1
|
Wang T, Zhang Z, Qu C, Song W, Li M, Shao X, Fukuda T, Gu J, Taniguchi N, Li W. Core fucosylation regulates the ovarian response via FSH receptor during follicular development. J Adv Res 2025; 67:105-120. [PMID: 38280716 PMCID: PMC11725149 DOI: 10.1016/j.jare.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/03/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024] Open
Abstract
INTRODUCTION Ovarian low response to follicle-stimulating hormone (FSH) causes infertility featuring hypergonadotropic hypogonadism, ovarian failure, and/or defective ovarian response. OBJECTIVES N-glycosylation is essential for FSH receptor (FSHR). Core fucosylation catalyzed by fucosyltransferase 8 (FUT8) is the most common N-glycosylation. Core fucosylation level changes between individuals and plays important roles in multiple physiological and pathological conditions. This study aims to elucidate the significance of FUT8 to modulate FSHR function in female fertility. METHODS Samples from patients classified as poor ovary responders (PORs) were detected with lectin blot and real-time PCR. Fut8 gene knockout (Fut8-/-) mice and FUT8-knockdown human granulosa cell line (KGN-KD) were established and in vitro fertilization (IVF) assay, western blot, molecular interaction, immunofluorescence and immunoprecipitation were applied. RESULTS Core fucosylation is indispensable for oocyte and follicular development. FSHR is a highly core-fucosylated glycoprotein. Loss of core fucosylation suppressed binding of FSHR to FSH, and attenuated FSHR downstream signaling in granulosa cells. Transcriptomic analysis revealed the downregulation of several transcripts crucial for oocyte meiotic progression and preimplantation development in Fut8-/- mice and in POR patients. Furthermore, loss of FUT8 inhibited the interaction between granulosa cells and oocytes, reduced transzonal projection (TZP) formation and caused poor developmental competence of oocytes after fertilization in vitro. While L-fucose administration increased the core fucosylation of FSHR, and its sensitivity to FSH. CONCLUSION This study first reveals a significant presence of core fucosylation in female fertility control. Decreased fucosylation on FSHR reduces the interaction of FSH-FSHR and subsequent signaling, which is a feature of the POR patients. Our results suggest that core fucosylation controls oocyte and follicular development via the FSH/FSHR pathway and is essential for female fertility in mammals.
Collapse
Affiliation(s)
- Tiantong Wang
- Department of Thoracic Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China; College of Basic Medical Sciences, Dalian Medical University, 9 West Section Lvshun South Road, Dalian, Liaoning 116044, China
| | - Zhiwei Zhang
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Changduo Qu
- College of Basic Medical Sciences, Dalian Medical University, 9 West Section Lvshun South Road, Dalian, Liaoning 116044, China
| | - Wanli Song
- Department of Thoracic Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Ming Li
- College of Basic Medical Sciences, Dalian Medical University, 9 West Section Lvshun South Road, Dalian, Liaoning 116044, China
| | - Xiaoguang Shao
- Medical Center for Reproductive and Genetic Research, Dalian Municipal Women and Children's Medical Center, 878 Xibei Road, Gezhenbao Street, Dalian, Liaoning 116037, China
| | - Tomohiko Fukuda
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Jianguo Gu
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuoku, Osaka 541-8567, Japan
| | - Wenzhe Li
- Department of Thoracic Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China; Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, China.
| |
Collapse
|
2
|
Zhou Y, Li C, Chen X, Zhao Y, Liao Y, Huang P, Wu W, Nieto NS, Li L, Tang W. Development of folate receptor targeting chimeras for cancer selective degradation of extracellular proteins. Nat Commun 2024; 15:8695. [PMID: 39379374 PMCID: PMC11461649 DOI: 10.1038/s41467-024-52685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Targeted protein degradation has emerged as a novel therapeutic modality to treat human diseases by utilizing the cell's own disposal systems to remove protein target. Significant clinical benefits have been observed for degrading many intracellular proteins. Recently, the degradation of extracellular proteins in the lysosome has been developed. However, there have been limited successes in selectively degrading protein targets in disease-relevant cells or tissues, which would greatly enhance the development of precision medicine. Additionally, most degraders are not readily available due to their complexity. We report a class of easily accessible Folate Receptor TArgeting Chimeras (FRTACs) to recruit the folate receptor, primarily expressed on malignant cells, to degrade extracellular soluble and membrane cancer-related proteins in vitro and in vivo. Our results indicate that FRTAC is a general platform for developing more precise and effective chemical probes and therapeutics for the study and treatment of cancers.
Collapse
Affiliation(s)
- Yaxian Zhou
- Lachman Institute of Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Chunrong Li
- Lachman Institute of Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xuankun Chen
- Lachman Institute of Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yuan Zhao
- Lachman Institute of Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yaxian Liao
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Penghsuan Huang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Wenxin Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Nicholas S Nieto
- Lachman Institute of Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Lingjun Li
- Lachman Institute of Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Weiping Tang
- Lachman Institute of Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
3
|
Arimura S, Wong MKS, Inoue R, Kawano M, Shimoyama K, Fujimori C, Tokunaga K, Takagi W, Hyodo S. Functional characterization of follicle-stimulating hormone and luteinizing hormone receptors in cloudy catshark, Scyliorhinus torazame. Gen Comp Endocrinol 2024; 354:114542. [PMID: 38685391 DOI: 10.1016/j.ygcen.2024.114542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/08/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The follicle-stimulating hormone receptor (FSHR) and luteinizing hormone receptor (LHR) in cloudy catshark were cloned, and recombinant FSHR and LHR were expressed for characterization. Ventral lobe extract (VLE) from the pituitary contains homologous FSH and LH, and it stimulated the cAMP signaling of FSHR and LHR dose-dependently. Two transcript variants of LHR (LHR-L with exon 10 and LHR-S without) were identified, and LHR-S was the dominant form with higher basal cAMP activity without VLE stimulation. Among various developmental stages of follicles, FSHR expression was mainly associated with the pre-vitellogenic and early white follicles. When follicles were recruited into vitellogenesis, the expression of FSHR decreased while of LHR was upregulated reciprocally, suggesting that LHR may also be responsible for the control of vitellogenesis in chondrichthyans. The expression of LHR-L was upregulated among maturing follicles before ovulation, indicating LHR-L could have a specific role in receiving the LH surge signal for final maturation. Plasma LH-like activity was transiently increased prior to the progesterone (P4)-surge and testosterone-drop at the beginning of P4-phase, supporting a pituitary control of follicle-maturation via LH signaling in chondrichthyans. The expression of follicular LHR was downregulated during the P4-phase when LH-like activity was high, indicating that the LH-dependent downregulation of LHR is conserved in chondrichthyans as it is in other vertebrate lineages. (213 words).
Collapse
Affiliation(s)
- Shogo Arimura
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Marty Kwok Shing Wong
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan; Center for Earth Surface System Dynamics, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Ryotaro Inoue
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Mai Kawano
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Koya Shimoyama
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Chika Fujimori
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan; Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.
| | - Kotaro Tokunaga
- Ibaraki Prefectural Oarai Aquarium, Oarai, Ibaraki 311-1301, Japan.
| | - Wataru Takagi
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Susumu Hyodo
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan; Center for Earth Surface System Dynamics, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| |
Collapse
|
4
|
Yang Y, Tang L, Xiao Y, Huang W, Gao M, Xie J, Yang M, Wu Y, Fu X. miR-21-5p-loaded bone mesenchymal stem cell-derived exosomes repair ovarian function in autoimmune premature ovarian insufficiency by targeting MSX1. Reprod Biomed Online 2024; 48:103815. [PMID: 38582043 DOI: 10.1016/j.rbmo.2024.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 04/08/2024]
Abstract
RESEARCH QUESTION What is the effect of micro-RNA (miR)-21-5p-loaded bone marrow mesenchymal stem cell-derived exosomes (miR-21-Exo) on autoimmune premature ovarian insufficiency (POI)? DESIGN The Cell Counting Kit 8 (CCK8) assay, fluorescence-activated cell sorting, western blotting, quantitative reverse transcriptase (qRT)-PCR and enzyme-linked immunosorbent assay (ELISA) verified the effect of miR-21-Exo on interferon-γ (IFN-γ)-induced KGN cells. qRT-PCR, western blotting and dual-luciferase reporter gene assays verified that miR-21-Exo mediated Msh homeobox 1 (MSX1) regulation of the Notch signalling pathway and that miR-21 interacted directly with MSX1. The effects of miR-21-Exo on the ovaries were verified by monitoring of the oestrous cycle, haematoxylin and eosin staining, follicle counts, ELISA, immunohistochemistry, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL), western blotting and qRT-PCR. RESULTS The results showed that miR-21-Exo promoted IFN-γ-induced KGN cell proliferation and hormone synthesis, and inhibited apoptosis. Using dual-luciferase reporter gene assays, miR-21 and MSX1 were shown to have direct interactions. Moreover, the findings elucidated that miR-21-Exo inhibited cell apoptosis and promoted hormone synthesis by mediating MSX1 to regulate the Notch signalling pathway. miR-21-Exo restored the ovarian structure in a mouse model of autoimmune POI, promoted endocrine function and proliferation, and inhibited apoptosis and inflammation in vivo. CONCLUSIONS This study demonstrates that miR-21-Exo regulates the MSX1-mediated Notch signalling pathway to inhibit granulosa cell apoptosis and improve hormone synthesis function, providing insight into a potential mechanism of molecular therapy for the treatment of autoimmune POI.
Collapse
Affiliation(s)
- Yutao Yang
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lichao Tang
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuanling Xiao
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wujia Huang
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Meng Gao
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaxin Xie
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingxin Yang
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanhong Wu
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiafei Fu
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Nordeidet AN, Klevjer M, Wisløff U, Langaas M, Bye A. Exploring shared genetics between maximal oxygen uptake and disease: the HUNT study. Physiol Genomics 2023; 55:440-451. [PMID: 37575066 DOI: 10.1152/physiolgenomics.00026.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
Low cardiorespiratory fitness, measured as maximal oxygen uptake (V̇o2max), is associated with all-cause mortality and disease-specific morbidity and mortality and is estimated to have a large genetic component (∼60%). However, the underlying mechanisms explaining the associations are not known, and no association study has assessed shared genetics between directly measured V̇o2max and disease. We believe that identifying the mechanisms explaining how low V̇o2max is related to increased disease risk can contribute to prevention and therapy. We used a phenome-wide association study approach to test for shared genetics. A total of 64,479 participants from the Trøndelag Health Study (HUNT) were included. Genetic variants previously linked to V̇o2max were tested for association with diseases related to the cardiovascular system, diabetes, dementia, mental disorders, and cancer as well as clinical measurements and biomarkers from HUNT. In the total population, three single-nucleotide polymorphisms (SNPs) in and near the follicle-stimulating hormone receptor gene (FSHR) were found to be associated (false discovery rate < 0.05) with serum creatinine levels and one intronic SNP in the Rap-associating DIL domain gene (RADIL) with diabetes type 1 with neurological manifestations. In males, four intronic SNPs in the PBX/knotted homeobox 2 gene (PKNOX2) were found to be associated with endocarditis. None of the association tests in the female population reached overall statistical significance; the associations with the lowest P values included other cardiac conduction disorders, subdural hemorrhage, and myocarditis. The results might suggest shared genetics between V̇o2max and disease. However, further effort should be put into investigating the potential shared genetics between inborn V̇o2max and disease in larger cohorts to increase statistical power.NEW & NOTEWORTHY To our knowledge, this is the first genetic association study exploring how genes linked to cardiorespiratory fitness (CRF) relate to disease risk. By investigating shared genetics, we found indications that genetic variants linked to directly measured CRF also affect the level of blood creatinine, risk of diabetes, and endocarditis. Less certain findings showed that genetic variants of high CRF might cause lower body mass index, healthier HDL cholesterol, and lower resting heart rate.
Collapse
Affiliation(s)
- Ada N Nordeidet
- Department of Circulation and Medical Imaging, Cardiac Exercise Research Group, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marie Klevjer
- Department of Circulation and Medical Imaging, Cardiac Exercise Research Group, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Cardiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Ulrik Wisløff
- Department of Circulation and Medical Imaging, Cardiac Exercise Research Group, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Mette Langaas
- Department of Mathematical Sciences, Faculty of Information Technology and Electrical Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anja Bye
- Department of Circulation and Medical Imaging, Cardiac Exercise Research Group, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Cardiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
6
|
Kanaan BA, Al-Ouqaili MT, Murshid RM. Cytogenetic screening of chromosomal abnormalities and genetic analysis of FSH receptor Ala307Thr and Ser680Asn genes in amenorrheic patients. PeerJ 2023; 11:e15267. [PMID: 37255590 PMCID: PMC10226477 DOI: 10.7717/peerj.15267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/29/2023] [Indexed: 06/01/2023] Open
Abstract
Objective Amenorrhea is a rare reproductive medical condition defined by the absence of menstruation during puberty or later life. This study aims to establish the frequency and pattern of chromosomal abnormalities (CA) in both primary amenorrhea (PA) and secondary amenorrhea (SA), and further to detect the genetic changes in exon 10 at nucleotide positions 919 and 2039 of the genotypes Thr307Ala, and Asn680Ser, respectively. Design settings and patients This cross-sectional study was conducted on a sample of seventy amenorrhoeic women according to the Helsinki declaration rules of medical ethics, as divided into 40 (57.14%) with PA and 30 (42.86%) with SA, and 30 healthy women with normal menstruation as the control. The chromosomal karyotyping was performed according to the ISCN, 2020. PCR products were submitted to RFLP and Sanger sequencing for women with normal karyotype and high FSH serum levels. Results The classical Turner Syndrome was the most common CA in PA, followed by isochromosome X [46, Xi(X)(q10)], mosaicism of Turner and isochromosome X [45, X /46, Xi(X)(q10)], sex reversal (46, XY) and (46, XX,-3,+der3,-19,del 19 p). Abnormal SA cases were characterized by mosaicism Turner syndrome (45,X/46,XX) and (46,XX,-3,+der3,X,+derX). The homozygous genotypes AA and GG of Ala307Thr (rs6165) in the FSHR gene are most common in PA, while the homozygous genotype AA is more common in SA. GG and AG genotypes of Ser680Asn (rs6166) are more frequent in Iraqi patients with PA and SA compared to the healthy control women. Both PCR-RFLP and Sanger sequencing indicated a marked matching between genotypes. Conclusions The study emphasizes the need for cytogenetic analysis to determine the genetic basis of PA and SA. Further, genotyping for women with normal karyotype and high FSH serum concentrations via PCR-RFLP should be considered for the precise diagnosis and development of appropriate management of and counselling for these patients.
Collapse
Affiliation(s)
- Bushra A. Kanaan
- Department of Microbiology, University of Anbar, College of Medicine, Ramadi, Al-Anbar Province, Iraq
| | - Mushtak T.S. Al-Ouqaili
- Department of Microbiology, University of Anbar, College of Medicine, Ramadi, Al-Anbar Province, Iraq
| | - Rafal M. Murshid
- Department of Gynecology and Obstetrics, University of Anbar, College of Medicine, Ramadi, Al-Anbar Province, Iraq
| |
Collapse
|
7
|
Derks B, Rivera-Cruz G, Hagen-Lillevik S, Vos EN, Demirbas D, Lai K, Treacy EP, Levy HL, Wilkins-Haug LE, Rubio-Gozalbo ME, Berry GT. The hypergonadotropic hypogonadism conundrum of classic galactosemia. Hum Reprod Update 2023; 29:246-258. [PMID: 36512573 PMCID: PMC9976963 DOI: 10.1093/humupd/dmac041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/19/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hypergonadotropic hypogonadism is a burdensome complication of classic galactosemia (CG), an inborn error of galactose metabolism that invariably affects female patients. Since its recognition in 1979, data have become available regarding the clinical spectrum, and the impact on fertility. Many women have been counseled for infertility and the majority never try to conceive, yet spontaneous pregnancies can occur. Onset and mechanism of damage have not been elucidated, yet new insights at the molecular level are becoming available that might greatly benefit our understanding. Fertility preservation options have expanded, and treatments to mitigate this complication either by directly rescuing the metabolic defect or by influencing the cascade of events are being explored. OBJECTIVE AND RATIONALE The aims are to review: the clinical picture and the need to revisit the counseling paradigm; insights into the onset and mechanism of damage at the molecular level; and current treatments to mitigate ovarian damage. SEARCH METHODS In addition to the work on this topic by the authors, the PubMed database has been used to search for peer-reviewed articles and reviews using the following terms: 'classic galactosemia', 'gonadal damage', 'primary ovarian insufficiency', 'fertility', 'animal models' and 'fertility preservation' in combination with other keywords related to the subject area. All relevant publications until August 2022 have been critically evaluated and reviewed. OUTCOMES A diagnosis of premature ovarian insufficiency (POI) results in a significant psychological burden with a high incidence of depression and anxiety that urges adequate counseling at an early stage, appropriate treatment and timely discussion of fertility preservation options. The cause of POI in CG is unknown, but evidence exists of dysregulation in pathways crucial for folliculogenesis such as phosphatidylinositol 3-kinase/protein kinase B, inositol pathway, mitogen-activated protein kinase, insulin-like growth factor-1 and transforming growth factor-beta signaling. Recent findings from the GalT gene-trapped (GalTKO) mouse model suggest that early molecular changes in 1-month-old ovaries elicit an accelerated growth activation and burnout of primordial follicles, resembling the progressive ovarian failure seen in patients. Although data on safety and efficacy outcomes are still limited, ovarian tissue cryopreservation can be a fertility preservation option. Treatments to overcome the genetic defect, for example nucleic acid therapy such as mRNA or gene therapy, or that influence the cascade of events are being explored at the (pre-)clinical level. WIDER IMPLICATIONS Elucidation of the molecular pathways underlying POI of any origin can greatly advance our insight into the pathogenesis and open new treatment avenues. Alterations in these molecular pathways might serve as markers of disease progression and efficiency of new treatment options.
Collapse
Affiliation(s)
- Britt Derks
- Department of Pediatrics and Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands.,GROW, Maastricht University, Maastricht, The Netherlands.,European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member and United for Metabolic Diseases Member
| | - Greysha Rivera-Cruz
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Synneva Hagen-Lillevik
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
| | - E Naomi Vos
- Department of Pediatrics and Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands.,GROW, Maastricht University, Maastricht, The Netherlands.,European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member and United for Metabolic Diseases Member
| | - Didem Demirbas
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kent Lai
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
| | - Eileen P Treacy
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member and United for Metabolic Diseases Member.,National Centre for Inherited Metabolic Disorders, Mater Misericordiae University Hospital, Dublin, Ireland.,School of Medicine, Trinity College, Dublin 2, Ireland.,School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Harvey L Levy
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Louise E Wilkins-Haug
- Division of Maternal Fetal Medicine, Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M Estela Rubio-Gozalbo
- Department of Pediatrics and Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands.,GROW, Maastricht University, Maastricht, The Netherlands.,European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member and United for Metabolic Diseases Member
| | - Gerard T Berry
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Santa-Coloma TA. Overlapping synthetic peptides as a tool to map protein-protein interactions ̶ FSH as a model system of nonadditive interactions. Biochim Biophys Acta Gen Subj 2022; 1866:130153. [DOI: 10.1016/j.bbagen.2022.130153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
|
9
|
Bhartiya D, Patel H. An overview of FSH-FSHR biology and explaining the existing conundrums. J Ovarian Res 2021; 14:144. [PMID: 34717708 PMCID: PMC8557046 DOI: 10.1186/s13048-021-00880-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/12/2021] [Indexed: 12/23/2022] Open
Abstract
FSH was first identified in 1930 and is central to mammalian reproduction. It is indeed intriguing that despite being researched upon for about 90 years, there is still so much more to learn about FSH-FSHR biology. The purpose of this review is to provide an overview of current understanding of FSH-FSHR biology, to review published data on biological and clinical relevance of reported mutations, polymorphisms and alternately spliced isoforms of FSHR. Tissue-resident stem/progenitor cells in multiple adult tissues including ovaries, testes and uterus express FSHR and this observation results in a paradigm shift in the field. The results suggest a direct action of FSH on the stem cells in addition to their well-studied action on Granulosa and Sertoli cells in the ovaries and testes respectively. Present review further addresses various concerns raised in recent times by the scientific community regarding extragonadal expression of FSHR, especially in cancers affecting multiple organs. Similar population of primitive and pluripotent tissue-resident stem cells expressing FSHR exist in multiple adult tissues including bone marrow and reproductive tissues and help maintain homeostasis throughout life. Any dysfunction of these stem cells results in various pathologies and they also most likely get transformed into cancer stem cells and initiate cancer. This explains why multiple solid as well as liquid tumors express OCT-4 and FSHR. More research efforts need to be focused on alternately spliced FSHR isoforms.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Maharashtra, 400012, Mumbai, India. .,Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| | - Hiren Patel
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Maharashtra, 400012, Mumbai, India.,Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
10
|
Recchia K, Jorge AS, Pessôa LVDF, Botigelli RC, Zugaib VC, de Souza AF, Martins DDS, Ambrósio CE, Bressan FF, Pieri NCG. Actions and Roles of FSH in Germinative Cells. Int J Mol Sci 2021; 22:10110. [PMID: 34576272 PMCID: PMC8470522 DOI: 10.3390/ijms221810110] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
Follicle stimulating hormone (FSH) is produced by the pituitary gland in a coordinated hypothalamic-pituitary-gonadal (HPG) axis event, plays important roles in reproduction and germ cell development during different phases of reproductive development (fetal, neonatal, puberty, and adult life), and is consequently essential for fertility. FSH is a heterodimeric glycoprotein hormone of two dissociable subunits, α and β. The FSH β-subunit (FSHβ) function starts upon coupling to its specific receptor: follicle-stimulating hormone receptor (FSHR). FSHRs are localized mainly on the surface of target cells on the testis and ovary (granulosa and Sertoli cells) and have recently been found in testicular stem cells and extra-gonadal tissue. Several reproduction disorders are associated with absent or low FSH secretion, with mutation of the FSH β-subunit or the FSH receptor, and/or its signaling pathways. However, the influence of FSH on germ cells is still poorly understood; some studies have suggested that this hormone also plays a determinant role in the self-renewal of germinative cells and acts to increase undifferentiated spermatogonia proliferation. In addition, in vitro, together with other factors, it assists the process of differentiation of primordial germ cells (PGCLCs) into gametes (oocyte-like and SSCLCs). In this review, we describe relevant research on the influence of FSH on spermatogenesis and folliculogenesis, mainly in the germ cell of humans and other species. The possible roles of FSH in germ cell generation in vitro are also presented.
Collapse
Affiliation(s)
- Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 01001-010, Brazil; (K.R.); (F.F.B.)
| | - Amanda Soares Jorge
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Laís Vicari de Figueiredo Pessôa
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Ramon Cesar Botigelli
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
- Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-970, Brazil
| | - Vanessa Cristiane Zugaib
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Aline Fernanda de Souza
- Department Biomedical Science, Ontary Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Daniele dos Santos Martins
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Carlos Eduardo Ambrósio
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Fabiana Fernandes Bressan
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 01001-010, Brazil; (K.R.); (F.F.B.)
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| |
Collapse
|
11
|
The Effect of RBP4 on microRNA Expression Profiles in Porcine Granulosa Cells. Animals (Basel) 2021; 11:ani11051391. [PMID: 34068244 PMCID: PMC8153112 DOI: 10.3390/ani11051391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Retinol binding protein 4 (RBP4), mainly secreted by the liver and adipocytes, is a transporter of vitamin A. RBP4 has been shown to be involved in several pathophysiological processes, such as polycystic ovary syndrome (PCOS), obesity, insulin resistance, and cardiovascular risk. However, the role of RBP4 in mammalian follicular granulosa cells (GCs) remains largely unknown. To characterize the molecular pathways associated with the effects of RBP4 on GCs, we used sRNA deep sequencing to detect differential microRNA (miRNA) expression in GCs overexpressing RBP4. A total of 17 miRNAs were significantly different between the experimental and control groups. Our results support the notion that several miRNAs are involved in important biological processes associated with folliculogenesis and pathogenesis. These results will be useful for further studies investigating the role of RBP4 in porcine GCs. Abstract Retinol binding protein 4 (RBP4) is a transporter of vitamin A that is secreted mainly by hepatocytes and adipocytes. It affects diverse pathophysiological processes, such as obesity, insulin resistance, and cardiovascular diseases. MicroRNAs (miRNAs) have been reported to play indispensable roles in regulating various developmental processes via the post-transcriptional repression of target genes in mammals. However, the functional link between RBP4 and changes in miRNA expression in porcine granulosa cells (GCs) remains to be investigated. To examine how increased expression of RBP4 affects miRNA expression, porcine GCs were infected with RBP4-targeted lentivirus for 72 h, and whole-genome miRNA profiling (miRNA sequencing) was performed. The sequencing data were validated using real-time quantitative polymerase chain reaction (RT-qPCR) analysis. As a result, we obtained 2783 known and 776 novel miRNAs. In the experimental group, 10 and seven miRNAs were significantly downregulated and upregulated, respectively, compared with the control group. Ontology analysis of the biological processes of these miRNAs indicated their involvement in a variety of biological functions. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that these miRNAs were involved mainly in the chemokine signaling pathway, peroxisome proliferators-activated receptors (PPAR) signaling pathway, insulin resistance pathway, nuclear factor-kappa B(NF-kappa B) signaling pathway, and steroid hormone biosynthesis. Our results indicate that RBP4 can regulate the expression of miRNAs in porcine GCs, with consequent physiological effects. In summary, this study profiling miRNA expression in RBP4-overexpressing porcine GCs provides an important reference point for future studies on the regulatory roles of miRNAs in the porcine reproductive system.
Collapse
|
12
|
Shukla AK. Emerging paradigms in activation, signaling, and regulation of G protein-coupled receptors. FEBS J 2021; 288:2458-2460. [PMID: 33818907 PMCID: PMC7614522 DOI: 10.1111/febs.15839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
This Special Issue of The FEBS Journal brings together a set of review articles focused on recent developments in the field of GPCR biology, with particular emphasis on novel paradigms of their activation, signaling, and regulation. These articles cover a broad repertoire of cellular, physiological, and structural aspects ranging from the interaction of GPCRs with their signal transducers, allosteric modulation of these receptors with therapeutic implications, and emerging technologies aimed to probe critical aspects of receptor signaling and regulation.
Collapse
Affiliation(s)
- Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| |
Collapse
|
13
|
Roy N, Mascolo E, Lazzaretti C, Paradiso E, D’Alessandro S, Zaręba K, Simoni M, Casarini L. Endocrine Disruption of the Follicle-Stimulating Hormone Receptor Signaling During the Human Antral Follicle Growth. Front Endocrinol (Lausanne) 2021; 12:791763. [PMID: 34956099 PMCID: PMC8692709 DOI: 10.3389/fendo.2021.791763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
An increasing number of pollutants with endocrine disrupting potential are accumulating in the environment, increasing the exposure risk for humans. Several of them are known or suspected to interfere with endocrine signals, impairing reproductive functions. Follicle-stimulating hormone (FSH) is a glycoprotein playing an essential role in supporting antral follicle maturation and may be a target of disrupting chemicals (EDs) likely impacting female fertility. EDs may interfere with FSH-mediated signals at different levels, since they may modulate the mRNA or protein levels of both the hormone and its receptor (FSHR), perturb the functioning of partner membrane molecules, modify intracellular signal transduction pathways and gene expression. In vitro studies and animal models provided results helpful to understand ED modes of action and suggest that they could effectively play a role as molecules interfering with the female reproductive system. However, most of these data are potentially subjected to experimental limitations and need to be confirmed by long-term observations in human.
Collapse
Affiliation(s)
- Neena Roy
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Ospedale Civile Sant’Agostino-Estense, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Mascolo
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Ospedale Civile Sant’Agostino-Estense, University of Modena and Reggio Emilia, Modena, Italy
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Ospedale Civile Sant’Agostino-Estense, University of Modena and Reggio Emilia, Modena, Italy
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Ospedale Civile Sant’Agostino-Estense, University of Modena and Reggio Emilia, Modena, Italy
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Sara D’Alessandro
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Ospedale Civile Sant’Agostino-Estense, University of Modena and Reggio Emilia, Modena, Italy
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Kornelia Zaręba
- First Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Ospedale Civile Sant’Agostino-Estense, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Ospedale Civile Sant’Agostino-Estense, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
- *Correspondence: Livio Casarini,
| |
Collapse
|