-Iβ deficiency inhibits proliferation and promotes apoptosis by rescuing PP2A and inhibiting the AKT/GSK-3β pathway in leukemic cells. Exp Ther Med 2019; 18:3801-3808. [PMID: 31611934 PMCID: PMC6781801 DOI: 10.3892/etm.2019.8012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
Template-activating factor Iβ (TAF-Iβ) has been associated with numerous pathophysiological processes and has been reported as an oncogene responsible for the regulation of important signaling pathways in various types of solid tumor; however, few studies have investigated the role of TAF-Iβ in leukemia. The present study reported the upregulated expression of TAF-Iβ in 36 patients with acute leukemia and six leukemic cell lines. In addition, TAF-Iβ-knockdown (KD) cells were generated via RNA interference. TAF-Iβ KD not only inhibited the proliferation of leukemia cells but also induced apoptosis. Furthermore, it was revealed that the mechanism underlying these effects may be associated with the upregulation of protein phosphatase type 2A and inhibition of the protein kinase B/glycogen synthase kinase-3β signaling pathway. Collectively, the findings demonstrated that TAF-Iβ serves an important role in various types of leukemia and may be considered as a potential therapeutic target for the treatment of leukemia.
Collapse
Affiliation(s)
- Yanfeng Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yan Jia
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiao Fu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Pengcheng He
- Department of Hematology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
7
|
Lam-Ubol A, Fitzgerald AL, Ritdej A, Phonyiam T, Zhang H, Myers JN, Huang P, Trachootham D. Sensory acceptable equivalent doses of β-phenylethyl isothiocyanate (PEITC) induce cell cycle arrest and retard the growth of p53 mutated oral cancer in vitro and in vivo. Food Funct 2018; 9:3640-3656. [PMID: 29923573 DOI: 10.1039/c8fo00865e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High doses of β-phenylethyl isothiocyanate (PEITC), a phytochemical in cruciferous vegetables, are not feasible for consumption due to a strong mouth-tingling effect. This study investigated the anti-cancer effect of PEITC at sensory acceptable doses. In vitro, PEITC was selectively toxic to oral cancer cells (CAL-27, FaDu, SCC4, SCC 9, SCC15, SCC25 and TU138), compared to oral keratinocytes (OKF6/TERT2 and NOK/Si). In vivo, 5 and 10 mg kg-1 PEITC, equivalent to human organoleptically acceptable doses, retarded tumor growth and prolonged the survival of mice bearing p53-mutated oral cancer cells - TU138 xenograft. Mechanistically, PEITC induced ROS accumulation, nuclear translocation of p53 and p21 and G1/S cell cycle arrest in vitro; increased p53 and 8-oxo-dG levels; and decreased Ki-67 intense/mild staining ratios without TUNEL changes in vivo. These findings suggested that the sensory acceptable doses of PEITC selectively induced ROS-mediated cell cycle arrest leading to delayed tumor progression and extended survival. PEITC could be a functional ingredient for oral cancer prevention.
Collapse
Affiliation(s)
- Aroonwan Lam-Ubol
- Faculty of Dentistry, Srinakharinwirot University, Bangkok, Thailand 10110
| | | | | | | | | | | | | | | |
Collapse
|
8
|
FTY720 Decreases Tumorigenesis in Group 3 Medulloblastoma Patient-Derived Xenografts. Sci Rep 2018; 8:6913. [PMID: 29720672 PMCID: PMC5932040 DOI: 10.1038/s41598-018-25263-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/14/2018] [Indexed: 12/20/2022] Open
Abstract
Group 3 tumors account for 28% of medulloblastomas and have the worst prognosis. FTY720, an immunosuppressant currently approved for treatment of multiple sclerosis, has shown antitumor effects in several human cancer cell lines. We hypothesized that treatment with FTY720 (fingolimod) would decrease tumorigenicity in medulloblastoma patient-derived xenografts (PDXs). Three Group 3 medulloblastoma PDXs (D341, D384 and D425) were utilized. Expression of PP2A and its endogenous inhibitors I2PP2A and CIP2A was detected by immunohistochemistry and immunoblotting. PP2A activation was measured via phosphatase activation kit. Cell viability, proliferation, migration and invasion assays were performed after treatment with FTY720. Cell cycle analysis was completed using flow cytometry. A flank model using D425 human medulloblastoma PDX cells was used to assess the in vivo effects of FTY720. FTY720 activated PP2A and led to decreased medulloblastoma PDX cell viability, proliferation, migration and invasion and G1 cell cycle arrest in all three PDXs. FTY720 treatment of mice bearing D425 medulloblastoma PDX tumors resulted in a significant decrease in tumor growth compared to vehicle treated animals. FTY720 decreased viability, proliferation, and motility in Group 3 medulloblastoma PDX cells and significantly decreased tumor growth in vivo. These results suggest that FTY720 should be investigated further as a potential therapeutic agent for medulloblastoma.
Collapse
|