1
|
Koyama T, Iso N, Norizoe Y, Sakaue T, Yoshimura SH. Charge block-driven liquid-liquid phase separation - mechanism and biological roles. J Cell Sci 2024; 137:jcs261394. [PMID: 38855848 DOI: 10.1242/jcs.261394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) has increasingly been found to play pivotal roles in a number of intracellular events and reactions, and has introduced a new paradigm in cell biology to explain protein-protein and enzyme-ligand interactions beyond conventional molecular and biochemical theories. LLPS is driven by the cumulative effects of weak and promiscuous interactions, including electrostatic, hydrophobic and cation-π interactions, among polypeptides containing intrinsically disordered regions (IDRs) and describes the macroscopic behaviours of IDR-containing proteins in an intracellular milieu. Recent studies have revealed that interactions between 'charge blocks' - clusters of like charges along the polypeptide chain - strongly induce LLPS and play fundamental roles in its spatiotemporal regulation. Introducing a new parameter, termed 'charge blockiness', into physicochemical models of disordered polypeptides has yielded a better understanding of how the intrinsic amino acid sequence of a polypeptide determines the spatiotemporal occurrence of LLPS within a cell. Charge blockiness might also explain why some post-translational modifications segregate within IDRs and how they regulate LLPS. In this Review, we summarise recent progress towards understanding the mechanism and biological roles of charge block-driven LLPS and discuss how this new characteristic parameter of polypeptides offers new possibilities in the fields of structural biology and cell biology.
Collapse
Affiliation(s)
- Tetsu Koyama
- Department of Physical Sciences, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Naoki Iso
- Department of Physical Sciences, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Yuki Norizoe
- Department of Physical Sciences, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Takahiro Sakaue
- Department of Physical Sciences, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Shige H Yoshimura
- Graduate School of Biostudies , Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto, 606-8501, Japan
- Center for Living Systems Information Science (CeLiSIS) , Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
2
|
Waudby CA, Alvarez-Teijeiro S, Josue Ruiz E, Suppinger S, Pinotsis N, Brown PR, Behrens A, Christodoulou J, Mylona A. An intrinsic temporal order of c-JUN N-terminal phosphorylation regulates its activity by orchestrating co-factor recruitment. Nat Commun 2022; 13:6133. [PMID: 36253406 PMCID: PMC9576782 DOI: 10.1038/s41467-022-33866-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
Protein phosphorylation is a major regulatory mechanism of cellular signalling. The c-JUN proto-oncoprotein is phosphorylated at four residues within its transactivation domain (TAD) by the JNK family kinases, but the functional significance of c-JUN multisite phosphorylation has remained elusive. Here we show that c-JUN phosphorylation by JNK exhibits defined temporal kinetics, with serine63 and serine73 being phosphorylated more rapidly than threonine91 and threonine93. We identify the positioning of the phosphorylation sites relative to the kinase docking motif, and their primary sequence, as the main factors controlling phosphorylation kinetics. Functional analysis reveals three c-JUN phosphorylation states: unphosphorylated c-JUN recruits the MBD3 repressor, serine63/73 doubly-phosphorylated c-JUN binds to the TCF4 co-activator, whereas the fully phosphorylated form disfavours TCF4 binding attenuating JNK signalling. Thus, c-JUN phosphorylation encodes multiple functional states that drive a complex signalling response from a single JNK input.
Collapse
Affiliation(s)
- Christopher A Waudby
- Institute of Structural and Molecular Biology, University College London, London, UK
- School of Pharmacy, University College London, London, UK
| | - Saul Alvarez-Teijeiro
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - E Josue Ruiz
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK
| | - Simon Suppinger
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
| | - Paul R Brown
- Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College, London, UK
| | - Axel Behrens
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK
- Division of Cancer, Department of Surgery and Cancer, Imperial College, London, UK
- CR-UK Convergence Science Centre, Imperial College, London, SW7 2BU, UK
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London, London, UK.
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK.
| | - Anastasia Mylona
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK.
- Division of Cancer, Department of Surgery and Cancer, Imperial College, London, UK.
| |
Collapse
|