1
|
Uguen M, Liu T, James LI, Frye SV. Tudor-Containing Methyl-Lysine and Methyl-Arginine Reader Proteins: Disease Implications and Chemical Tool Development. ACS Chem Biol 2024. [PMID: 39718819 DOI: 10.1021/acschembio.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Tudor domains are histone readers that can recognize various methylation marks on lysine and arginine. This recognition event plays a key role in the recruitment of other epigenetic effectors and the control of gene accessibility. The Tudor-containing protein family contains 42 members, many of which are involved in the development and progression of various diseases, especially cancer. The development of chemical tools for this family will not only lead to a deeper understanding of the biological functions of Tudor domains but also lay the foundation for therapeutic discoveries. In this review, we discuss the role of several Tudor domain-containing proteins in a range of relevant diseases and progress toward the development of chemical tools such as peptides, peptidomimetics, or small-molecules that bind Tudor domains. Overall, we highlight how Tudor domains are promising targets for therapeutic development and would benefit from the development of novel chemical tools.
Collapse
Affiliation(s)
- Mélanie Uguen
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tongkun Liu
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lindsey I James
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Stephen V Frye
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Vorreiter C, Robaa D, Sippl W. Exploring Aromatic Cage Flexibility Using Cosolvent Molecular Dynamics Simulations─An In-Silico Case Study of Tudor Domains. J Chem Inf Model 2024; 64:4553-4569. [PMID: 38771194 PMCID: PMC11167732 DOI: 10.1021/acs.jcim.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Cosolvent molecular dynamics (MD) simulations have proven to be powerful in silico tools to predict hotspots for binding regions on protein surfaces. In the current study, the method was adapted and applied to two Tudor domain-containing proteins, namely Spindlin1 (SPIN1) and survival motor neuron protein (SMN). Tudor domains are characterized by so-called aromatic cages that recognize methylated lysine residues of protein targets. In the study, the conformational transitions from closed to open aromatic cage conformations were investigated by performing MD simulations with cosolvents using six different probe molecules. It is shown that a trajectory clustering approach in combination with volume and atomic distance tracking allows a reasonable discrimination between open and closed aromatic cage conformations and the docking of inhibitors yields very good reproducibility with crystal structures. Cosolvent MDs are suitable to capture the flexibility of aromatic cages and thus represent a promising tool for the optimization of inhibitors.
Collapse
Affiliation(s)
- Christopher Vorreiter
- Department of Medicinal Chemistry,
Institute of Pharmacy, Martin-Luther-University
of Halle-Wittenberg, 06120 Halle, Saale, Germany
| | - Dina Robaa
- Department of Medicinal Chemistry,
Institute of Pharmacy, Martin-Luther-University
of Halle-Wittenberg, 06120 Halle, Saale, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry,
Institute of Pharmacy, Martin-Luther-University
of Halle-Wittenberg, 06120 Halle, Saale, Germany
| |
Collapse
|
3
|
Huang X, Chen Y, Xiao Q, Shang X, Liu Y. Chemical inhibitors targeting histone methylation readers. Pharmacol Ther 2024; 256:108614. [PMID: 38401773 DOI: 10.1016/j.pharmthera.2024.108614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Histone methylation reader domains are protein modules that recognize specific histone methylation marks, such as methylated or unmethylated lysine or arginine residues on histones. These reader proteins play crucial roles in the epigenetic regulation of gene expression, chromatin structure, and DNA damage repair. Dysregulation of these proteins has been linked to various diseases, including cancer, neurodegenerative diseases, and developmental disorders. Therefore, targeting these proteins with chemical inhibitors has emerged as an attractive approach for therapeutic intervention, and significant progress has been made in this area. In this review, we will summarize the development of inhibitors targeting histone methylation readers, including MBT domains, chromodomains, Tudor domains, PWWP domains, PHD fingers, and WD40 repeat domains. For each domain, we will briefly discuss its identification and biological/biochemical functions, and then focus on the discovery of inhibitors tailored to target this domain, summarizing the property and potential application of most inhibitors. We will also discuss the structural basis for the potency and selectivity of these inhibitors, which will aid in further lead generation and optimization. Finally, we will also address the challenges and strategies involved in the development of these inhibitors. It should facilitate the rational design and development of novel chemical scaffolds and new targeting strategies for histone methylation reader domains with the help of this body of data.
Collapse
Affiliation(s)
- Xiaolei Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yichang Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Qin Xiao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Xinci Shang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yanli Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
4
|
Fan WW, Xu T, Gao J, Zhang HY, Li Y, Hu DD, Gao S, Zhang JH, Liu X, Liu D, Li PL, Wong CCL, Yao XB, Shi YY, Yang ZY, Wang XS, Ruan K. A bivalent inhibitor against TDRD3 to suppress phase separation of methylated G3BP1. Chem Commun (Camb) 2024; 60:762-765. [PMID: 38126399 DOI: 10.1039/d3cc04654k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The formation of membrane-less organelles is driven by multivalent weak interactions while mediation of such interactions by small molecules remains an unparalleled challenge. Here, we uncovered a bivalent inhibitor that blocked the recruitment of TDRD3 by the two methylated arginines of G3BP1. Relative to the monovalent inhibitor, this bivalent inhibitor demonstrated an enhanced binding affinity to TDRD3 and capability to suppress the phase separation of methylated G3BP1, TDRD3, and RNAs, and in turn inhibit the stress granule growth in cells. Our result paves a new path to mediate multivalent interactions involved in SG assembly for potential combinational chemotherapy by bivalent inhibitors.
Collapse
Affiliation(s)
- Wei-Wei Fan
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Tian Xu
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Jia Gao
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Han-Yu Zhang
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Yan Li
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Duo-Duo Hu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Shuaixin Gao
- Center for Precision Medicine Multi-omics Research, Peking University Health Science Center, Peking University First Hospital; School of Basic Medical Sciences, Peking University Health Science Center; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jia-Hai Zhang
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Xing Liu
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Dan Liu
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Pi-Long Li
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Catherine C L Wong
- Center for Precision Medicine Multi-omics Research, Peking University Health Science Center, Peking University First Hospital; School of Basic Medical Sciences, Peking University Health Science Center; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xue-Biao Yao
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Yun-Yu Shi
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Zhen-Ye Yang
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Xi-Sheng Wang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Ke Ruan
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
5
|
Saha S, Huang SYN, Yang X, Saha LK, Sun Y, Khandagale P, Jenkins LM, Pommier Y. The TDRD3-USP9X complex and MIB1 regulate TOP3B homeostasis and prevent deleterious TOP3B cleavage complexes. Nat Commun 2023; 14:7524. [PMID: 37980342 PMCID: PMC10657456 DOI: 10.1038/s41467-023-43151-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023] Open
Abstract
TOP3B is stabilized by TDRD3. Hypothesizing that TDRD3 recruits a deubiquitinase, we find that TOP3B interacts with USP9X via TDRD3. Inactivation of USP9X destabilizes TOP3B, and depletion of both TDRD3 and USP9X does not promote further TOP3B ubiquitylation. Additionally, we observe that MIB1 mediates the ubiquitylation and proteasomal degradation of TOP3B by directly interacting with TOP3B independently of TDRD3. Combined depletion of USP9X, TDRD3 and MIB1 causes no additional increase in TOP3B levels compared to MIB1 knockdown alone indicating that the TDRD3-USP9X complex works downstream of MIB1. To comprehend why cells degrade TOP3B in the absence of TDRD3, we measured TOP3Bccs. Lack of TDRD3 increases TOP3Bccs in DNA and RNA, and induced R-loops, γH2AX and growth defect. Biochemical experiments confirm that TDRD3 increases the turnover of TOP3B. Our work provides molecular insights into the mechanisms by which TDRD3 protect cells from deleterious TOP3Bccs which are otherwise removed by TRIM41.
Collapse
Affiliation(s)
- Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Shar-Yin Naomi Huang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Xi Yang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Liton Kumar Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yilun Sun
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Prashant Khandagale
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Lisa M Jenkins
- Collaborative Protein Technology Resource, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Chen M, Wang Z, Li W, Chen Y, Xiao Q, Shang X, Huang X, Wei Z, Ji X, Liu Y. Crystal structure of Tudor domain of TDRD3 in complex with a small molecule antagonist. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194962. [PMID: 37499935 DOI: 10.1016/j.bbagrm.2023.194962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Tudor domain-containing protein 3 (TDRD3) is involved in regulating transcription and translation, promoting breast cancer progression, and modulating neurodevelopment and mental health, making it a promising therapeutic target for associated diseases. The Tudor domain of TDRD3 is essential for its biological functions, and targeting this domain with potent and selective chemical probes may modulate its engagement with chromatin and related functions. Here we reported a study of TDRD3 antagonist following on our earlier work on the development of the SMN antagonist, Compound 1, and demonstrated that TDRD3 can bind effectively to Compound 2, a triple-ring analog of Compound 1. Our structural analysis suggested that the triple-ring compound bound better to TDRD3 due to its smaller side chain at Y566 compared to W102 in SMN. We also revealed that adding a small hydrophobic group to the N-methyl site of Compound 1 can improve binding. These findings provide a path for identifying antagonists for single canonical Tudor domain-containing proteins such as TDRD3 and SMN.
Collapse
Affiliation(s)
- Meixia Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Zhuowen Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Weiguo Li
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Yichang Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Qin Xiao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Xinci Shang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Xiaolei Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Zhengguo Wei
- School of Biology and Basic Medical Science, Soochow University, Suzhou, Jiangsu 215021, PR China
| | - Xinyue Ji
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, Jiangsu 215123, PR China.
| | - Yanli Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
7
|
Enders L, Siklos M, Borggräfe J, Gaussmann S, Koren A, Malik M, Tomek T, Schuster M, Reiniš J, Hahn E, Rukavina A, Reicher A, Casteels T, Bock C, Winter GE, Hannich JT, Sattler M, Kubicek S. Pharmacological perturbation of the phase-separating protein SMNDC1. Nat Commun 2023; 14:4504. [PMID: 37587144 PMCID: PMC10432564 DOI: 10.1038/s41467-023-40124-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/13/2023] [Indexed: 08/18/2023] Open
Abstract
SMNDC1 is a Tudor domain protein that recognizes di-methylated arginines and controls gene expression as an essential splicing factor. Here, we study the specific contributions of the SMNDC1 Tudor domain to protein-protein interactions, subcellular localization, and molecular function. To perturb the protein function in cells, we develop small molecule inhibitors targeting the dimethylarginine binding pocket of the SMNDC1 Tudor domain. We find that SMNDC1 localizes to phase-separated membraneless organelles that partially overlap with nuclear speckles. This condensation behavior is driven by the unstructured C-terminal region of SMNDC1, depends on RNA interaction and can be recapitulated in vitro. Inhibitors of the protein's Tudor domain drastically alter protein-protein interactions and subcellular localization, causing splicing changes for SMNDC1-dependent genes. These compounds will enable further pharmacological studies on the role of SMNDC1 in the regulation of nuclear condensates, gene regulation and cell identity.
Collapse
Affiliation(s)
- Lennart Enders
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Marton Siklos
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Jan Borggräfe
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg, 85764, München, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Garching, 85748, München, Germany
| | - Stefan Gaussmann
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg, 85764, München, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Garching, 85748, München, Germany
| | - Anna Koren
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Monika Malik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Tatjana Tomek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Michael Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Jiří Reiniš
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Elisa Hahn
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Andrea Rukavina
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Andreas Reicher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Tamara Casteels
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
- Sloan Kettering Institute, 1275 York Avenue, New York, NY, 10065, USA
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
- Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Währinger Straße 25a, 1090, Vienna, Austria
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - J Thomas Hannich
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Michael Sattler
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg, 85764, München, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Garching, 85748, München, Germany
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria.
| |
Collapse
|
8
|
Li J, Zhong F, Li M, Liu Y, Wang L, Liu M, Li F, Zhang J, Wu J, Shi Y, Zhang Z, Tu X, Ruan K, Gao J. Two Binding Sites of SARS-CoV-2 Macrodomain 3 Probed by Oxaprozin and Meclomen. J Med Chem 2022; 65:15227-15237. [DOI: 10.1021/acs.jmedchem.2c01168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jiao Li
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Anhui, P. R. China
| | - Fumei Zhong
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Anhui, P. R. China
| | - Mingwei Li
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Anhui, P. R. China
| | - Yaqian Liu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Anhui, P. R. China
| | - Lei Wang
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Anhui, P. R. China
| | - Mingqing Liu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Anhui, P. R. China
| | - Fudong Li
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Anhui, P. R. China
| | - Jiahai Zhang
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Anhui, P. R. China
| | - Jihui Wu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Anhui, P. R. China
| | - Yunyu Shi
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Anhui, P. R. China
| | - Zhiyong Zhang
- Department of Physics, University of Science and Technology of China, Hefei230026, Anhui, P. R. China
| | - Xiaoming Tu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Anhui, P. R. China
| | - Ke Ruan
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Anhui, P. R. China
| | - Jia Gao
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Anhui, P. R. China
| |
Collapse
|
9
|
Fragment-Based Discovery of AF9 YEATS Domain Inhibitors. Int J Mol Sci 2022; 23:ijms23073893. [PMID: 35409252 PMCID: PMC8998803 DOI: 10.3390/ijms23073893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
YEATS (YAF9, ENL, AF9, TAF14, SAS5) family proteins recognize acylated histones and in turn regulate chromatin structure, gene transcription, and stress signaling. The chromosomal translocations of ENL and mixed lineage leukemia are considered oncogenic drivers in acute myeloid leukemia and acute lymphoid leukemia. However, known ENL YEATS domain inhibitors have failed to suppress the proliferation of 60 tested cancer cell lines. Herein, we identified four hits from the NMR fragment-based screening against the AF9 YEATS domain. Ten inhibitors of new chemotypes were then designed and synthesized guided by two complex structures and affinity assays. The complex structures revealed that these inhibitors formed an extra hydrogen bond to AF9, with respect to known ENL inhibitors. Furthermore, these inhibitors demonstrated antiproliferation activities in AF9-sensitive HGC-27 cells, which recapitulated the phenotype of the CRISPR studies against AF9. Our work will provide the basis for further structured-based optimization and reignite the campaign for potent AF9 YEATS inhibitors as a precise treatment for AF9-sensitive cancers.
Collapse
|
10
|
Luise C, Robaa D, Sippl W. Exploring aromatic cage flexibility of the histone methyllysine reader protein Spindlin1 and its impact on binding mode prediction: an in silico study. J Comput Aided Mol Des 2021; 35:695-706. [PMID: 34081238 PMCID: PMC8213585 DOI: 10.1007/s10822-021-00391-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/28/2021] [Indexed: 11/04/2022]
Abstract
Some of the main challenges faced in drug discovery are pocket flexibility and binding mode prediction. In this work, we explored the aromatic cage flexibility of the histone methyllysine reader protein Spindlin1 and its impact on binding mode prediction by means of in silico approaches. We first investigated the Spindlin1 aromatic cage plasticity by analyzing the available crystal structures and through molecular dynamic simulations. Then we assessed the ability of rigid docking and flexible docking to rightly reproduce the binding mode of a known ligand into Spindlin1, as an example of a reader protein displaying flexibility in the binding pocket. The ability of induced fit docking was further probed to test if the right ligand binding mode could be obtained through flexible docking regardless of the initial protein conformation. Finally, the stability of generated docking poses was verified by molecular dynamic simulations. Accurate binding mode prediction was obtained showing that the herein reported approach is a highly promising combination of in silico methods able to rightly predict the binding mode of small molecule ligands in flexible binding pockets, such as those observed in some reader proteins.
Collapse
Affiliation(s)
- Chiara Luise
- Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Kurt-Mothes-Str.3, 06120, Halle/Saale, Germany
| | - Dina Robaa
- Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Kurt-Mothes-Str.3, 06120, Halle/Saale, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Kurt-Mothes-Str.3, 06120, Halle/Saale, Germany.
| |
Collapse
|
11
|
Beyer JN, Raniszewski NR, Burslem GM. Advances and Opportunities in Epigenetic Chemical Biology. Chembiochem 2020; 22:17-42. [PMID: 32786101 DOI: 10.1002/cbic.202000459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/10/2020] [Indexed: 12/13/2022]
Abstract
The study of epigenetics has greatly benefited from the development and application of various chemical biology approaches. In this review, we highlight the key targets for modulation and recent methods developed to enact such modulation. We discuss various chemical biology techniques to study DNA methylation and the post-translational modification of histones as well as their effect on gene expression. Additionally, we address the wealth of protein synthesis approaches to yield histones and nucleosomes bearing epigenetic modifications. Throughout, we highlight targets that present opportunities for the chemical biology community, as well as exciting new approaches that will provide additional insight into the roles of epigenetic marks.
Collapse
Affiliation(s)
- Jenna N Beyer
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | - Nicole R Raniszewski
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA.,Department of Cancer Biology and Epigenetics Institute Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Li J, Moumbock AFA, Günther S. Exploring Cocrystallized Aromatic Cage Binders to Target Histone Methylation Reader Proteins. J Chem Inf Model 2020; 60:5225-5233. [DOI: 10.1021/acs.jcim.0c00765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jianyu Li
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, D-79104 Freiburg, Germany
| | - Aurélien F. A. Moumbock
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, D-79104 Freiburg, Germany
| | - Stefan Günther
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, D-79104 Freiburg, Germany
| |
Collapse
|
13
|
Linhares BM, Grembecka J, Cierpicki T. Targeting epigenetic protein-protein interactions with small-molecule inhibitors. Future Med Chem 2020; 12:1305-1326. [PMID: 32551894 PMCID: PMC7421387 DOI: 10.4155/fmc-2020-0082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Epigenetic protein-protein interactions (PPIs) play essential roles in regulating gene expression, and their dysregulations have been implicated in many diseases. These PPIs are comprised of reader domains recognizing post-translational modifications on histone proteins, and of scaffolding proteins that maintain integrities of epigenetic complexes. Targeting PPIs have become focuses for development of small-molecule inhibitors and anticancer therapeutics. Here we summarize efforts to develop small-molecule inhibitors targeting common epigenetic PPI domains. Potent small molecules have been reported for many domains, yet small domains that recognize methylated lysine side chains on histones are challenging in inhibitor development. We posit that the development of potent inhibitors for difficult-to-prosecute epigenetic PPIs may be achieved by interdisciplinary approaches and extensive explorations of chemical space.
Collapse
Affiliation(s)
- Brian M Linhares
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tomasz Cierpicki
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Nshogoza G, Liu Y, Gao J, Liu M, Moududee SA, Ma R, Li F, Zhang J, Wu J, Shi Y, Ruan K. NMR Fragment-Based Screening against Tandem RNA Recognition Motifs of TDP-43. Int J Mol Sci 2019; 20:ijms20133230. [PMID: 31262091 PMCID: PMC6651732 DOI: 10.3390/ijms20133230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 01/10/2023] Open
Abstract
The TDP-43 is originally a nuclear protein but translocates to the cytoplasm in the pathological condition. TDP-43, as an RNA-binding protein, consists of two RNA Recognition Motifs (RRM1 and RRM2). RRMs are known to involve both protein-nucleotide and protein-protein interactions and mediate the formation of stress granules. Thus, they assist the entire TDP-43 protein with participating in neurodegenerative and cancer diseases. Consequently, they are potential therapeutic targets. Protein-observed and ligand-observed nuclear magnetic resonance (NMR) spectroscopy were used to uncover the small molecule inhibitors against the tandem RRM of TDP-43. We identified three hits weakly binding the tandem RRMs using the ligand-observed NMR fragment-based screening. The binding topology of these hits is then depicted by chemical shift perturbations (CSP) of the 15N-labeled tandem RRM and RRM2, respectively, and modeled by the CSP-guided High Ambiguity Driven biomolecular DOCKing (HADDOCK). These hits mainly bind to the RRM2 domain, which suggests the druggability of the RRM2 domain of TDP-43. These hits also facilitate further studies regarding the hit-to-lead evolution against the TDP-43 RRM domain.
Collapse
Affiliation(s)
- Gilbert Nshogoza
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yaqian Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Jia Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Mingqing Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Sayed Ala Moududee
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Rongsheng Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Fudong Li
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Jiahai Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Jihui Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- CAS, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China
| | - Ke Ruan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
15
|
Xu D, Li B, Gao J, Liu Z, Niu X, Nshogoza G, Zhang J, Wu J, Su XC, He W, Ma R, Yang D, Ruan K. Ligand Proton Pseudocontact Shifts Determined from Paramagnetic Relaxation Dispersion in the Limit of NMR Intermediate Exchange. J Phys Chem Lett 2018; 9:3361-3367. [PMID: 29864276 DOI: 10.1021/acs.jpclett.8b01443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Delineation of protein-ligand interaction modes is key for rational drug discovery. The availability of complex crystal structures is often limited by the aqueous solubility of the compounds, while lead-like compounds with micromolar affinities normally fall into the NMR intermediate exchange regime, in which severe line broadening to beyond the detection of interfacial resonances limits NMR applications. Here, we developed a new method to retrieve low-populated bound-state 1H pseudocontact shifts (PCSs) using paramagnetic relaxation dispersion (RD). We evaluated using a 1H PCS-RD approach in a BRM bromodomain lead-like inhibitor to filter molecular docking poses using multiple intermolecular structural restraints. Considering the universal presence of proton atoms in druglike compounds, our work will have wide application in structure-guided drug discovery even under an extreme condition of NMR intermediate exchange and low aqueous solubility of ligands.
Collapse
Affiliation(s)
- Difei Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , PR China
| | - Bin Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua-Peking Joint Center for Life Sciences , Tsinghua University , Beijing , 100084 , PR China
| | - Jia Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , PR China
- Center of Medical Physics and Technology, Hefei Institute of Physical Science , Cancer Hospital Chinese Academy of Science , Hefei , Anhui 230031 , PR China
| | - Zhijun Liu
- National Facility for Protein Science in Shanghai, ZhangJiang Lab, Shanghai Advanced Research Institute , Chinese Academy of Sciences , Shanghai , 201210 , PR China
| | - Xiaogang Niu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , PR China
| | - Gilbert Nshogoza
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , PR China
| | - Jiahai Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , PR China
| | - Jihui Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , PR China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin , 300071 , PR China
| | - Wei He
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua-Peking Joint Center for Life Sciences , Tsinghua University , Beijing , 100084 , PR China
| | - Rongsheng Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , PR China
| | - Daiwen Yang
- Department of Biological Sciences , National University of Singapore , Singapore , 117543 , Singapore
| | - Ke Ruan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , PR China
| |
Collapse
|