1
|
Kalaninová Z, Portašiková J, Jirečková B, Polák M, Nováková J, Kavan D, Novák P, Man P. Postproline Cleaving Enzymes also Show Specificity to Reduced Cysteine. Anal Chem 2024; 96:19084-19092. [PMID: 39560312 PMCID: PMC11618732 DOI: 10.1021/acs.analchem.4c04277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024]
Abstract
In proteomics, postproline cleaving enzymes (PPCEs), such as Aspergillus niger prolyl endopeptidase (AnPEP) and neprosin, complement proteolytic tools because proline is a stop site for many proteases. But while aiming at using AnPEP in online proteolysis, we found that this enzyme also displayed specificity to reduced cysteine. By LC-MS/MS, we systematically analyzed AnPEP sources and conditions that could affect this cleavage preference. Postcysteine cleavage was blocked by cysteine modifications, including disulfide bond formation, oxidation, and alkylation. The last modification explains why this activity has remained undetected so far. In the same experimental paradigm, neprosin mimicked this cleavage specificity. Based on these findings, PPCEs cleavage preferences should be redefined from post-Pro/Ala to post-Pro/Ala/Cys. Moreover, this evidence demands reconsidering PPCEs applications, whether cleaving Cys-rich proteins or assessing Cys status in proteins, and calls for revisiting the proposed enzymatic mechanism of these proteases.
Collapse
Affiliation(s)
- Zuzana Kalaninová
- Department
of Biochemistry, Faculty of Science, Charles
University, Hlavova 6, Prague 2 12843, Czechia
- Institute
of Microbiology of the Czech Academy of Sciences, BioCeV, Videnska 1083, Prague
4 14220, Czechia
| | - Jasmína
Mária Portašiková
- Department
of Biochemistry, Faculty of Science, Charles
University, Hlavova 6, Prague 2 12843, Czechia
- Institute
of Microbiology of the Czech Academy of Sciences, BioCeV, Videnska 1083, Prague
4 14220, Czechia
| | - Barbora Jirečková
- Department
of Biochemistry, Faculty of Science, Charles
University, Hlavova 6, Prague 2 12843, Czechia
- Institute
of Microbiology of the Czech Academy of Sciences, BioCeV, Videnska 1083, Prague
4 14220, Czechia
| | - Marek Polák
- Department
of Biochemistry, Faculty of Science, Charles
University, Hlavova 6, Prague 2 12843, Czechia
- Institute
of Microbiology of the Czech Academy of Sciences, BioCeV, Videnska 1083, Prague
4 14220, Czechia
| | - Jana Nováková
- AffiPro
s.r.o., Nad Safinou II
366, Vestec 252 00, Czechia
| | - Daniel Kavan
- Institute
of Microbiology of the Czech Academy of Sciences, BioCeV, Videnska 1083, Prague
4 14220, Czechia
| | - Petr Novák
- Department
of Biochemistry, Faculty of Science, Charles
University, Hlavova 6, Prague 2 12843, Czechia
- Institute
of Microbiology of the Czech Academy of Sciences, BioCeV, Videnska 1083, Prague
4 14220, Czechia
| | - Petr Man
- Institute
of Microbiology of the Czech Academy of Sciences, BioCeV, Videnska 1083, Prague
4 14220, Czechia
| |
Collapse
|
2
|
Pijning T, Vujičić‐Žagar A, van der Laan J, de Jong RM, Ramirez‐Palacios C, Vente A, Edens L, Dijkstra BW. Structural and time-resolved mechanistic investigations of protein hydrolysis by the acidic proline-specific endoprotease from Aspergillus niger. Protein Sci 2024; 33:e4856. [PMID: 38059672 PMCID: PMC10731622 DOI: 10.1002/pro.4856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023]
Abstract
Proline-specific endoproteases have been successfully used in, for example, the in-situ degradation of gluten, the hydrolysis of bitter peptides, the reduction of haze during beer production, and the generation of peptides for mass spectroscopy and proteomics applications. Here we present the crystal structure of the extracellular proline-specific endoprotease from Aspergillus niger (AnPEP), a member of the S28 peptidase family with rarely observed true proline-specific endoprotease activity. Family S28 proteases have a conventional Ser-Asp-His catalytic triad, but their oxyanion-stabilizing hole shows a glutamic acid, an amino acid not previously observed in this role. Since these enzymes have an acidic pH optimum, the presence of a glutamic acid in the oxyanion hole may confine their activity to an acidic pH. Yet, considering the presence of the conventional catalytic triad, it is remarkable that the A. niger enzyme remains active down to pH 1.5. The determination of the primary cleavage site of cytochrome c along with molecular dynamics-assisted docking studies indicate that the active site pocket of AnPEP can accommodate a reverse turn of approximately 12 amino acids with proline at the S1 specificity pocket. Comparison with the structures of two S28-proline-specific exopeptidases reveals not only a more spacious active site cavity but also the absence of any putative binding sites for amino- and carboxyl-terminal residues as observed in the exopeptidases, explaining AnPEP's observed endoprotease activity.
Collapse
Affiliation(s)
- Tjaard Pijning
- Biomolecular X‐ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of GroningenGroningenThe Netherlands
| | - Andreja Vujičić‐Žagar
- Biomolecular X‐ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of GroningenGroningenThe Netherlands
| | | | | | | | - Andre Vente
- Taste, Texture and HealthDSM‐FirmenichDelftThe Netherlands
| | - Luppo Edens
- Taste, Texture and HealthDSM‐FirmenichDelftThe Netherlands
| | - Bauke W. Dijkstra
- Biomolecular X‐ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of GroningenGroningenThe Netherlands
| |
Collapse
|
3
|
van Schaick G, Domínguez-Vega E, Gstöttner C, van den Berg-Verleg JH, Schouten O, Akeroyd M, Olsthoorn MMA, Wuhrer M, Heck AJR, Abello N, Franc V. Native Structural and Functional Proteoform Characterization of the Prolyl-Alanyl-Specific Endoprotease EndoPro from Aspergillus niger. J Proteome Res 2021; 20:4875-4885. [PMID: 34515489 PMCID: PMC8491274 DOI: 10.1021/acs.jproteome.1c00663] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The prolyl-alanyl-specific
endoprotease (EndoPro) is an industrial
enzyme produced in Aspergillus niger. EndoPro is
mainly used for food applications but also as a protease in proteomics.
In-depth characterization of this enzyme is essential to understand
its structural features and functionality. However, there is a lack
of analytical methods capable of maintaining both the structural and
functional integrity of separated proteoforms. In this study, we developed
an anion exchange (AEX) method coupled to native mass spectrometry
(MS) for profiling EndoPro proteoforms. Moreover, we investigated
purified EndoPro proteoforms with complementary MS-based approaches,
including released N-glycan and glycopeptide analysis, to obtain a
comprehensive overview of the structural heterogeneity. We showed
that EndoPro has at least three sequence variants and seven N-glycosylation
sites occupied by high-mannose glycans that can be phosphorylated.
Each glycosylation site showed high microheterogeneity with ∼20
glycans per site. The functional characterization of fractionated
proteoforms revealed that EndoPro proteoforms remained active after
AEX-separation and the specificity of these proteoforms did not depend
on N-glycan phosphorylation. Nevertheless, our data confirmed a strong
pH dependence of EndoPro cleavage activity. Altogether, our study
demonstrates that AEX-MS is an excellent tool to characterize complex
industrial enzymes under native conditions.
Collapse
Affiliation(s)
- Guusje van Schaick
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Elena Domínguez-Vega
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Christoph Gstöttner
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | | | - Olaf Schouten
- DSM Biotechnology Center, Center for Enabling Innovation, Alexander Fleminglaan 1, 2613 AX, Delft, The Netherlands
| | - Michiel Akeroyd
- DSM Biotechnology Center, Center for Enabling Innovation, Alexander Fleminglaan 1, 2613 AX, Delft, The Netherlands
| | - Maurien M A Olsthoorn
- DSM Biotechnology Center, Center for Enabling Innovation, Alexander Fleminglaan 1, 2613 AX, Delft, The Netherlands
| | - Manfred Wuhrer
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Nicolas Abello
- DSM Biotechnology Center, Center for Enabling Innovation, Alexander Fleminglaan 1, 2613 AX, Delft, The Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
4
|
Čaval T, Hecht ES, Tang W, Uy‐Gomez M, Nichols A, Kil YJ, Sandoval W, Bern M, Heck AJR. The lysosomal endopeptidases Cathepsin D and L are selective and effective proteases for the middle-down characterization of antibodies. FEBS J 2021; 288:5389-5405. [PMID: 33713388 PMCID: PMC8518856 DOI: 10.1111/febs.15813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/23/2021] [Accepted: 03/08/2021] [Indexed: 01/18/2023]
Abstract
Mass spectrometry is gaining momentum as a method of choice to de novo sequence antibodies (Abs). Adequate sequence coverage of the hypervariable regions remains one of the toughest identification challenges by either bottom-up or top-down workflows. Methods that efficiently generate mid-size Ab fragments would further facilitate top-down MS and decrease data complexity. Here, we explore the proteases Cathepsins L and D for forming protein fragments from three IgG1s, one IgG2, and one bispecific, knob-and-hole IgG1. We demonstrate that high-resolution native MS provides a sensitive method for the detection of clipping sites. Both Cathepsins produced multiple, albeit specific cleavages. The Abs were cleaved immediately after the CDR3 region, yielding ~ 12 kDa fragments, that is, ideal sequencing-sized. Cathepsin D, but not Cathepsin L, also cleaved directly below the Ab hinge, releasing the F(ab')2. When constrained by the different disulfide bonds found in the IgG2 subtype or by the tertiary structure of the hole-containing bispecific IgG1, the hinge region digest product was not produced. The Cathepsin L and Cathepsin D clipping motifs were related to sequences of neutral amino acids and the tertiary structure of the Ab. A single pot (L + D) digestion protocol was optimized to achieve 100% efficiency. Nine protein fragments, corresponding to the VL, VH, CL, CH1, CH2, CH3, CL + CH1, and F(ab')2, constituted ~ 70% of the summed intensities of all deconvolved proteolytic products. Cleavage sites were confirmed by the Edman degradation and validated with top-down sequencing. The described work offers a complementary method for middle-down analysis that may be applied to top-down Ab sequencing. ENZYMES: Cathepsin L-EC 3.4.22.15, Cathepsin D-EC 3.4.23.5.
Collapse
Affiliation(s)
- Tomislav Čaval
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityThe Netherlands
- Netherlands Proteomics CentreUtrechtThe Netherlands
| | - Elizabeth Sara Hecht
- Department of Microchemistry, Proteomics, and Lipidomics & Next Generation SequencingGenentech, Inc.South San FranciscoCAUSA
| | | | - Maelia Uy‐Gomez
- Department of Microchemistry, Proteomics, and Lipidomics & Next Generation SequencingGenentech, Inc.South San FranciscoCAUSA
| | | | | | - Wendy Sandoval
- Department of Microchemistry, Proteomics, and Lipidomics & Next Generation SequencingGenentech, Inc.South San FranciscoCAUSA
| | | | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityThe Netherlands
- Netherlands Proteomics CentreUtrechtThe Netherlands
| |
Collapse
|
5
|
Gerritsen JS, White FM. Phosphoproteomics: a valuable tool for uncovering molecular signaling in cancer cells. Expert Rev Proteomics 2021; 18:661-674. [PMID: 34468274 PMCID: PMC8628306 DOI: 10.1080/14789450.2021.1976152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Many pathologies, including cancer, have been associated with aberrant phosphorylation-mediated signaling networks that drive altered cell proliferation, migration, metabolic regulation, and can lead to systemic inflammation. Phosphoproteomics, the large-scale analysis of protein phosphorylation sites, has emerged as a powerful tool to define signaling network regulation and dysregulation in normal and pathological conditions. AREAS COVERED We provide an overview of methodology for global phosphoproteomics as well as enrichment of specific subsets of the phosphoproteome, including phosphotyrosine and phospho-motif enrichment of kinase substrates. We review quantitative methods, advantages and limitations of different mass spectrometry acquisition formats, and computational approaches to extract biological insight from phosphoproteomics data. Throughout, we discuss various applications and their challenges in implementation. EXPERT OPINION Over the past 20 years the field of phosphoproteomics has advanced to enable deep biological and clinical insight through the quantitative analysis of signaling networks. Future areas of development include Clinical Laboratory Improvement Amendments (CLIA)-approved methods for analysis of clinical samples, continued improvements in sensitivity to enable analysis of small numbers of rare cells and tissue microarrays, and computational methods to integrate data resulting from multiple systems-level quantitative analytical methods.
Collapse
Affiliation(s)
- Jacqueline S Gerritsen
- Koch Institute for Integrative Cancer Research; Center for Precision Cancer Medicine; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, U.S.A
| | - Forest M White
- Koch Institute for Integrative Cancer Research; Center for Precision Cancer Medicine; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, U.S.A
| |
Collapse
|
6
|
Samodova D, Hosfield CM, Cramer CN, Giuli MV, Cappellini E, Franciosa G, Rosenblatt MM, Kelstrup CD, Olsen JV. ProAlanase is an Effective Alternative to Trypsin for Proteomics Applications and Disulfide Bond Mapping. Mol Cell Proteomics 2020; 19:2139-2157. [PMID: 33020190 PMCID: PMC7710147 DOI: 10.1074/mcp.tir120.002129] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/29/2020] [Indexed: 01/01/2023] Open
Abstract
Trypsin is the protease of choice in bottom-up proteomics. However, its application can be limited by the amino acid composition of target proteins and the pH of the digestion solution. In this study we characterize ProAlanase, a protease from the fungus Aspergillus niger that cleaves primarily on the C-terminal side of proline and alanine residues. ProAlanase achieves high proteolytic activity and specificity when digestion is carried out at acidic pH (1.5) for relatively short (2 h) time periods. To elucidate the potential of ProAlanase in proteomics applications, we conducted a series of investigations comprising comparative multi-enzymatic profiling of a human cell line proteome, histone PTM analysis, ancient bone protein identification, phosphosite mapping and de novo sequencing of a proline-rich protein and disulfide bond mapping in mAb. The results demonstrate that ProAlanase is highly suitable for proteomics analysis of the arginine- and lysine-rich histones, enabling high sequence coverage of multiple histone family members. It also facilitates an efficient digestion of bone collagen thanks to the cleavage at the C terminus of hydroxyproline which is highly prevalent in collagen. This allows to identify complementary proteins in ProAlanase- and trypsin-digested ancient bone samples, as well as to increase sequence coverage of noncollagenous proteins. Moreover, digestion with ProAlanase improves protein sequence coverage and phosphosite localization for the proline-rich protein Notch3 intracellular domain (N3ICD). Furthermore, we achieve a nearly complete coverage of N3ICD protein by de novo sequencing using the combination of ProAlanase and tryptic peptides. Finally, we demonstrate that ProAlanase is efficient in disulfide bond mapping, showing high coverage of disulfide-containing regions in a nonreduced mAb.
Collapse
Affiliation(s)
- Diana Samodova
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Maria V Giuli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Enrico Cappellini
- Evolutionary Genomics SectionGlobe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Giulia Franciosa
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Christian D Kelstrup
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|