1
|
Wang ZQ, Yang Y, Zhang JY, Zeng X, Zhang CC. Global translational control by the transcriptional repressor TrcR in the filamentous cyanobacterium Anabaena sp. PCC 7120. Commun Biol 2023; 6:643. [PMID: 37322092 PMCID: PMC10272220 DOI: 10.1038/s42003-023-05012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023] Open
Abstract
Transcriptional and translational regulations are important mechanisms for cell adaptation to environmental conditions. In addition to house-keeping tRNAs, the genome of the filamentous cyanobacterium Anabaena sp. strain PCC 7120 (Anabaena) has a long tRNA operon (trn operon) consisting of 26 genes present on a megaplasmid. The trn operon is repressed under standard culture conditions, but is activated under translational stress in the presence of antibiotics targeting translation. Using the toxic amino acid analog β-N-methylamino-L-alanine (BMAA) as a tool, we isolated and characterized several BMAA-resistance mutants from Anabaena, and identified one gene of unknown function, all0854, named as trcR, encoding a transcription factor belonging to the ribbon-helix-helix (RHH) family. We provide evidence that TrcR represses the expression of the trn operon and is thus the missing link between the trn operon and translational stress response. TrcR represses the expression of several other genes involved in translational control, and is required for maintaining translational fidelity. TrcR, as well as its binding sites, are highly conserved in cyanobacteria, and its functions represent an important mechanism for the coupling of the transcriptional and translational regulations in cyanobacteria.
Collapse
Affiliation(s)
- Zi-Qian Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Yiling Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
| | - Ju-Yuan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
| | - Xiaoli Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
| | - Cheng-Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China.
- Institute AMU-WUT, Aix-Marseille Université and Wuhan University of Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Regulatory Landscape of the Pseudomonas aeruginosa Phosphoethanolamine Transferase Gene eptA in the Context of Colistin Resistance. Antibiotics (Basel) 2023; 12:antibiotics12020200. [PMID: 36830112 PMCID: PMC9952513 DOI: 10.3390/antibiotics12020200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Pseudomonas aeruginosa has the genetic potential to acquire colistin resistance through the modification of lipopolysaccharide by the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) or phosphoethanolamine (PEtN), mediated by the arn operon or the eptA gene, respectively. However, in vitro evolution experiments and genetic analysis of clinical isolates indicate that lipopolysaccharide modification with L-Ara4N is invariably preferred over PEtN addition as the colistin resistance mechanism in this bacterium. Since little is known about eptA regulation in P. aeruginosa, we generated luminescent derivatives of the reference strain P. aeruginosa PAO1 to monitor arn and eptA promoter activity. We performed transposon mutagenesis assays to compare the likelihood of acquiring mutations leading to arn or eptA induction and to identify eptA regulators. The analysis revealed that eptA was slightly induced under certain stress conditions, such as arginine or biotin depletion and accumulation of the signal molecule diadenosine tetraphosphate, but the induction did not confer colistin resistance. Moreover, we demonstrated that spontaneous mutations leading to colistin resistance invariably triggered arn rather than eptA expression, and that eptA was not induced in resistant mutants upon colistin exposure. Overall, these results suggest that the contribution of eptA to colistin resistance in P. aeruginosa may be limited by regulatory restraints.
Collapse
|
3
|
Kumar S, Behl T, Sehgal A, Chigurupati S, Singh S, Mani V, Aldubayan M, Alhowail A, Kaur S, Bhatia S, Al-Harrasi A, Subramaniyan V, Fuloria S, Fuloria NK, Sekar M, Abdel Daim MM. Exploring the focal role of LRRK2 kinase in Parkinson's disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32368-32382. [PMID: 35147886 DOI: 10.1007/s11356-022-19082-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The major breakthroughs in our knowledge of how biology plays a role in Parkinson's disease (PD) have opened up fresh avenues designed to know the pathogenesis of disease and identify possible therapeutic targets. Mitochondrial abnormal functioning is a key cellular feature in the pathogenesis of PD. An enzyme, leucine-rich repeat kinase 2 (LRRK2), involved in both the idiopathic and familial PD risk, is a therapeutic target. LRRK2 has a link to the endolysosomal activity. Enhanced activity of the LRRK2 kinase, endolysosomal abnormalities and aggregation of autophagic vesicles with imperfectly depleted substrates, such as α-synuclein, are all seen in the substantia nigra dopaminergic neurons in PD. Despite the fact that LRRK2 is involved in endolysosomal and autophagic activity, it is undefined if inhibiting LRRK2 kinase activity will prevent endolysosomal dysfunction or minimise the degeneration of dopaminergic neurons. The inhibitor's capability of LRRK2 kinase to inhibit endolysosomal and neuropathological alterations in human PD indicates that LRRK2 inhibitors could have significant therapeutic usefulness in PD. G2019S is perhaps the maximum common mutation in PD subjects. Even though LRRK2's well-defined structure has still not been established, numerous LRRK2 inhibitors have been discovered. This review summarises the role of LRRK2 kinase in Parkinson's disease.
Collapse
Affiliation(s)
- Sachin Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Maha Aldubayan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Ahmed Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Satvinder Kaur
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | | | - Shivkanya Fuloria
- Faculty of Pharmacy and Centre of Excellence for Biomaterials Engineering, AIMST University, Bedon, Kedah, Malaysia
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy and Centre of Excellence for Biomaterials Engineering, AIMST University, Bedon, Kedah, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistrty, Faculty of Pharmacy and Health Science, Universiti Kuala Lumpur, Royal College of Medicine Perak, Ipoh, Perak, Malaysia
| | - Mohamed M Abdel Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
4
|
Maksimova E, Kravchenko O, Korepanov A, Stolboushkina E. Protein Assistants of Small Ribosomal Subunit Biogenesis in Bacteria. Microorganisms 2022; 10:microorganisms10040747. [PMID: 35456798 PMCID: PMC9032327 DOI: 10.3390/microorganisms10040747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023] Open
Abstract
Ribosome biogenesis is a fundamental and multistage process. The basic steps of ribosome assembly are the transcription, processing, folding, and modification of rRNA; the translation, folding, and modification of r-proteins; and consecutive binding of ribosomal proteins to rRNAs. Ribosome maturation is facilitated by biogenesis factors that include a broad spectrum of proteins: GTPases, RNA helicases, endonucleases, modification enzymes, molecular chaperones, etc. The ribosome assembly factors assist proper rRNA folding and protein–RNA interactions and may sense the checkpoints during the assembly to ensure correct order of this process. Inactivation of these factors is accompanied by severe growth phenotypes and accumulation of immature ribosomal subunits containing unprocessed rRNA, which reduces overall translation efficiency and causes translational errors. In this review, we focus on the structural and biochemical analysis of the 30S ribosomal subunit assembly factors RbfA, YjeQ (RsgA), Era, KsgA (RsmA), RimJ, RimM, RimP, and Hfq, which take part in the decoding-center folding.
Collapse
Affiliation(s)
| | | | - Alexey Korepanov
- Correspondence: (A.K.); (E.S.); Tel.: +7-925-7180670 (A.K.); +7-915-4791359 (E.S.)
| | - Elena Stolboushkina
- Correspondence: (A.K.); (E.S.); Tel.: +7-925-7180670 (A.K.); +7-915-4791359 (E.S.)
| |
Collapse
|
5
|
Studying GGDEF Domain in the Act: Minimize Conformational Frustration to Prevent Artefacts. Life (Basel) 2021; 11:life11010031. [PMID: 33418960 PMCID: PMC7825114 DOI: 10.3390/life11010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 12/31/2022] Open
Abstract
GGDEF-containing proteins respond to different environmental cues to finely modulate cyclic diguanylate (c-di-GMP) levels in time and space, making the allosteric control a distinctive trait of the corresponding proteins. The diguanylate cyclase mechanism is emblematic of this control: two GGDEF domains, each binding one GTP molecule, must dimerize to enter catalysis and yield c-di-GMP. The need for dimerization makes the GGDEF domain an ideal conformational switch in multidomain proteins. A re-evaluation of the kinetic profile of previously characterized GGDEF domains indicated that they are also able to convert GTP to GMP: this unexpected reactivity occurs when conformational issues hamper the cyclase activity. These results create new questions regarding the characterization and engineering of these proteins for in solution or structural studies.
Collapse
|
6
|
Santorelli D, Rocchio S, Fata F, Silvestri I, Angelucci F, Imperi F, Marasco D, Diaferia C, Gigli L, Demitri N, Federici L, Di Matteo A, Travaglini-Allocatelli C. The folding and aggregation properties of a single KH-domain protein: Ribosome binding factor A (RbfA) from Pseudomonas aeruginosa. Biochim Biophys Acta Gen Subj 2020; 1865:129780. [PMID: 33157160 DOI: 10.1016/j.bbagen.2020.129780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/13/2020] [Accepted: 11/01/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Ribosome-binding factor A from the pathogenic bacterium Pseudomonas aeruginosa (PaRbfA) is a small ribosome assembly factor, composed by a single KH domain, involved in the maturation of the 30S subunit. These domains are characterized by the ability to bind RNA or ssDNA and are often located in proteins involved in a variety of cellular functions. However, although the ability of proteins to fold properly, to misfold or to aggregate is of paramount importance for their cellular functions, limited information is available on these dynamic properties in the case of KH domains. METHODS PaRbfA thermodynamic stability and folding mechanism: Far-UV CD and fluorescence spectroscopy, stopped-flow kinetics and chevron plot analysis, site-directed mutagenesis. Fibrils characterization: FT-IR spectroscopy, Thioflavin T fluorescence, Transmission Electron Microscopy (TEM) and X-ray fibrils diffraction. RESULTS Quantitative analysis of the (un)folding kinetics of PaRbfA show that, in vitro, the protein folds via a 3-states mechanism involving a transiently populated folding intermediate. We also provide experimental evidences that PaRbfA can form ordered fibrils endowed with cross-β structure even in mild conditions. CONCLUSION These results lead to the hypothesis that the folding intermediate of PaRbfA may expose (some of) the predicted amyloidogenic regions, which could act as aggregation nuclei in the fibrillogenesis. GENERAL SIGNIFICANCE The methodological approach presented herein could be readily adapted to verify the ability of other KH domain proteins to form cross-β structured fibrils and to transiently populate a folding intermediate.
Collapse
Affiliation(s)
- D Santorelli
- Department of Biochemical Sciences "A Rossi Fanelli" - Sapienza, University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - S Rocchio
- Department of Biochemical Sciences "A Rossi Fanelli" - Sapienza, University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biochemical Sciences "A Rossi Fanelli" - Sapienza, University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - F Fata
- Department of Health, Life and Environmental Sciences, University of L'Aquila, P.le Salvatore Tommasi 1, 76100 L'Aquila, Italy
| | - I Silvestri
- Department of Health, Life and Environmental Sciences, University of L'Aquila, P.le Salvatore Tommasi 1, 76100 L'Aquila, Italy
| | - F Angelucci
- Department of Health, Life and Environmental Sciences, University of L'Aquila, P.le Salvatore Tommasi 1, 76100 L'Aquila, Italy
| | - F Imperi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - D Marasco
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - C Diaferia
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - L Gigli
- Elettra - Sincrotrone Trieste, S.S. 14 Km 163.5, Area Science Park, 34149 Basovizza, Trieste, Italy
| | - N Demitri
- Elettra - Sincrotrone Trieste, S.S. 14 Km 163.5, Area Science Park, 34149 Basovizza, Trieste, Italy
| | - L Federici
- Department of Medical, Oral and Biotechnological Sciences and Center for Advanced Studies and Technology (CAST), University of Chieti "G. d'Annunzio", Via dei Vestini 31 - 66100, Chieti, Italy
| | - A Di Matteo
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biochemical Sciences "A Rossi Fanelli" - Sapienza, University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - C Travaglini-Allocatelli
- Department of Biochemical Sciences "A Rossi Fanelli" - Sapienza, University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
7
|
Lo Sciuto A, Cervoni M, Stefanelli R, Spinnato MC, Di Giamberardino A, Mancone C, Imperi F. Genetic Basis and Physiological Effects of Lipid A Hydroxylation in Pseudomonas aeruginosa PAO1. Pathogens 2019; 8:E291. [PMID: 31835493 PMCID: PMC6963906 DOI: 10.3390/pathogens8040291] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/03/2019] [Accepted: 12/08/2019] [Indexed: 01/09/2023] Open
Abstract
Modifications of the lipid A moiety of lipopolysaccharide influence the physicochemical properties of the outer membrane of Gram-negative bacteria. Some bacteria produce lipid A with a single hydroxylated secondary acyl chain. This hydroxylation is catalyzed by the dioxygenase LpxO, and is important for resistance to cationic antimicrobial peptides (e.g., polymyxins), survival in human blood, and pathogenicity in animal models. The lipid A of the human pathogen Pseudomonas aeruginosa can be hydroxylated in both secondary acyl chains, but the genetic basis and physiological role of these hydroxylations are still unknown. Through the generation of single and double deletion mutants in the lpxO1 and lpxO2 homologs of P. aeruginosa PAO1 and lipid A analysis by mass spectrometry, we demonstrate that both LpxO1 and LpxO2 are responsible for lipid A hydroxylation, likely acting on different secondary acyl chains. Lipid A hydroxylation does not appear to affect in vitro growth, cell wall stability, and resistance to human blood or antibiotics in P. aeruginosa. In contrast, it is required for infectivity in the Galleria mellonella infection model, without relevantly affecting in vivo persistence. Overall, these findings suggest a role for lipid A hydroxylation in P. aeruginosa virulence that could not be directly related to outer membrane integrity.
Collapse
Affiliation(s)
| | - Matteo Cervoni
- Department of Science, Roma Tre University, 00146 Roma, Italy (M.C.S.)
| | - Roberta Stefanelli
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, 00185 Roma, Italy;
| | | | | | - Carmine Mancone
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Roma, Italy; (A.D.G.); (C.M.)
| | - Francesco Imperi
- Department of Science, Roma Tre University, 00146 Roma, Italy (M.C.S.)
| |
Collapse
|
8
|
Bennison DJ, Irving SE, Corrigan RM. The Impact of the Stringent Response on TRAFAC GTPases and Prokaryotic Ribosome Assembly. Cells 2019; 8:cells8111313. [PMID: 31653044 PMCID: PMC6912228 DOI: 10.3390/cells8111313] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Many facets of ribosome biogenesis and function, including ribosomal RNA (rRNA) transcription, 70S assembly and protein translation, are negatively impacted upon induction of a nutrient stress-sensing signalling pathway termed the stringent response. This stress response is mediated by the alarmones guanosine tetra- and penta-phosphate ((p)ppGpp), the accumulation of which leads to a massive cellular response that slows growth and aids survival. The 70S bacterial ribosome is an intricate structure, with assembly both complex and highly modular. Presiding over the assembly process is a group of P-loop GTPases within the TRAFAC (Translation Factor Association) superclass that are crucial for correct positioning of both early and late stage ribosomal proteins (r-proteins) onto the rRNA. Often described as 'molecular switches', members of this GTPase superfamily readily bind and hydrolyse GTP to GDP in a cyclic manner that alters the propensity of the GTPase to carry out a function. TRAFAC GTPases are considered to act as checkpoints to ribosome assembly, involved in binding to immature sections in the GTP-bound state, preventing further r-protein association until maturation is complete. Here we review our current understanding of the impact of the stringent response and (p)ppGpp production on ribosome maturation in prokaryotic cells, focusing on the inhibition of (p)ppGpp on GTPase-mediated subunit assembly, but also touching upon the inhibition of rRNA transcription and protein translation.
Collapse
Affiliation(s)
- Daniel J Bennison
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| | - Sophie E Irving
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| | - Rebecca M Corrigan
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|