1
|
Kahne SC, Yoo JH, Chen J, Nakedi K, Iyer LM, Putzel G, Samhadaneh NM, Pironti A, Aravind L, Ekiert DC, Bhabha G, Rhee KY, Darwin KH. Identification of a proteolysis regulator for an essential enzyme in Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587195. [PMID: 38585835 PMCID: PMC10996600 DOI: 10.1101/2024.03.29.587195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
In Mycobacterium tuberculosis proteins that are post-translationally modified with Pup, a prokaryotic ubiquitin-like protein, can be degraded by proteasomes. While pupylation is reversible, mechanisms regulating substrate specificity have not been identified. Here, we identify the first depupylation regulators: CoaX, a pseudokinase, and pantothenate, an essential, central metabolite. In a Δ coaX mutant, pantothenate synthesis enzymes were more abundant, including PanB, a substrate of the Pup-proteasome system. Media supplementation with pantothenate decreased PanB levels in a coaX and Pup-proteasome-dependent manner. In vitro , CoaX accelerated depupylation of Pup∼PanB, while addition of pantothenate inhibited this reaction. Collectively, we propose CoaX contributes to proteasomal degradation of PanB by modulating depupylation of Pup∼PanB in response to pantothenate levels. One Sentence Summary A pseudo-pantothenate kinase regulates proteasomal degradation of a pantothenate synthesis enzyme in M. tuberculosis .
Collapse
|
2
|
Costigan R, Stoakes E, Floto RA, Parkhill J, Grant AJ. Development and validation of a CRISPR interference system for gene regulation in Campylobacter jejuni. BMC Microbiol 2022; 22:238. [PMID: 36199015 PMCID: PMC9533551 DOI: 10.1186/s12866-022-02645-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Campylobacter spp. are the leading cause of bacterial food-borne illness in humans worldwide, with Campylobacter jejuni responsible for 80% of these infections. There is an urgent need to understand fundamental C. jejuni biology for the development of new strategies to prevent and treat infections. The range of molecular tools available to regulate gene expression in C. jejuni is limited, which in turn constrains our ability to interrogate the function of essential and conditionally essential genes. We have addressed this by developing and utilising a CRISPR-based interference system known as CRISPRi in C. jejuni to control gene expression. To achieve this, a catalytically inactive ("dead") cas9 and sgRNA backbone from the Streptococcus pyogenes CRISPRi system was combined with C. jejuni-derived promoters of predetermined expression activities to develop a CRISPRi-based repression tool in C. jejuni strains M1Cam and 81-176. RESULTS The CRISPRi tool was validated through successful repression of the arylsulphatase-encoding gene astA using a range of sgRNA target sequences spanning the astA gene. The tool was also applied to target astA in an M1Cam CRISPR-Cas9 deletion strain, which showed that the presence of an endogenous CRISPR-Cas9 system did not affect the activity of the CRISPRi-based repression tool. The tool was further validated against the hippicurase-encoding gene hipO. Following this, the flagella genes flgR, flaA, flaB and both flaA and flaB were targeted for CRISPRi-based repression, which resulted in varying levels of motility reduction and flagella phenotypes as determined by phenotypical assays and transmission electron microscopy (TEM). CONCLUSIONS This is the first report of a CRISPRi-based tool in C. jejuni, which will provide a valuable resource to the Campylobacter community.
Collapse
Affiliation(s)
- Ruby Costigan
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Emily Stoakes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - R Andres Floto
- Department of Medicine, MRC-Laboratory of Molecular Biology, Molecular Immunity Unit, University of Cambridge, Cambridge, UK
- University of Cambridge, Centre for AI in Medicine, Cambridge, UK
- Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Andrew J Grant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Yoo JH, Kahne SC, Darwin KH. A conserved loop sequence of the proteasome system depupylase Dop regulates substrate selectivity in Mycobacterium tuberculosis. J Biol Chem 2022; 298:102478. [PMID: 36100038 PMCID: PMC9556782 DOI: 10.1016/j.jbc.2022.102478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 01/12/2023] Open
Abstract
Mycobacteria use a proteasome system that is similar to a eukaryotic proteasome but do not use ubiquitin to target proteins for degradation. Instead, mycobacteria encode a prokaryotic ubiquitin-like protein (Pup) that posttranslationally modifies proteins to mark them for proteolysis. Pupylation occurs on lysines of targeted proteins and is catalyzed by the ligase PafA. Like ubiquitylation, pupylation can be reversed by the depupylase Dop, which shares high structural similarity with PafA. Unique to Dop near its active site is a disordered loop of approximately 40 amino acids that is highly conserved among diverse dop-containing bacterial genera. To understand the function of this domain, we deleted discrete sequences from the Dop loop and assessed pupylation in mutant strains of Mycobacterium tuberculosis. We determined that various Dop loop mutations resulted in altered pupylome profiles, in particular when mutant dop alleles were overexpressed. Taken together, our data suggest these conserved amino acids play a role in substrate selectivity for Dop.
Collapse
Affiliation(s)
- Jin Hee Yoo
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Shoshanna C Kahne
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - K Heran Darwin
- Department of Microbiology, New York University School of Medicine, New York, New York, USA.
| |
Collapse
|
4
|
Structures of prokaryotic ubiquitin-like protein Pup in complex with depupylase Dop reveal the mechanism of catalytic phosphate formation. Nat Commun 2021; 12:6635. [PMID: 34789727 PMCID: PMC8599861 DOI: 10.1038/s41467-021-26848-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Pupylation is the post-translational modification of lysine side chains with prokaryotic ubiquitin-like protein (Pup) that targets proteins for proteasomal degradation in mycobacteria and other members of Actinobacteria. Pup ligase PafA and depupylase Dop are the two enzymes acting in this pathway. Although they share close structural and sequence homology indicative of a common evolutionary origin, they catalyze opposing reactions. Here, we report a series of high-resolution crystal structures of Dop in different functional states along the reaction pathway, including Pup-bound states in distinct conformations. In combination with biochemical analysis, the structures explain the role of the C-terminal residue of Pup in ATP hydrolysis, the process that generates the catalytic phosphate in the active site, and suggest a role for the Dop-loop as an allosteric sensor for Pup-binding and ATP cleavage. Pupylation is a bacterial post-translational protein modification, where the small ubiquitin-like protein Pup is covalently attached to lysine side chains of target proteins, which is a reversible process and depupylation is catalysed by the depupylase enzyme, Dop. Here, the authors present crystal structures of Dop in different functional states, which together with biochemical experiments provide insights into the catalytic mechanism of this enzyme.
Collapse
|
5
|
Zerbib E, Schlussel S, Hecht N, Bagdadi N, Eichler J, Gur E. The prokaryotic ubiquitin-like protein presents poor cleavage sites for proteasomal degradation. Cell Rep 2021; 36:109428. [PMID: 34320347 DOI: 10.1016/j.celrep.2021.109428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 05/09/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
In an event reminiscent of eukaryotic ubiquitination, the bacterial prokaryotic ubiquitin-like protein (Pup)-proteasome system (PPS) marks target proteins for proteasomal degradation by covalently attaching Pup, the bacterial tagging molecule. Yet, ubiquitin is released from its conjugated target following proteasome binding, whereas Pup enters the proteasome and remains conjugated to the target. Here, we report that although Pup can be degraded by the bacterial proteasome, it lacks favorable 20S core particle (CP) cleavage sites and is thus a very poor 20S CP substrate. Reconstituting the PPS in vitro, we demonstrate that during pupylated protein degradation, Pup can escape unharmed and remain conjugated to a target-derived degradation fragment. Removal of this degradation fragment by Dop, a depupylase, facilitates Pup recycling and re-conjugation to a new target. This study thus offers a mechanistic model for Pup recycling and demonstrates how a lack of protein susceptibility to proteasome-mediated cleavage can play a mechanistic role in a biological system.
Collapse
Affiliation(s)
- Erez Zerbib
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shai Schlussel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nir Hecht
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Noy Bagdadi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Jerry Eichler
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Eyal Gur
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
6
|
Hecht N, Monteil CL, Perrière G, Vishkautzan M, Gur E. Exploring Protein Space: From Hydrolase to Ligase by Substitution. Mol Biol Evol 2021; 38:761-776. [PMID: 32870983 PMCID: PMC7947786 DOI: 10.1093/molbev/msaa215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The understanding of how proteins evolve to perform novel functions has long been sought by biologists. In this regard, two homologous bacterial enzymes, PafA and Dop, pose an insightful case study, as both rely on similar mechanistic properties, yet catalyze different reactions. PafA conjugates a small protein tag to target proteins, whereas Dop removes the tag by hydrolysis. Given that both enzymes present a similar fold and high sequence similarity, we sought to identify the differences in the amino acid sequence and folding responsible for each distinct activity. We tackled this question using analysis of sequence–function relationships, and identified a set of uniquely conserved residues in each enzyme. Reciprocal mutagenesis of the hydrolase, Dop, completely abolished the native activity, at the same time yielding a catalytically active ligase. Based on the available Dop and PafA crystal structures, this change of activity required a conformational change of a critical loop at the vicinity of the active site. We identified the conserved positions essential for stabilization of the alternative loop conformation, and tracked alternative mutational pathways that lead to a change in activity. Remarkably, all these pathways were combined in the evolution of PafA and Dop, despite their redundant effect on activity. Overall, we identified the residues and structural elements in PafA and Dop responsible for their activity differences. This analysis delineated, in molecular terms, the changes required for the emergence of a new catalytic function from a preexisting one.
Collapse
Affiliation(s)
- Nir Hecht
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Caroline L Monteil
- Laboratoire de Biométrie et Biologie Evolutive, Université Claude Bernard - Lyon 1, Villeurbanne, France
| | - Guy Perrière
- Laboratoire de Biométrie et Biologie Evolutive, Université Claude Bernard - Lyon 1, Villeurbanne, France
| | - Marina Vishkautzan
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eyal Gur
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
7
|
Bordes P, Genevaux P. Control of Toxin-Antitoxin Systems by Proteases in Mycobacterium Tuberculosis. Front Mol Biosci 2021; 8:691399. [PMID: 34079824 PMCID: PMC8165232 DOI: 10.3389/fmolb.2021.691399] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 12/30/2022] Open
Abstract
Toxin-antitoxin (TA) systems are small genetic elements composed of a noxious toxin and a counteracting cognate antitoxin. Although they are widespread in bacterial chromosomes and in mobile genetic elements, their cellular functions and activation mechanisms remain largely unknown. It has been proposed that toxin activation or expression of the TA operon could rely on the degradation of generally less stable antitoxins by cellular proteases. The resulting active toxin would then target essential cellular processes and inhibit bacterial growth. Although interplay between proteases and TA systems has been observed, evidences for such activation cycle are very limited. Herein, we present an overview of the current knowledge on TA recognition by proteases with a main focus on the major human pathogen Mycobacterium tuberculosis, which harbours multiple TA systems (over 80), the essential AAA + stress proteases, ClpC1P1P2 and ClpXP1P2, and the Pup-proteasome system.
Collapse
Affiliation(s)
- Patricia Bordes
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
8
|
Kahne SC, Darwin KH. Structural determinants of regulated proteolysis in pathogenic bacteria by ClpP and the proteasome. Curr Opin Struct Biol 2021; 67:120-126. [PMID: 33221704 PMCID: PMC8096641 DOI: 10.1016/j.sbi.2020.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 01/05/2023]
Abstract
Bacteria use gated proteolytic machines for routine protein quality control and regulated responses to environmental conditions. This review discusses recent advances in understanding the structure and regulation of ClpP proteases, nanomachines widely distributed across bacteria, and the bacterial proteasome, a protease found in relatively few species. For both machines, activators confer substrate specificity. We highlight new data from organisms encoding two ClpP isoforms and the central role of activators as platforms for integrating regulatory signals. Because proteolytic systems contribute to survival and virulence of many bacterial pathogens, understanding their forms and functions enables new approaches to design targeted therapeutics.
Collapse
Affiliation(s)
- Shoshanna C Kahne
- New York University Robert Grossman School of Medicine, Department of Microbiology, 430 E. 29th Street, Room 312, New York, NY 10016, USA
| | - K Heran Darwin
- New York University Robert Grossman School of Medicine, Department of Microbiology, 430 E. 29th Street, Room 312, New York, NY 10016, USA.
| |
Collapse
|