1
|
Tryptophan C-mannosylation is critical for Plasmodium falciparum transmission. Nat Commun 2022; 13:4400. [PMID: 35906227 PMCID: PMC9338275 DOI: 10.1038/s41467-022-32076-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022] Open
Abstract
Tryptophan C-mannosylation stabilizes proteins bearing a thrombospondin repeat (TSR) domain in metazoans. Here we show that Plasmodium falciparum expresses a DPY19 tryptophan C-mannosyltransferase in the endoplasmic reticulum and that DPY19-deficiency abolishes C-glycosylation, destabilizes members of the TRAP adhesin family and inhibits transmission to mosquitoes. Imaging P. falciparum gametogenesis in its entirety in four dimensions using lattice light-sheet microscopy reveals defects in ΔDPY19 gametocyte egress and exflagellation. While egress is diminished, ΔDPY19 microgametes still fertilize macrogametes, forming ookinetes, but these are abrogated for mosquito infection. The gametogenesis defects correspond with destabilization of MTRAP, which we show is C-mannosylated in P. falciparum, and the ookinete defect is concordant with defective CTRP secretion on the ΔDPY19 background. Genetic complementation of DPY19 restores ookinete infectivity, sporozoite production and C-mannosylation activity. Therefore, tryptophan C-mannosylation by DPY19 ensures TSR protein quality control at two lifecycle stages for successful transmission of the human malaria parasite. Here, Lopaticki et al. show that Plasmodium falciparum expresses a Dpy19 C-mannosyltransferase in the endoplasmic reticulum that glycosylates TSR domains. Functional characterization shows that PfDpy19 plays a critical role in transmission through mosquitoes as PfDpy19-deficiency abolishes C-glycosylation and destabilizes proteins relevant for gametogenesis and oocyst formation.
Collapse
|
2
|
Jia W, Zou X, Xu Z, Bai L, Shan A, Li Y, Shi J, Yang F, Ding C, Narimatsu H, Zhang Y. Polypeptide N-acetylgalactosaminyltransferase 18 retains in endoplasmic reticulum depending on its luminal regions interacting with ER resident UGGT1, PLOD3 and LPCAT1. Glycobiology 2021; 31:947-958. [PMID: 33909026 DOI: 10.1093/glycob/cwab031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 12/16/2022] Open
Abstract
Mucin-type O-glycosylation is initiated by the polypeptide: N-acetylgalactosaminyltransferase (ppGalNAc-T) family of enzymes, which consists of 20 members in humans. Among them, unlike other ppGalNAc-Ts located in Golgi apparatus, ppGalNAc-T18 distributes primarily in the endoplasmic reticulum (ER) and non-catalytically regulates ER homeostasis and O-glycosylation. Here, we report the mechanism for ppGalNAc-T18 ER localization and the function of each structural domain of ppGalNAc-T18. By using ppGalNAc-T18 truncation mutants, we revealed that the luminal stem region and catalytic domain of ppGalNAc-T18 are essential for ER localization, whereas the lectin domain and N-glycosylation of ppGalNAc-T18 are not required. In the absence of the luminal region (i.e., stem region, catalytic and lectin domains), the conserved Golgi retention motif RKTK within the cytoplasmic tail combined with the transmembrane domain ensure ER export and Golgi retention, as observed for other Golgi resident ppGalNAc-Ts. Results from coimmunoprecipitation assays showed that the luminal region interacts with ER resident proteins UGGT1, PLOD3 and LPCAT1. Furthermore, flow cytometry analysis showed that the entire luminal region is required for the non-catalytic O-GalNAc glycosylation activity of ppGalNAc-T18. The findings reveal a novel subcellular localization mechanism of ppGalNAc-Ts and provide a foundation to further characterize the function of ppGalNAc-T18 in the ER.
Collapse
Affiliation(s)
- Wenjuan Jia
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xia Zou
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhijue Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lin Bai
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Aidong Shan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yankun Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jingjing Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fang Yang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Hisashi Narimatsu
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8565, Japan
- SCSB (China)-AIST (Japan) Joint Medical Glycomics Laboratory, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- SCSB (China)-AIST (Japan) Joint Medical Glycomics Laboratory, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Minakata S, Manabe S, Inai Y, Ikezaki M, Nishitsuji K, Ito Y, Ihara Y. Protein C-Mannosylation and C-Mannosyl Tryptophan in Chemical Biology and Medicine. Molecules 2021; 26:molecules26175258. [PMID: 34500691 PMCID: PMC8433626 DOI: 10.3390/molecules26175258] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/25/2022] Open
Abstract
C-Mannosylation is a post-translational modification of proteins in the endoplasmic reticulum. Monomeric α-mannose is attached to specific Trp residues at the first Trp in the Trp-x-x-Trp/Cys (W-x-x-W/C) motif of substrate proteins, by the action of C-mannosyltransferases, DPY19-related gene products. The acceptor substrate proteins are included in the thrombospondin type I repeat (TSR) superfamily, cytokine receptor type I family, and others. Previous studies demonstrated that C-mannosylation plays critical roles in the folding, sorting, and/or secretion of substrate proteins. A C-mannosylation-defective gene mutation was identified in humans as the disease-associated variant affecting a C-mannosylation motif of W-x-x-W of ADAMTSL1, which suggests the involvement of defects in protein C-mannosylation in human diseases such as developmental glaucoma, myopia, and/or retinal defects. On the other hand, monomeric C-mannosyl Trp (C-Man-Trp), a deduced degradation product of C-mannosylated proteins, occurs in cells and extracellular fluids. Several studies showed that the level of C-Man-Trp is upregulated in blood of patients with renal dysfunction, suggesting that the metabolism of C-Man-Trp may be involved in human kidney diseases. Together, protein C-mannosylation is considered to play important roles in the biosynthesis and functions of substrate proteins, and the altered regulation of protein C-manosylation may be involved in the pathophysiology of human diseases. In this review, we consider the biochemical and biomedical knowledge of protein C-mannosylation and C-Man-Trp, and introduce recent studies concerning their significance in biology and medicine.
Collapse
Affiliation(s)
- Shiho Minakata
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Shino Manabe
- Pharmaceutical Department, The Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan;
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Science & Faculty of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Sendai, Miyagi 980-8578, Japan
| | - Yoko Inai
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Midori Ikezaki
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Kazuchika Nishitsuji
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Yukishige Ito
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan;
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshito Ihara
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
- Correspondence: ; Tel.: +81-73-441-0628
| |
Collapse
|
4
|
John A, Järvå MA, Shah S, Mao R, Chappaz S, Birkinshaw RW, Czabotar PE, Lo AW, Scott NE, Goddard-Borger ED. Yeast- and antibody-based tools for studying tryptophan C-mannosylation. Nat Chem Biol 2021; 17:428-437. [PMID: 33542533 DOI: 10.1038/s41589-020-00727-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023]
Abstract
Tryptophan C-mannosylation is an unusual co-translational protein modification performed by metazoans and apicomplexan protists. The prevalence and biological functions of this modification are poorly understood, with progress in the field hampered by a dearth of convenient tools for installing and detecting the modification. Here, we engineer a yeast system to produce a diverse array of proteins with and without tryptophan C-mannosylation and interrogate the modification's influence on protein stability and function. This system also enabled mutagenesis studies to identify residues of the glycosyltransferase and its protein substrates that are crucial for catalysis. The collection of modified proteins accrued during this work facilitated the generation and thorough characterization of monoclonal antibodies against tryptophan C-mannosylation. These antibodies empowered proteomic analyses of the brain C-glycome by enriching for peptides possessing tryptophan C-mannosylation. This study revealed many new modification sites on proteins throughout the secretory pathway with both conventional and non-canonical consensus sequences.
Collapse
Affiliation(s)
- Alan John
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Michael A Järvå
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Sayali Shah
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Runyu Mao
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Stephane Chappaz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Richard W Birkinshaw
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Alvin W Lo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Ethan D Goddard-Borger
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
5
|
Miura K, Suzuki T, Sun H, Takada H, Ishizawa Y, Mizuta H, Dohmae N, Simizu S. Requirement for C-mannosylation to be secreted and activated a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4). Biochim Biophys Acta Gen Subj 2020; 1865:129833. [PMID: 33358865 DOI: 10.1016/j.bbagen.2020.129833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND C-mannosylation is a unique type of glycosylation. A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) is a multidomain extracellular metalloproteinase that contains several potential C-mannosylation sites. Although some ADAMTS family proteins have been reported to be C-mannosylated proteins, whether C-mannosylation affects the activation and protease activity of these proteins is unclear. METHODS We established wild-type and mutant ADAMTS4-overexpressing HT1080 cell lines. Recombinant ADAMTS4 was purified from the conditioned medium of the wild-type ADAMTS4-overexpressing cells, and the C-mannosylation sites of ADAMTS4 were identified by LC-MS/MS. The processing, secretion, and intracellular localization of ADAMTS4 were examined by immunoblot and immunofluorescence analyses. ADAMTS4 enzymatic activity was evaluated by assessing the cleavage of recombinant aggrecan. RESULTS We identified that ADAMTS4 is C-mannosylated at Trp404 in the metalloprotease domain and at Trp523, Trp526, and Trp529 in the thrombospondin type 1 repeat (TSR). The replacement of Trp404 with Phe affected ADAMTS4 processing, without affecting secretion and intracellular localization. In contrast, the substitution of Trp523, Trp526, and Trp529 with Phe residues suppressed ADAMTS4 secretion, processing, intracellular trafficking, and enzymatic activity. CONCLUSIONS Our results demonstrated that the C-mannosylation of ADAMTS4 plays important roles in protein processing, intracellular trafficking, secretion, and enzymatic activity. GENERAL SIGNIFICANCE Because C-mannosylation appears to regulate many ADAMTS4 functions, C-mannosylation may also affect other members of the ADAMTS superfamily.
Collapse
Affiliation(s)
- Kazuki Miura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 223-8522, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science Wako, 351-0198, Japan
| | - Hongkai Sun
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 223-8522, Japan
| | - Haruka Takada
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 223-8522, Japan
| | - Yudai Ishizawa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 223-8522, Japan
| | - Hayato Mizuta
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 223-8522, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science Wako, 351-0198, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 223-8522, Japan.
| |
Collapse
|
6
|
Miura K, Matsuki W, Ogura A, Takao KI, Simizu S. Identification of vibsanin A analog as a novel HSP90 inhibitor. Bioorg Med Chem 2020; 28:115253. [DOI: 10.1016/j.bmc.2019.115253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022]
|
7
|
Pieroni L, Iavarone F, Olianas A, Greco V, Desiderio C, Martelli C, Manconi B, Sanna MT, Messana I, Castagnola M, Cabras T. Enrichments of post-translational modifications in proteomic studies. J Sep Sci 2019; 43:313-336. [PMID: 31631532 DOI: 10.1002/jssc.201900804] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/23/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022]
Abstract
More than 300 different protein post-translational modifications are currently known, but only a few have been extensively investigated because modified proteoforms are commonly present in sub-stoichiometry amount. For this reason, improvement of specific enrichment techniques is particularly useful for the proteomic characterization of post-translationally modified proteins. Enrichment proteomic strategies could help the researcher in the challenging issue to decipher the complex molecular cross-talk existing between the different factors influencing the cellular pathways. In this review the state of art of the platforms applied for the enrichment of specific and most common post-translational modifications, such as glycosylation and glycation, phosphorylation, sulfation, redox modifications (i.e. sulfydration and nitrosylation), methylation, acetylation, and ubiquitinylation, are described. Enrichments strategies applied to characterize less studied post-translational modifications are also briefly discussed.
Collapse
Affiliation(s)
- Luisa Pieroni
- Laboratorio di Proteomica e Metabolomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Federica Iavarone
- Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Alessandra Olianas
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Viviana Greco
- Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Claudia Desiderio
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Claudia Martelli
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Barbara Manconi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Maria Teresa Sanna
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Irene Messana
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Massimo Castagnola
- Laboratorio di Proteomica e Metabolomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Tiziana Cabras
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| |
Collapse
|
8
|
Albuquerque-Wendt A, Hütte HJ, Buettner FFR, Routier FH, Bakker H. Membrane Topological Model of Glycosyltransferases of the GT-C Superfamily. Int J Mol Sci 2019; 20:ijms20194842. [PMID: 31569500 PMCID: PMC6801728 DOI: 10.3390/ijms20194842] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Glycosyltransferases that use polyisoprenol-linked donor substrates are categorized in the GT-C superfamily. In eukaryotes, they act in the endoplasmic reticulum (ER) lumen and are involved in N-glycosylation, glypiation, O-mannosylation, and C-mannosylation of proteins. We generated a membrane topology model of C-mannosyltransferases (DPY19 family) that concurred perfectly with the 13 transmembrane domains (TMDs) observed in oligosaccharyltransferases (STT3 family) structures. A multiple alignment of family members from diverse organisms highlighted the presence of only a few conserved amino acids between DPY19s and STT3s. Most of these residues were shown to be essential for DPY19 function and are positioned in luminal loops that showed high conservation within the DPY19 family. Multiple alignments of other eukaryotic GT-C families underlined the presence of similar conserved motifs in luminal loops, in all enzymes of the superfamily. Most GT-C enzymes are proposed to have an uneven number of TDMs with 11 (POMT, TMTC, ALG9, ALG12, PIGB, PIGV, and PIGZ) or 13 (DPY19, STT3, and ALG10) membrane-spanning helices. In contrast, PIGM, ALG3, ALG6, and ALG8 have 12 or 14 TMDs and display a C-terminal dilysine ER-retrieval motif oriented towards the cytoplasm. We propose that all members of the GT-C superfamily are evolutionary related enzymes with preserved membrane topology.
Collapse
Affiliation(s)
| | - Hermann J Hütte
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany.
| | - Falk F R Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany.
| | - Françoise H Routier
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany.
| | - Hans Bakker
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
9
|
Ishizawa Y, Niwa Y, Suzuki T, Kawahara R, Dohmae N, Simizu S. Identification and characterization of collagen-like glycosylation and hydroxylation of CCN1. Glycobiology 2019; 29:696-704. [DOI: 10.1093/glycob/cwz052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022] Open
Abstract
AbstractCCN1 is a secreted protein and belongs to the CCN family of matricellular proteins. CCN1 binds to various cell surface receptors; thus, CCN1 has important functions in cell proliferation, migration and angiogenesis through a variety of signaling pathways. We have reported that CCN1 is O-fucosylated and that this O-fucosylation regulates the secretion of CCN1 into the extracellular region. In this study, we detected collagen-like glycosylation and hydroxylation at Lys203 of recombinant CCN1 by mass spectrometry. We then examined the role of collagen-like glycosylation in the functions of CCN1. As a result, we found that a deficiency in collagen-like glycosylation decreased the secretion of CCN1 using wild-type CCN1- and collagen-like glycosylation-defective mutant CCN1-overexpressing cell lines. Further, knockout of lysyl hydroxylase3, a multifunctional protein with hydroxylase and glucosyltransferase activities, impaired the secretion and glycosylation level of recombinant CCN1. Previous studies reported that collagen glycosylation of Lys residues mediated by lysyl hydroxylase3 is glucosyl-galactosyl-hydroxylation, presuming that this collagen-like glycosylation detected at Lys203 of recombinant CCN1 in this study might be glucosyl-galactosyl-hydroxylation. Taken together, our results demonstrate the novel function of the collagen-like glycosylation of CCN1 and suggest that lysyl hydroxylase3-mediated glycosylation is important for CCN1 secretion.
Collapse
Affiliation(s)
- Yudai Ishizawa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Yuki Niwa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako 351-0198, Japan
| | - Ryota Kawahara
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako 351-0198, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
10
|
Niwa Y, Simizu S. C-Mannosylation: Previous Studies and Future Research Perspectives. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1755.1e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yuki Niwa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University
| |
Collapse
|