1
|
Eynard SE, Klopp C, Canale-Tabet K, Marande W, Vandecasteele C, Roques C, Donnadieu C, Boone Q, Servin B, Vignal A. The black honey bee genome: insights on specific structural elements and a first step towards pangenomes. Genet Sel Evol 2024; 56:51. [PMID: 38943059 PMCID: PMC11212449 DOI: 10.1186/s12711-024-00917-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 06/04/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND The honey bee reference genome, HAv3.1, was produced from a commercial line sample that was thought to have a largely dominant Apis mellifera ligustica genetic background. Apis mellifera mellifera, often referred to as the black bee, has a separate evolutionary history and is the original type in western and northern Europe. Growing interest in this subspecies for conservation and non-professional apicultural practices, together with the necessity of deciphering genome backgrounds in hybrids, triggered the necessity for a specific genome assembly. Moreover, having several high-quality genomes is becoming key for taking structural variations into account in pangenome analyses. RESULTS Pacific Bioscience technology long reads were produced from a single haploid black bee drone. Scaffolding contigs into chromosomes was done using a high-density genetic map. This allowed for re-estimation of the recombination rate, which was over-estimated in some previous studies due to mis-assemblies, which resulted in spurious inversions in the older reference genomes. The sequence continuity obtained was very high and the only limit towards continuous chromosome-wide sequences seemed to be due to tandem repeat arrays that were usually longer than 10 kb and that belonged to two main families, the 371 and 91 bp repeats, causing problems in the assembly process due to high internal sequence similarity. Our assembly was used together with the reference genome to genotype two structural variants by a pangenome graph approach with Graphtyper2. Genotypes obtained were either correct or missing, when compared to an approach based on sequencing depth analysis, and genotyping rates were 89 and 76% for the two variants. CONCLUSIONS Our new assembly for the Apis mellifera mellifera honey bee subspecies demonstrates the utility of multiple high-quality genomes for the genotyping of structural variants, with a test case on two insertions and deletions. It will therefore be an invaluable resource for future studies, for instance by including structural variants in GWAS. Having used a single haploid drone for sequencing allowed a refined analysis of very large tandem repeat arrays, raising the question of their function in the genome. High quality genome assemblies for multiple subspecies such as presented here, are crucial for emerging projects using pangenomes.
Collapse
Affiliation(s)
- Sonia E Eynard
- GenPhySE, Université de Toulouse, INRAE, INPT, INP-ENVT, Castanet Tolosan, France
| | | | - Kamila Canale-Tabet
- GenPhySE, Université de Toulouse, INRAE, INPT, INP-ENVT, Castanet Tolosan, France
| | | | | | - Céline Roques
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | | | - Quentin Boone
- GenPhySE, Université de Toulouse, INRAE, INPT, INP-ENVT, Castanet Tolosan, France
- Sigenae, MIAT, INRAE, Castanet Tolosan, France
| | - Bertrand Servin
- GenPhySE, Université de Toulouse, INRAE, INPT, INP-ENVT, Castanet Tolosan, France
| | - Alain Vignal
- GenPhySE, Université de Toulouse, INRAE, INPT, INP-ENVT, Castanet Tolosan, France.
| |
Collapse
|
2
|
Le ZJ, Ma LX, Zhou YF, Xu KK, Li C, Yang WJ. Functional analysis of nuclear receptor genes in molting and metamorphosis of the cigarette beetle, Lasioderma serricorne. Int J Biol Macromol 2024; 270:132459. [PMID: 38763254 DOI: 10.1016/j.ijbiomac.2024.132459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Nuclear receptors (NRs) are ligand-regulated transcription factors that are important for the normal growth and development of insects. However, systematic function analysis of NRs in the molting process of Lasioderma serricorne has not been reported. In this study, we identified and characterized 16 NR genes from L. serricorne. Spatiotemporal expression analysis revealed that six NRs were mainly expressed in 3-d-old 4th-instar larvae; five NRs were primarily expressed in 5-d-old adults and four NRs were predominately expressed in prepupae. All the NRs were highly expressed in epidermis, fat body and foregut. RNA interference (RNAi) experiments revealed that knockdown of 15 NRs disrupted the larva-pupa-adult transitions and caused 64.44-100 % mortality. Hematoxylin-eosin staining showed that depletion of 12 NRs prevented the formation of new cuticle and disrupted apolysis of old cuticle. Silencing of LsHR96, LsSVP and LsE78 led to newly formed cuticle that was thinner than the controls. The 20E titer and chitin content significantly decreased by 17.67-95.12 % after 15 NR dsRNA injection and the gene expression levels of 20E synthesis genes and chitin metabolism genes were significantly reduced. These results demonstrated that 15 NR genes are essential for normal molting and metamorphosis of L. serricorne by regulating 20E synthesis and chitin metabolism.
Collapse
Affiliation(s)
- Zhi-Jun Le
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Li-Xin Ma
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Yang-Fan Zhou
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Kang-Kang Xu
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Can Li
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Wen-Jia Yang
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China.
| |
Collapse
|
3
|
Blackburn GS, Keeling CI, Prunier J, Keena MA, Béliveau C, Hamelin R, Havill NP, Hebert FO, Levesque RC, Cusson M, Porth I. Genetics of flight in spongy moths (Lymantria dispar ssp.): functionally integrated profiling of a complex invasive trait. BMC Genomics 2024; 25:541. [PMID: 38822259 PMCID: PMC11140922 DOI: 10.1186/s12864-023-09936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 12/22/2023] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Flight can drastically enhance dispersal capacity and is a key trait defining the potential of exotic insect species to spread and invade new habitats. The phytophagous European spongy moths (ESM, Lymantria dispar dispar) and Asian spongy moths (ASM; a multi-species group represented here by L. d. asiatica and L. d. japonica), are globally invasive species that vary in adult female flight capability-female ASM are typically flight capable, whereas female ESM are typically flightless. Genetic markers of flight capability would supply a powerful tool for flight profiling of these species at any intercepted life stage. To assess the functional complexity of spongy moth flight and to identify potential markers of flight capability, we used multiple genetic approaches aimed at capturing complementary signals of putative flight-relevant genetic divergence between ESM and ASM: reduced representation genome-wide association studies, whole genome sequence comparisons, and developmental transcriptomics. We then judged the candidacy of flight-associated genes through functional analyses aimed at addressing the proximate demands of flight and salient features of the ecological context of spongy moth flight evolution. RESULTS Candidate gene sets were typically non-overlapping across different genetic approaches, with only nine gene annotations shared between any pair of approaches. We detected an array of flight-relevant functional themes across gene sets that collectively suggest divergence in flight capability between European and Asian spongy moth lineages has coincided with evolutionary differentiation in multiple aspects of flight development, execution, and surrounding life history. Overall, our results indicate that spongy moth flight evolution has shaped or been influenced by a large and functionally broad network of traits. CONCLUSIONS Our study identified a suite of flight-associated genes in spongy moths suited to exploration of the genetic architecture and evolution of flight, or validation for flight profiling purposes. This work illustrates how complementary genetic approaches combined with phenotypically targeted functional analyses can help to characterize genetically complex traits.
Collapse
Affiliation(s)
- Gwylim S Blackburn
- Natural Resources Canada, Pacific Forestry Centre, Canadian Forest Service, 506 Burnside Road West, Victoria, BC, V8Z 1M5, Canada.
- Natural Resources Canada, Laurentian Forestry Centre, Canadian Forest Service, 1055 Rue du PEPS, Quebec City, Québec, G1V 4C7, Canada.
- Department of Wood and Forest Sciences, Laval University, 1030 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada.
| | - Christopher I Keeling
- Natural Resources Canada, Laurentian Forestry Centre, Canadian Forest Service, 1055 Rue du PEPS, Quebec City, Québec, G1V 4C7, Canada
- Department of Biochemistry, Microbiology, and Bioinformatics, Laval University, Québec, QC, G1V 0A6, Canada
| | - Julien Prunier
- Department of Wood and Forest Sciences, Laval University, 1030 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada
- Institute of Integrative Biology and Systems, Laval University, Québec, QC, Canada
| | - Melody A Keena
- United States Department of Agriculture, Northern Research Station, Forest Service, 51 Mill Pond Road, Hamden, CT, 06514, USA
| | - Catherine Béliveau
- Natural Resources Canada, Laurentian Forestry Centre, Canadian Forest Service, 1055 Rue du PEPS, Quebec City, Québec, G1V 4C7, Canada
| | - Richard Hamelin
- Forest Sciences Centre, University of British Columbia, 2424 Main Mall, Vancouver, BC, 3032V6T 1Z4, Canada
| | - Nathan P Havill
- United States Department of Agriculture, Northern Research Station, Forest Service, 51 Mill Pond Road, Hamden, CT, 06514, USA
| | | | - Roger C Levesque
- Institute of Integrative Biology and Systems, Laval University, Québec, QC, Canada
| | - Michel Cusson
- Natural Resources Canada, Laurentian Forestry Centre, Canadian Forest Service, 1055 Rue du PEPS, Quebec City, Québec, G1V 4C7, Canada
- Department of Biochemistry, Microbiology, and Bioinformatics, Laval University, Québec, QC, G1V 0A6, Canada
| | - Ilga Porth
- Department of Wood and Forest Sciences, Laval University, 1030 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada
- Institute of Integrative Biology and Systems, Laval University, Québec, QC, Canada
- Centre for Forest Research, Laval University, 2405 Rue de La Terrasse, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
4
|
Xu X, Pu S, Jiang M, Hu X, Wang Q, Yu J, Chu J, Wei G, Wang L. Knockout of nuclear receptor HR38 gene impairs pupal-adult development in silkworm Bombyx mori. INSECT MOLECULAR BIOLOGY 2024; 33:29-40. [PMID: 37738573 DOI: 10.1111/imb.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/30/2023] [Indexed: 09/24/2023]
Abstract
Nuclear receptors are ligand-regulated transcription factors that play important role in regulating insect metamorphosis through the ecdysone signalling pathway. In this study, we investigated the nuclear receptor HR38 gene in Bombyx mori (BmHR38), belonging to the NR4A subfamily. BmHR38 mRNA was highly expressed in the head and epidermis at the pupal stage. The expression of the BmHR38 gene was influenced by different doses of 20E at different times. A BmHR38 deletion mutant silkworm was generated using the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system. Compared with the wild-type B. mori, the BmHR38 deletion mutant resulted in abnormal development during the pupal stage, leading to either failed eclosion or the formation of abnormal adult wings. After silencing of BmHR38 in the pupal stage, the phenotype of pupa or moth had no significant change, but it did result in reduced egg production. The mRNA levels of USP, E75 and E74 were significantly increased, while the transcript levels of FTZ-F1 were suppressed after RNA interference. Furthermore, interference with BmHR38 also inhibited the expressions of chitin metabolism genes, including Chs1, Chs2, Chi, Chi-h and CDA. Our results suggest that BmHR38 is essential for pupal development and pupa-adult metamorphosis in B. mori by regulating the expression of NRs and chitin metabolism genes.
Collapse
Affiliation(s)
- Xinyue Xu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Shangkun Pu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Mouzhen Jiang
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xiaoxuan Hu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Qing Wang
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jun Yu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jianghong Chu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Guoqing Wei
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Lei Wang
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
5
|
Aguilar P, Bourgeois T, Maria A, Couzi P, Demondion E, Bozzolan F, Gassias E, Force E, Debernard S. Methoprene-tolerant and Krüppel homolog 1 are actors of juvenile hormone-signaling controlling the development of male sexual behavior in the moth Agrotis ipsilon. Horm Behav 2023; 150:105330. [PMID: 36791650 DOI: 10.1016/j.yhbeh.2023.105330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
In insects, juvenile hormone (JH) is critical for the orchestration of male reproductive maturation. For instance, in the male moth, Agrotis ipsilon, the behavioral response and the neuronal sensitivity within the primary olfactory centers, the antennal lobes (ALs), to the female-emitted sex pheromone increase with fertility during adulthood and the coordination between these events is governed by JH. However, the molecular basis of JH action in the development of sexual behavior remains largely unknown. Here, we show that the expression of the paralogous JH receptors, Methoprene-tolerant 1 and 2 (Met1, Met2) and of the JH-inducible transcription factor, Krüppel homolog 1 (Kr-h1) within ALs raised from the third day of adult life and this dynamic is correlated with increased behavioral responsiveness to sex pheromone. Met1-, Met2- and Kr-h1-depleted sexually mature males exhibited altered sex pheromone-guided orientation flight. Moreover, injection of JH-II into young males enhanced the behavioral response to sex pheromone with increased AL Met1, Met2 and Kr-h1 mRNA levels. By contrast, JH deficiency suppressed the behavioral response to sex pheromone coupled with reduced AL Met1, Met2 and Kr-h1 mRNA levels in allatectomized old males and these inhibitions were compensated by an injection of JH-II in operated males. Our results demonstrated that JH acts through Met-Kr-h1 signaling pathway operating in ALs, to promote the pheromone information processing and consequently the display of sexual behavior in synchronization with fertility to optimize male reproductive fitness. Thus, this study provides insights into the molecular mechanisms underlying the hormonal regulation of reproductive behavior in insects.
Collapse
Affiliation(s)
- Paleo Aguilar
- Institute of Biology, University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Thomas Bourgeois
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Annick Maria
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Philippe Couzi
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Elodie Demondion
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Françoise Bozzolan
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Edmundo Gassias
- Institute of Biology, University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Evan Force
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Stéphane Debernard
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France.
| |
Collapse
|
6
|
Durand N, Aguilar P, Demondion E, Bourgeois T, Bozzolan F, Debernard S. Neuroligin 1 expression is linked to plasticity of behavioral and neuronal responses to sex pheromone in the male moth Agrotis ipsilon. J Exp Biol 2021; 224:273481. [PMID: 34647597 DOI: 10.1242/jeb.243184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022]
Abstract
In the moth Agrotis ipsilon, the behavioral response of males to the female-emitted sex pheromone increases throughout adult life and following a prior exposure to sex pheromone, whereas it is temporally inhibited after the onset of mating. This behavioral flexibility is paralleled with changes in neuronal sensitivity to pheromone signal within the primary olfactory centers, the antennal lobes. In the present study, we tested the hypothesis that neuroligins, post-synaptic transmembrane proteins known to act as mediators of neuronal remodeling, are involved in the olfactory modulation in A. ipsilon males. We cloned a full-length cDNA encoding neuroligin 1, which is expressed predominantly in brain and especially in antennal lobes. The level of neuroligin 1 expression in antennal lobes gradually raised from day-2 until day-4 of adult life, as well as at 24 h, 48 h and 72 h following pre-exposure to sex pheromone, and the temporal dynamic of these changes correlated with increased sex pheromone responsiveness. By contrast, there was no significant variation in antennal lobe neuroligin 1 expression during the post-mating refractory period. Taken together, these results highlight that age- and odor experience-related increase in sex pheromone responsiveness is linked to the overexpression of neuroligin 1 in antennal lobes, thus suggesting a potential role played by this post-synaptic cell-adhesion molecule in mediating the plasticity of the central olfactory system in A. ipsilon.
Collapse
Affiliation(s)
- Nicolas Durand
- FRE CNRS 3498, Ecologie et Dynamique des Systèmes Anthropisés, Université de Picardie, Jules Verne, 80039 Amiens, France
| | - Paleo Aguilar
- Institute of Biology, Complutense University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Elodie Demondion
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Thomas Bourgeois
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Françoise Bozzolan
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Stéphane Debernard
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| |
Collapse
|
7
|
Gassias E, Maria A, Couzi P, Demondion E, Durand N, Bozzolan F, Aguilar P, Debernard S. Involvement of Methoprene-tolerant and Krüppel homolog 1 in juvenile hormone-signaling regulating the maturation of male accessory glands in the moth Agrotis ipsilon. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 132:103566. [PMID: 33741430 DOI: 10.1016/j.ibmb.2021.103566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Male accessory glands (MAGs) produce seminal fluid proteins that are essential for the fertility and also influence the reproductive physiology and behavior of mated females. In many insect species, and especially in the moth Agrotis ipsilon, juvenile hormone (JH) promotes the maturation of the MAGs but the underlying molecular mechanisms in this hormonal regulation are not yet well identified. Here, we examined the role of the JH receptor, Methoprene-tolerant (Met) and the JH-inducible transcription factor, Krüppel homolog 1 (Kr-h1) in transmitting the JH signal that upregulates the growth and synthetic activity of the MAGs in A. ipsilon. We cloned two full length cDNAs encoding Met1 and Met2 which are co-expressed with Kr-h1 in the MAGs where their expression levels increase with age in parallel with the length and protein content of the MAGs. RNAi-mediated knockdown of either Met1, Met2, or Kr-h1 resulted in reduced MAG length and protein amount. Moreover, injection of JH-II into newly emerged adult males induced the transcription of Met1, Met2 and Kr-h1 associated to an increase in the length and protein content of the MAGs. By contrast, JH deficiency decreased Met1, Met2 and Kr-h1 mRNA levels as well as the length and protein reserves of the MAGs of allatectomized old males and these declines were partly compensated by a combined injection of JH-II in operated males. Taken together, our results highlighted an involvement of the JH-Met-Kr-h1 signaling pathway in the development and secretory activity of the MAGs in A. ipsilon.
Collapse
Affiliation(s)
- Edmundo Gassias
- Institute of Biology, University of Madrid, Pozuelo de Alarcon, 28223, Madrid, Spain
| | - Annick Maria
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005, Paris, France
| | - Philippe Couzi
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026, Versailles, France
| | - Elodie Demondion
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026, Versailles, France
| | - Nicolas Durand
- FRE CNRS 3498, Ecologie et Dynamique des Systèmes Anthropisés, Université de Picardie, Jules Verne, 80039 Amiens, France
| | - Françoise Bozzolan
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005, Paris, France
| | - Paleo Aguilar
- Institute of Biology, University of Madrid, Pozuelo de Alarcon, 28223, Madrid, Spain
| | - Stéphane Debernard
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005, Paris, France.
| |
Collapse
|
8
|
Park WR, Lim DJ, Sang H, Kim E, Moon JH, Choi HS, Kim IS, Kim DK. Aphid estrogen-related receptor controls glycolytic gene expression and fecundity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 130:103529. [PMID: 33485935 DOI: 10.1016/j.ibmb.2021.103529] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Aphids, the major insect pests of agricultural crops, reproduce sexually and asexually depending upon environmental factors such as the photoperiod and temperature. Nuclear receptors, a unique family of ligand-dependent transcription factors, control insect development and growth including morphogenesis, molting, and metamorphosis. However, the structural features and biological functions of the aphid estrogen-related receptor (ERR) are largely unknown. Here, we cloned full-length cDNA encoding the ERR in the green peach aphid, Myzus persicae, (Sulzer) (Hemiptera: Aphididae) (MpERR) and demonstrated that the MpERR modulated glycolytic gene expression and aphid fecundity. The phylogenetic analysis revealed that the MpERR originated in a unique evolutionary lineage distinct from those of hemipteran insects. Moreover, the AF-2 domain of the MpERR conferred nuclear localization and transcriptional activity. The overexpression of the MpERR significantly upregulated the gene expression of rate-limiting enzymes involved in glycolysis such as phosphofructokinase and pyruvate kinase by directly binding to ERR-response elements in their promoters. Moreover, ERR-deficient viviparous female aphids showed decreased glycolytic gene expression and produced fewer offspring. These results suggest that the aphid ERR plays a pivotal role in glycolytic transcriptional control and fecundity.
Collapse
Affiliation(s)
- Woo-Ram Park
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Da Jung Lim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Eunae Kim
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea.
| | - Jae-Hak Moon
- Department of Food Science and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - In Seon Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|