1
|
Kitai H, Choi PH, Yang YC, Boyer JA, Whaley A, Pancholi P, Thant C, Reiter J, Chen K, Markov V, Taniguchi H, Yamaguchi R, Ebi H, Evans J, Jiang J, Lee B, Wildes D, de Stanchina E, Smith JAM, Singh M, Rosen N. Combined inhibition of KRAS G12C and mTORC1 kinase is synergistic in non-small cell lung cancer. Nat Commun 2024; 15:6076. [PMID: 39025835 PMCID: PMC11258147 DOI: 10.1038/s41467-024-50063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
Current KRASG12C (OFF) inhibitors that target inactive GDP-bound KRASG12C cause responses in less than half of patients and these responses are not durable. A class of RASG12C (ON) inhibitors that targets active GTP-bound KRASG12C blocks ERK signaling more potently than the inactive-state inhibitors. Sensitivity to either class of agents is strongly correlated with inhibition of mTORC1 activity. We have previously shown that PI3K/mTOR and ERK-signaling pathways converge on key cellular processes and that inhibition of both pathways is required for inhibition of these processes and for significant antitumor activity. We find here that the combination of a KRASG12C inhibitor with a selective mTORC1 kinase inhibitor causes synergistic inhibition of Cyclin D1 expression and cap-dependent translation. Moreover, BIM upregulation by KRASG12C inhibition and inhibition of MCL-1 expression by the mTORC1 inhibitor are both required to induce significant cell death. In vivo, this combination causes deep, durable tumor regressions and is well tolerated. This study suggests that the ERK and PI3K/mTOR pathways each mitigate the effects of inhibition of the other and that combinatorial inhibition is a potential strategy for treating KRASG12C-dependent lung cancer.
Collapse
Affiliation(s)
- Hidenori Kitai
- Program in Molecular Pharmacology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Philip H Choi
- Program in Molecular Pharmacology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu C Yang
- Department of Biology, Revolution Medicines Inc., Redwood City, CA, USA
| | - Jacob A Boyer
- Program in Molecular Pharmacology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adele Whaley
- Program in Molecular Pharmacology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Priya Pancholi
- Program in Molecular Pharmacology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Claire Thant
- Program in Molecular Pharmacology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jason Reiter
- Program in Molecular Pharmacology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin Chen
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vladimir Markov
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hirokazu Taniguchi
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Yamaguchi
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, 464-8681, Japan
| | - Hiromichi Ebi
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, 464-8681, Japan
| | - James Evans
- Department of Biology, Revolution Medicines Inc., Redwood City, CA, USA
| | - Jingjing Jiang
- Department of Biology, Revolution Medicines Inc., Redwood City, CA, USA
| | - Bianca Lee
- Department of Biology, Revolution Medicines Inc., Redwood City, CA, USA
| | - David Wildes
- Department of Biology, Revolution Medicines Inc., Redwood City, CA, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Mallika Singh
- Department of Biology, Revolution Medicines Inc., Redwood City, CA, USA.
| | - Neal Rosen
- Program in Molecular Pharmacology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Arandjelovic P, Kim Y, Cooney JP, Preston SP, Doerflinger M, McMahon JH, Garner SE, Zerbato JM, Roche M, Tumpach C, Ong J, Sheerin D, Smyth GK, Anderson JL, Allison CC, Lewin SR, Pellegrini M. Venetoclax, alone and in combination with the BH3 mimetic S63845, depletes HIV-1 latently infected cells and delays rebound in humanized mice. Cell Rep Med 2023; 4:101178. [PMID: 37652018 PMCID: PMC10518630 DOI: 10.1016/j.xcrm.2023.101178] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/29/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
HIV-1 persists indefinitely in people living with HIV (PLWH) on antiretroviral therapy (ART). If ART is stopped, the virus rapidly rebounds from long-lived latently infected cells. Using a humanized mouse model of HIV-1 infection and CD4+ T cells from PLWH on ART, we investigate whether antagonizing host pro-survival proteins can prime latent cells to die and facilitate HIV-1 clearance. Venetoclax, a pro-apoptotic inhibitor of Bcl-2, depletes total and intact HIV-1 DNA in CD4+ T cells from PLWH ex vivo. This venetoclax-sensitive population is enriched for cells with transcriptionally higher levels of pro-apoptotic BH3-only proteins. Furthermore, venetoclax delays viral rebound in a mouse model of persistent HIV-1 infection, and the combination of venetoclax with the Mcl-1 inhibitor S63845 achieves a longer delay in rebound compared with either intervention alone. Thus, selective inhibition of pro-survival proteins can induce death of HIV-1-infected cells that persist on ART, extending time to viral rebound.
Collapse
Affiliation(s)
- Philip Arandjelovic
- Division of Infectious Disease and Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Youry Kim
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - James P Cooney
- Division of Infectious Disease and Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Simon P Preston
- Division of Infectious Disease and Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Marcel Doerflinger
- Division of Infectious Disease and Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - James H McMahon
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Sarah E Garner
- Division of Infectious Disease and Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer M Zerbato
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Michael Roche
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Emerging Infections Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Carolin Tumpach
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jesslyn Ong
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Dylan Sheerin
- Division of Infectious Disease and Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Gordon K Smyth
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - Jenny L Anderson
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Cody C Allison
- Division of Infectious Disease and Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, Australia; Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Marc Pellegrini
- Division of Infectious Disease and Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Perurena N, Lock R, Davis RA, Raghavan S, Pilla NF, Ng R, Loi P, Guild CJ, Miller AL, Sicinska E, Cleary JM, Rubinson DA, Wolpin BM, Gray NS, Santagata S, Hahn WC, Morton JP, Sansom OJ, Aguirre AJ, Cichowski K. USP9X mediates an acute adaptive response to MAPK suppression in pancreatic cancer but creates multiple actionable therapeutic vulnerabilities. Cell Rep Med 2023; 4:101007. [PMID: 37030295 PMCID: PMC10140597 DOI: 10.1016/j.xcrm.2023.101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/18/2022] [Accepted: 03/17/2023] [Indexed: 04/10/2023]
Abstract
Pancreatic ductal adenocarcinomas (PDACs) frequently harbor KRAS mutations. Although MEK inhibitors represent a plausible therapeutic option, most PDACs are innately resistant to these agents. Here, we identify a critical adaptive response that mediates resistance. Specifically, we show that MEK inhibitors upregulate the anti-apoptotic protein Mcl-1 by triggering an association with its deubiquitinase, USP9X, resulting in acute Mcl-1 stabilization and protection from apoptosis. Notably, these findings contrast the canonical positive regulation of Mcl-1 by RAS/ERK. We further show that Mcl-1 inhibitors and cyclin-dependent kinase (CDK) inhibitors, which suppress Mcl-1 transcription, prevent this protective response and induce tumor regression when combined with MEK inhibitors. Finally, we identify USP9X as an additional potential therapeutic target. Together, these studies (1) demonstrate that USP9X regulates a critical mechanism of resistance in PDAC, (2) reveal an unexpected mechanism of Mcl-1 regulation in response to RAS pathway suppression, and (3) provide multiple distinct promising therapeutic strategies for this deadly malignancy.
Collapse
Affiliation(s)
- Naiara Perurena
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Rebecca Lock
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Rachel A Davis
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Srivatsan Raghavan
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Natalie F Pilla
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Raymond Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Patrick Loi
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Caroline J Guild
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Abigail L Miller
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Ewa Sicinska
- Department of Oncologic Pathology, Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - James M Cleary
- Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Douglas A Rubinson
- Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Brian M Wolpin
- Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA
| | - Sandro Santagata
- Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - William C Hahn
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G11 1QH, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G11 1QH, UK
| | - Andrew J Aguirre
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karen Cichowski
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Chen L, Jiang X, Gao S, Liu X, Gao Y, Kow ASF, Tham CL, Lee MT. Sensitization effect of kaempferol from persimmon leaves on HepG2 hepatoma cells with ABT-199 resistance and its molecular mechanisms. Front Pharmacol 2022; 13:1032069. [PMID: 36386146 PMCID: PMC9663918 DOI: 10.3389/fphar.2022.1032069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
ABT-199 (venetoclax) is the first-in-class selective B-cell lymphoma 2 (BCL2) inhibitor, which is known to be ineffective towards liver cancer cells. Here, we investigated the efficacy and the underlying molecular processes of the sensitization effect of kaempferol isolated from persimmon leaves (KPL) on the ABT-199-resistant HepG2 cells. The effects of various doses of KPL coupled with ABT-199 on the proliferation of HepG2 cells and on the H22 liver tumor-bearing mouse model were examined, as well as the underlying mechanisms. Our findings showed that ABT-199 alone, in contrast to KPL, had no significant impact on hepatoma cell growth, both in vitro and in vivo. Interestingly, the combination therapy showed significantly higher anti-hepatoma efficacy. Mechanistic studies revealed that combining KPL and ABT-199 may promote both early and late apoptosis, as well as decrease the mitochondrial membrane potential in HepG2 cells. Western blot analysis showed that combination of KPL and ABT-199 significantly reduced the expression of the anti-apoptotic proteins Bcl-2, Bcl-xL, and Mcl-1, raised the expression of Bax and cleaved caspase 3, and enhanced cytochrome C release and Bax translocation. Therefore, KPL combined with ABT-199 has a potential application prospect in the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Li Chen
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia,Department of Pharmacology, College of Medicine, Guangxi University of Science and Technology, Liuzhou, China
| | - Xudong Jiang
- Department of Pharmacology, College of Medicine, Guangxi University of Science and Technology, Liuzhou, China
| | - Si Gao
- Department of Pharmacology, College of Medicine, Guangxi University of Science and Technology, Liuzhou, China
| | - Xueping Liu
- Department of Pharmacology, College of Medicine, Guangxi University of Science and Technology, Liuzhou, China
| | - Ying Gao
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Murfreesboro, TN, United States
| | | | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia,*Correspondence: Ming Tatt Lee,
| |
Collapse
|
5
|
Bennett R, Thompson E, Tam C. SOHO State of the Art Updates and Next Questions | Mechanisms of Resistance to BCL2 Inhibitor Therapy in Chronic Lymphocytic Leukemia and Potential Future Therapeutic Directions. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:795-804. [PMID: 35970756 DOI: 10.1016/j.clml.2022.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Chronic lymphocytic leukaemia (CLL) constitutively overexpresses B-cell lymphoma 2 (BCL2) with consequent dysregulation of intrinsic apoptosis leading to abnormal cellular survival. Therapeutic use of BCL2 inhibitors (BCL2i, eg, venetoclax) in CLL, as both continuous monotherapy or in fixed duration combination, has translated scientific rationale into clinical benefit with significant rates of complete responses, including those without detectable minimal residual disease. Unlike with chemotherapy, response rates to venetoclax do not appear to be influenced by pre-existing chromosomal abnormalities or somatic mutations present, although the duration of response observed remains shorter for those with traditional higher risk genetic aberrations. This review seeks to describe both the disease factors that influence primary venetoclax sensitivity/resistance and those resistance mechanisms that may be acquired secondary to BCL2i therapy in CLL. Baseline venetoclax-sensitivity or -resistance is influenced by the expression of BCL2 relative to other BCL2 family member proteins, microenvironmental factors including nodal T-cell stimulation, and tumoral heterogeneity. With selection pressure applied by continuous venetoclax exposure, secondary resistance mechanisms develop in oligoclonal fashion. Those mechanisms described include acquisition of BCL2 variants, dynamic aberrations of alternative BCL2 family proteins, and mutations affecting both BAX and other BH3 proteins. In view of the resistance described, this review also proposes future applications of BCL2i therapy in CLL and potential means by which BCL2i-resistance may be abrogated.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- bcl-2-Associated X Protein/pharmacology
- Drug Resistance, Neoplasm
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
- Rory Bennett
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| | - Ella Thompson
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; University of Melbourne, Parkville, Victoria, Australia
| | - Constantine Tam
- Alfred Health and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Liu J, Chen Y, Yu L, Yang L. Mechanisms of venetoclax resistance and solutions. Front Oncol 2022; 12:1005659. [PMID: 36313732 PMCID: PMC9597307 DOI: 10.3389/fonc.2022.1005659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
The BCL-2 inhibitor venetoclax is currently approved for treatment of hematologic diseases and is widely used either as monotherapy or in combination strategies. It has produced promising results in the treatment of refractory or relapsed (R/R) and aged malignant hematologic diseases. However, with clinical use, resistance to venetoclax has emerged. We review the mechanism of reduced dependence on BCL-2 mediated by the upregulation of antiapoptotic proteins other than BCL-2, such as MCL-1 and BCL-XL, which is the primary mechanism of venetoclax resistance, and find that this mechanism is achieved through different pathways in different hematologic diseases. Additionally, this paper also summarizes the current investigations of the mechanisms of venetoclax resistance in terms of altered cellular metabolism, changes in the mitochondrial structure, altered or modified BCL-2 binding domains, and some other aspects; this article also reviews relevant strategies to address these resistance mechanisms.
Collapse
Affiliation(s)
- Jiachen Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yidong Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lihua Yu
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lihua Yang
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Bonneaud TL, Lefebvre CC, Nocquet L, Basseville A, Roul J, Weber H, Campone M, Juin PP, Souazé F. Targeting of MCL-1 in breast cancer-associated fibroblasts reverses their myofibroblastic phenotype and pro-invasive properties. Cell Death Dis 2022; 13:787. [PMID: 36104324 PMCID: PMC9474880 DOI: 10.1038/s41419-022-05214-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 01/21/2023]
Abstract
Cancer-associated fibroblasts (CAF) are a major cellular component of epithelial tumors. In breast cancers in particular these stromal cells have numerous tumorigenic effects in part due to their acquisition of a myofibroblastic phenotype. Breast CAFs (bCAFs) typically express MCL-1. We show here that pharmacological inhibition or knock down of this regulator of mitochondrial integrity in primary bCAFs directly derived from human samples mitigates myofibroblastic features. This decreases expression of genes involved in actomyosin organization and contractility (associated with a cytoplasmic retention of the transcriptional regulator, yes-associated protein-YAP) and decreases bCAFs ability to promote cancer cells invasion in 3D coculture assays. Our findings underscore the usefulness of targeting MCL-1 in breast cancer ecosystems, not only to favor death of cancer cells but also to counteract the tumorigenic activation of fibroblasts with which they co-evolve. Mechanistically, pharmacological inhibition of MCL-1 with a specific BH3 mimetic promotes mitochondrial fragmentation in bCAFs. Inhibition of the mitochondrial fission activity of DRP-1, which interacts with MCL-1 upon BH3 mimetic treatment, allows the maintenance of the myofibroblastic phenotype of bCAFs.
Collapse
Affiliation(s)
- Thomas L. Bonneaud
- grid.4817.a0000 0001 2189 0784Université de Nantes, INSERM, CNRS, CRCI2NA, 44000 Nantes, France ,SIRIC ILIAD, Nantes, Angers, France
| | - Chloé C. Lefebvre
- grid.4817.a0000 0001 2189 0784Université de Nantes, INSERM, CNRS, CRCI2NA, 44000 Nantes, France ,SIRIC ILIAD, Nantes, Angers, France
| | - Lisa Nocquet
- grid.4817.a0000 0001 2189 0784Université de Nantes, INSERM, CNRS, CRCI2NA, 44000 Nantes, France ,SIRIC ILIAD, Nantes, Angers, France
| | - Agnes Basseville
- grid.418191.40000 0000 9437 3027Omics Data Science Unit, ICO, Angers, France
| | - Julie Roul
- grid.4817.a0000 0001 2189 0784Université de Nantes, INSERM, CNRS, CRCI2NA, 44000 Nantes, France ,SIRIC ILIAD, Nantes, Angers, France ,ICO René Gauducheau, Saint Herblain, France
| | - Hugo Weber
- grid.4817.a0000 0001 2189 0784Université de Nantes, INSERM, CNRS, CRCI2NA, 44000 Nantes, France ,SIRIC ILIAD, Nantes, Angers, France
| | - Mario Campone
- grid.4817.a0000 0001 2189 0784Université de Nantes, INSERM, CNRS, CRCI2NA, 44000 Nantes, France ,SIRIC ILIAD, Nantes, Angers, France ,ICO René Gauducheau, Saint Herblain, France
| | - Philippe P. Juin
- grid.4817.a0000 0001 2189 0784Université de Nantes, INSERM, CNRS, CRCI2NA, 44000 Nantes, France ,SIRIC ILIAD, Nantes, Angers, France ,ICO René Gauducheau, Saint Herblain, France
| | - Frédérique Souazé
- grid.4817.a0000 0001 2189 0784Université de Nantes, INSERM, CNRS, CRCI2NA, 44000 Nantes, France ,SIRIC ILIAD, Nantes, Angers, France
| |
Collapse
|
8
|
Schwestermann J, Besse A, Driessen C, Besse L. Contribution of the Tumor Microenvironment to Metabolic Changes Triggering Resistance of Multiple Myeloma to Proteasome Inhibitors. Front Oncol 2022; 12:899272. [PMID: 35692781 PMCID: PMC9178120 DOI: 10.3389/fonc.2022.899272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Virtually all patients with multiple myeloma become unresponsive to treatment with proteasome inhibitors over time. Relapsed/refractory multiple myeloma is accompanied by the clonal evolution of myeloma cells with heterogeneous genomic aberrations, diverse proteomic and metabolic alterations, and profound changes of the bone marrow microenvironment. However, the molecular mechanisms that drive resistance to proteasome inhibitors within the context of the bone marrow microenvironment remain elusive. In this review article, we summarize the latest knowledge about the complex interaction of malignant plasma cells with its surrounding microenvironment. We discuss the pivotal role of metabolic reprograming of malignant plasma cells within the tumor microenvironment with a subsequent focus on metabolic rewiring in plasma cells upon treatment with proteasome inhibitors, driving multiple ways of adaptation to the treatment. At the same time, mutual interaction of plasma cells with the surrounding tumor microenvironment drives multiple metabolic alterations in the bone marrow. This provides a tumor-promoting environment, but at the same time may offer novel therapeutic options for the treatment of relapsed/refractory myeloma patients.
Collapse
Affiliation(s)
| | | | | | - Lenka Besse
- Laboratory of Experimental Oncology, Clinics for Medical Hematology and Oncology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
9
|
Luo Y, Jiang Q, Zhu Z, Sattar H, Wu J, Huang W, Su S, Liang Y, Wang P, Meng X. Phosphoproteomics and Proteomics Reveal Metabolism as a Key Node in LPS-Induced Acute Inflammation in RAW264.7. Inflammation 2021; 43:1667-1679. [PMID: 32488682 DOI: 10.1007/s10753-020-01240-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To better understand the acute inflammatory mechanisms, the modulation, and to investigate the key node in predicting inflammatory diseases, high-sensitivity LC-MS/MS-based proteomics and phosphoproteomics approaches were used to identify differential proteins in RAW264.7 macrophages with lipopolysaccharide (LPS). Furthermore, differential proteins and their main biological process, as well as signaling pathways, were analyzed through bioinformatics techniques. The biological process comparison revealed 219 differential proteins and 405 differential phosphorylation proteins, including major regulatory factors of metabolism (PFKL, PGK1, GYS1, ACC, HSL, LDHA, RAB14, PRKAA1), inflammatory signaling transduction (IKKs, NF-κB, IRAK, IKBkb, PI3K, AKT), and apoptosis (MCL-1, BID, NOXA, SQSTM1). Label-free proteome demonstrated canonical inflammation signaling pathways such as the TNF signaling pathway, NF-κB signaling pathway, and NOD-like receptor signaling pathway. Meanwhile, phosphoproteome revealed new areas of acute inflammation. Phosphoproteomics profiled that glycolysis was enhanced and lipid synthesis was increased. Overall, the AMPK signaling pathway is the key regulatory part in macrophages. These revealed that the early initiation phase of acute inflammation primarily regulated the phosphoproteins of glucose metabolic pathway and lipid synthesis to generate energy and molecules, along with the enhancement of pro-inflammatory factors, and further induced apoptosis. Phosphoproteomics provides new evidence for a complex network of specific but synergistically acting mechanisms confirming that metabolism has a key role in acute inflammation.
Collapse
Affiliation(s)
- Yu Luo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Qing Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Zhengwen Zhu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Haseeb Sattar
- International School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Jiasi Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Wenge Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Siyu Su
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Yusheng Liang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Ping Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.
| | - Xianli Meng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.
| |
Collapse
|
10
|
Wang H, Guo M, Wei H, Chen Y. Targeting MCL-1 in cancer: current status and perspectives. J Hematol Oncol 2021; 14:67. [PMID: 33883020 PMCID: PMC8061042 DOI: 10.1186/s13045-021-01079-1] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Myeloid leukemia 1 (MCL-1) is an antiapoptotic protein of the BCL-2 family that prevents apoptosis by binding to the pro-apoptotic BCL-2 proteins. Overexpression of MCL-1 is frequently observed in many tumor types and is closely associated with tumorigenesis, poor prognosis and drug resistance. The central role of MCL-1 in regulating the mitochondrial apoptotic pathway makes it an attractive target for cancer therapy. Significant progress has been made with regard to MCL-1 inhibitors, some of which have entered clinical trials. Here, we discuss the mechanism by which MCL-1 regulates cancer cell apoptosis and review the progress related to MCL-1 small molecule inhibitors and their role in cancer therapy.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
11
|
Algarín EM, Quwaider D, Campos-Laborie FJ, Díaz-Tejedor A, Mogollón P, Vuelta E, Martín-Sánchez M, San-Segundo L, González-Méndez L, Gutiérrez NC, García-Sanz R, Paíno T, De Las Rivas J, Ocio EM, Garayoa M. Stroma-Mediated Resistance to S63845 and Venetoclax through MCL-1 and BCL-2 Expression Changes Induced by miR-193b-3p and miR-21-5p Dysregulation in Multiple Myeloma. Cells 2021; 10:cells10030559. [PMID: 33806619 PMCID: PMC8001939 DOI: 10.3390/cells10030559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 12/18/2022] Open
Abstract
BH3-mimetics targeting anti-apoptotic proteins such as MCL-1 (S63845) or BCL-2 (venetoclax) are currently being evaluated as effective therapies for the treatment of multiple myeloma (MM). Interleukin 6, produced by mesenchymal stromal cells (MSCs), has been shown to modify the expression of anti-apoptotic proteins and their interaction with the pro-apoptotic BIM protein in MM cells. In this study, we assess the efficacy of S63845 and venetoclax in MM cells in direct co-culture with MSCs derived from MM patients (pMSCs) to identify additional mechanisms involved in the stroma-induced resistance to these agents. MicroRNAs miR-193b-3p and miR-21-5p emerged among the top deregulated miRNAs in myeloma cells when directly co-cultured with pMSCs, and we show their contribution to changes in MCL-1 and BCL-2 protein expression and in the activity of S63845 and venetoclax. Additionally, direct contact with pMSCs under S63845 and/or venetoclax treatment modifies myeloma cell dependence on different BCL-2 family anti-apoptotic proteins in relation to BIM, making myeloma cells more dependent on the non-targeted anti-apoptotic protein or BCL-XL. Finally, we show a potent effect of the combination of S63845 and venetoclax even in the presence of pMSCs, which supports this combinatorial approach for the treatment of MM.
Collapse
Affiliation(s)
- Esperanza M. Algarín
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (E.M.A.); (D.Q.); (A.D.-T.); (P.M.); (E.V.); (M.M.-S.); (L.S.-S.); (L.G.-M.); (N.C.G.); (R.G.-S.); (T.P.)
| | - Dalia Quwaider
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (E.M.A.); (D.Q.); (A.D.-T.); (P.M.); (E.V.); (M.M.-S.); (L.S.-S.); (L.G.-M.); (N.C.G.); (R.G.-S.); (T.P.)
| | - Francisco J. Campos-Laborie
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CIC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL) and Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (F.J.C.-L.); (J.D.L.R.)
- The Gurdon Institute (Wellcome Trust/Cancer Research UK), University of Cambridge, Cambridge CB2 1QN, UK
| | - Andrea Díaz-Tejedor
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (E.M.A.); (D.Q.); (A.D.-T.); (P.M.); (E.V.); (M.M.-S.); (L.S.-S.); (L.G.-M.); (N.C.G.); (R.G.-S.); (T.P.)
| | - Pedro Mogollón
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (E.M.A.); (D.Q.); (A.D.-T.); (P.M.); (E.V.); (M.M.-S.); (L.S.-S.); (L.G.-M.); (N.C.G.); (R.G.-S.); (T.P.)
| | - Elena Vuelta
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (E.M.A.); (D.Q.); (A.D.-T.); (P.M.); (E.V.); (M.M.-S.); (L.S.-S.); (L.G.-M.); (N.C.G.); (R.G.-S.); (T.P.)
| | - Montserrat Martín-Sánchez
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (E.M.A.); (D.Q.); (A.D.-T.); (P.M.); (E.V.); (M.M.-S.); (L.S.-S.); (L.G.-M.); (N.C.G.); (R.G.-S.); (T.P.)
| | - Laura San-Segundo
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (E.M.A.); (D.Q.); (A.D.-T.); (P.M.); (E.V.); (M.M.-S.); (L.S.-S.); (L.G.-M.); (N.C.G.); (R.G.-S.); (T.P.)
| | - Lorena González-Méndez
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (E.M.A.); (D.Q.); (A.D.-T.); (P.M.); (E.V.); (M.M.-S.); (L.S.-S.); (L.G.-M.); (N.C.G.); (R.G.-S.); (T.P.)
| | - Norma C. Gutiérrez
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (E.M.A.); (D.Q.); (A.D.-T.); (P.M.); (E.V.); (M.M.-S.); (L.S.-S.); (L.G.-M.); (N.C.G.); (R.G.-S.); (T.P.)
- Center for Biomedical Research in Network of Cancer (CIBERONC), 28029 Madrid, Spain
| | - Ramón García-Sanz
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (E.M.A.); (D.Q.); (A.D.-T.); (P.M.); (E.V.); (M.M.-S.); (L.S.-S.); (L.G.-M.); (N.C.G.); (R.G.-S.); (T.P.)
- Center for Biomedical Research in Network of Cancer (CIBERONC), 28029 Madrid, Spain
| | - Teresa Paíno
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (E.M.A.); (D.Q.); (A.D.-T.); (P.M.); (E.V.); (M.M.-S.); (L.S.-S.); (L.G.-M.); (N.C.G.); (R.G.-S.); (T.P.)
- Center for Biomedical Research in Network of Cancer (CIBERONC), 28029 Madrid, Spain
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CIC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL) and Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (F.J.C.-L.); (J.D.L.R.)
| | - Enrique M. Ocio
- University Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria, 39011 Santander, Spain;
| | - Mercedes Garayoa
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (E.M.A.); (D.Q.); (A.D.-T.); (P.M.); (E.V.); (M.M.-S.); (L.S.-S.); (L.G.-M.); (N.C.G.); (R.G.-S.); (T.P.)
- Correspondence: ; Tel.: +34-923-295812
| |
Collapse
|
12
|
Moser-Katz T, Joseph NS, Dhodapkar MV, Lee KP, Boise LH. Game of Bones: How Myeloma Manipulates Its Microenvironment. Front Oncol 2021; 10:625199. [PMID: 33634031 PMCID: PMC7900622 DOI: 10.3389/fonc.2020.625199] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma is a clonal disease of long-lived plasma cells and is the second most common hematological cancer behind Non-Hodgkin's Lymphoma. Malignant transformation of plasma cells imparts the ability to proliferate, causing harmful lesions in patients. In advanced stages myeloma cells become independent of their bone marrow microenvironment and form extramedullary disease. Plasma cells depend on a rich array of signals from neighboring cells within the bone marrow for survival which myeloma cells exploit for growth and proliferation. Recent evidence suggests, however, that both the myeloma cells and the microenvironment have undergone alterations as early as during precursor stages of the disease. There are no current therapies routinely used for treating myeloma in early stages, and while recent therapeutic efforts have improved patients' median survival, most will eventually relapse. This is due to mutations in myeloma cells that not only allow them to utilize its bone marrow niche but also facilitate autocrine pro-survival signaling loops for further progression. This review will discuss the stages of myeloma cell progression and how myeloma cells progress within and outside of the bone marrow microenvironment.
Collapse
Affiliation(s)
- Tyler Moser-Katz
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Nisha S. Joseph
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Madhav V. Dhodapkar
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Kelvin P. Lee
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Lawrence H. Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| |
Collapse
|
13
|
Haselager MV, Kielbassa K, Ter Burg J, Bax DJC, Fernandes SM, Borst J, Tam C, Forconi F, Chiodin G, Brown JR, Dubois J, Kater AP, Eldering E. Changes in Bcl-2 members after ibrutinib or venetoclax uncover functional hierarchy in determining resistance to venetoclax in CLL. Blood 2020; 136:2918-2926. [PMID: 32603412 DOI: 10.1182/blood.2019004326] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells cycle between lymph node (LN) and peripheral blood (PB) and display major shifts in Bcl-2 family members between those compartments. Specifically, Bcl-XL and Mcl-1, which are not targeted by the Bcl-2 inhibitor venetoclax, are increased in the LN. Because ibrutinib forces CLL cells out of the LN, we hypothesized that ibrutinib may thereby affect expression of Bcl-XL and Mcl-1 and sensitize CLL cells to venetoclax. We investigated expression of Bcl-2 family members in patients under ibrutinib or venetoclax treatment, combined with dissecting functional interactions of Bcl-2 family members, in an in vitro model of venetoclax resistance. In the PB, recent LN emigrants had higher Bcl-XL and Mcl-1 expression than did cells immigrating back to the LN. Under ibrutinib treatment, this distinction collapsed; significantly, the pretreatment profile reappeared in patients who relapsed on ibrutinib. However, in response to venetoclax, Bcl-2 members displayed an early increase, underlining the different modes of action of these 2 drugs. Profiling by BH3 mimetics was performed in CLL cells fully resistant to venetoclax due to CD40-mediated induction of Bcl-XL, Mcl-1, and Bfl-1. Several dual or triple combinations of BH3 mimetics were highly synergistic in restoring killing of CLL cells. Lastly, we demonstrated that proapoptotic Bim interacts with antiapoptotic Bcl-2 members in a sequential manner: Bcl-2 > Bcl-XL > Mcl-1 > Bfl-1. Combined, the data indicate that Bcl-XL is more important in venetoclax resistance than is Mcl-1 and provide biological rationale for potential synergy between ibrutinib and venetoclax.
Collapse
MESH Headings
- Adenine/administration & dosage
- Adenine/analogs & derivatives
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Drug Resistance, Neoplasm/drug effects
- Female
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Piperidines/administration & dosage
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- Sulfonamides/administration & dosage
Collapse
Affiliation(s)
- Marco V Haselager
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Karoline Kielbassa
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Johanna Ter Burg
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Danique J C Bax
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Stacey M Fernandes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jannie Borst
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Constantine Tam
- Peter MacCallum Cancer Centre and St. Vincent's Hospital, University of Melbourne, Melbourne, VIC, Australia; and
| | - Francesco Forconi
- Cancer Sciences and Haematology Department, University of Southampton, Southampton, United Kingdom
| | - Giorgia Chiodin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jennifer R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Julie Dubois
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Arnon P Kater
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Arai S, Varkaris A, Nouri M, Chen S, Xie L, Balk SP. MARCH5 mediates NOXA-dependent MCL1 degradation driven by kinase inhibitors and integrated stress response activation. eLife 2020; 9:54954. [PMID: 32484436 PMCID: PMC7297531 DOI: 10.7554/elife.54954] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
MCL1 has critical antiapoptotic functions and its levels are tightly regulated by ubiquitylation and degradation, but mechanisms that drive this degradation, particularly in solid tumors, remain to be established. We show here in prostate cancer cells that increased NOXA, mediated by kinase inhibitor activation of an integrated stress response, drives the degradation of MCL1, and identify the mitochondria-associated ubiquitin ligase MARCH5 as the primary mediator of this NOXA-dependent MCL1 degradation. Therapies that enhance MARCH5-mediated MCL1 degradation markedly enhance apoptosis in response to a BH3 mimetic agent targeting BCLXL, which may provide for a broadly effective therapy in solid tumors. Conversely, increased MCL1 in response to MARCH5 loss does not strongly sensitize to BH3 mimetic drugs targeting MCL1, but instead also sensitizes to BCLXL inhibition, revealing a codependence between MARCH5 and MCL1 that may also be exploited in tumors with MARCH5 genomic loss.
Collapse
Affiliation(s)
- Seiji Arai
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States.,Department of Urology, Gunma University Hospital, Maebashi, Japan
| | - Andreas Varkaris
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
| | - Mannan Nouri
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
| | - Sen Chen
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
| | - Lisha Xie
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
| | - Steven P Balk
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
| |
Collapse
|
15
|
A miRaculous new therapy in myeloma? Blood 2018; 132:983-985. [DOI: 10.1182/blood-2018-07-864207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|