1
|
Rathore M, Curry K, Huang W, Wright M, Martin D, Baek J, Taylor D, Miyagi M, Tang W, Feng H, Li Y, Wang Z, Graor H, Willis J, Bryson E, Boutros CS, Desai O, Islam BN, Ellis LM, Moss SE, Winter JM, Greenwood J, Wang R. Leucine-Rich Alpha-2-Glycoprotein 1 Promotes Metastatic Colorectal Cancer Growth Through Human Epidermal Growth Factor Receptor 3 Signaling. Gastroenterology 2024:S0016-5085(24)05566-5. [PMID: 39393543 DOI: 10.1053/j.gastro.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND & AIMS Therapy failure in patients with metastatic colorectal cancer (mCRC, ∼80% occur in the liver) remains an overarching challenge. Preclinical studies demonstrated that human epidermal growth factor receptor 3 (HER3) promotes colorectal cancer (CRC) cell survival, but therapies blocking the neuregulin-induced canonical HER3 signaling have made little impact in the clinic. Recent studies suggest that the liver microenvironment promotes CRC growth by activating HER3 in a neuregulin-independent fashion, thus elucidation of these mechanisms may reveal new strategies for treating patients with mCRC. METHODS Patient-derived primary liver endothelial cells (ECs) were used to interrogate EC-CRC crosstalk. We conducted proteomic analysis to identify EC-secreted factor(s) that triggers noncanonical HER3 activation in CRC and determined the subsequent effects on mCRC using diverse murine mCRC models. In vitro studies with genetic and pharmacological interventions were used to map the noncanonical HER3 pathway. RESULTS We demonstrated that EC-secreted leucine-rich alpha-2-glycoprotein 1 (LRG1) directly binds and activates HER3 and promotes CRC growth distinct from neuregulin, the canonical HER3 ligand. Blocking host-derived LRG1 by gene knockout or a neutralizing antibody impaired mCRC outgrowth in the liver and prolonged mouse survival. We identified protein synthesis activated by the PI3K-PDK1-RSK-eIF4B axis as the biologically relevant signaling cascade downstream of the LRG1-HER3 interaction, which was not blocked by conventional HER3-specific antibodies that failed in prior clinical trials. CONCLUSIONS LRG1 is a novel HER3 ligand and mediates liver-mCRC crosstalk. The LRG1-HER3 signaling axis is distinct from canonical HER3 signaling and represents a new therapeutic opportunity to treat patients with mCRC, and potentially other types of liver metastases.
Collapse
Affiliation(s)
- Moeez Rathore
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Kimberly Curry
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Michel'le Wright
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Daniel Martin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Jiyeon Baek
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Derek Taylor
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio; Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Wen Tang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Hao Feng
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio; Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Yamu Li
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Zhenghe Wang
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Hallie Graor
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Joseph Willis
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Elizabeth Bryson
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Christina S Boutros
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Omkar Desai
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Bianca N Islam
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio; Department of Medicine, Division of Gastroenterology and Liver Disease, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Lee M Ellis
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Stephen E Moss
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Jordan M Winter
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio; Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - John Greenwood
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Rui Wang
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio; Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio.
| |
Collapse
|
2
|
Du HX, Wang H, Ma XP, Chen H, Dai AB, Zhu KX. Eukaryotic translation initiation factor 2α kinase 2 in pancreatic cancer: An approach towards managing clinical prognosis and molecular immunological characterization. Oncol Lett 2023; 26:478. [PMID: 37818134 PMCID: PMC10561166 DOI: 10.3892/ol.2023.14066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/14/2023] [Indexed: 10/12/2023] Open
Abstract
Most patients with pancreatic cancer are already in the late stages of the disease when they are diagnosed, and pancreatic cancer is a deadly disease with a poor prognosis. With the advancement of research, immunotherapy has become a new focus in the treatment of tumors. To the best of our knowledge, there is currently no reliable diagnostic or prognostic marker for pancreatic cancer; therefore, the present study investigated the potential of eukaryotic translation initiation factor 2α kinase 2 (EIF2AK2) as a predictive and diagnostic marker for pancreatic cancer. Immunohistochemical staining of clinical samples independently verified that EIF2AK2 expression was significantly higher in clinically operated pancreatic cancer tissues than in adjacent pancreatic tissues., and EIF2AK2 expression and differentially expressed genes (DEGs) were identified using downloadable RNA sequencing data from The Cancer Genome Atlas and Genomic Tumor Expression Atlas. In addition, Gene Ontology/Kyoto Encyclopedia of Genes and Genomes analyses and immune cell infiltration were used for functional enrichment analysis of EIF2AK2-associated DEGs. The clinical importance of EIF2AK2 was also determined using Kaplan-Meier survival, Cox regression and time-dependent survival receiver operating characteristic curve analyses, and a predictive nomogram model was generated. Finally, the functional role of EIF2AK2 was assessed in PANC-1 cells using a short hairpin RNA-EIF2AK2 knockdown approach, including CCK-8, wound healing assay, cell cycle and apoptosis assays. The findings suggested that EIF2AK2 may have potential as a diagnostic and prognostic biomarker for patients with pancreatic cancer. Furthermore, EIF2AK2 may provide a new therapeutic target for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Hao-Xuan Du
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Hu Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xiao-Peng Ma
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Hao Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Ai-Bin Dai
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Ke-Xiang Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
3
|
Groenewald W, Lund AH, Gay DM. The Role of WNT Pathway Mutations in Cancer Development and an Overview of Therapeutic Options. Cells 2023; 12:990. [PMID: 37048063 PMCID: PMC10093220 DOI: 10.3390/cells12070990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
It is well established that mutations in the canonical WNT-signalling pathway play a major role in various cancers. Critical to developing new therapeutic strategies is understanding which cancers are driven by WNT pathway activation and at what level these mutations occur within the pathway. Some cancers harbour mutations in genes whose protein products operate at the receptor level of the WNT pathway. For instance, tumours with RNF43 or RSPO mutations, still require exogenous WNT ligands to drive WNT signalling (ligand-dependent mutations). Conversely, mutations within the cytoplasmic segment of the Wnt pathway, such as in APC and CTNNB1, lead to constitutive WNT pathway activation even in the absence of WNT ligands (ligand-independent). Here, we review the predominant driving mutations found in cancer that lead to WNT pathway activation, as well as explore some of the therapeutic interventions currently available against tumours harbouring either ligand-dependent or ligand-independent mutations. Finally, we discuss a potentially new therapeutic avenue by targeting the translational apparatus downstream from WNT signalling.
Collapse
Affiliation(s)
| | - Anders H. Lund
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - David Michael Gay
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
4
|
Chen MY, Hsu CH, Setiawan SA, Tzeng DTW, Ma HP, Ong JR, Chu YC, Hsieh MS, Wu ATH, Tzeng YM, Yeh CT. Ovatodiolide and antrocin synergistically inhibit the stemness and metastatic potential of hepatocellular carcinoma via impairing ribosome biogenesis and modulating ERK/Akt-mTOR signaling axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154478. [PMID: 36265255 DOI: 10.1016/j.phymed.2022.154478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/28/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Activation of mitogen-activated protein kinase (MAPK) and PI3K signaling confers resistance against sorafenib, a mainstay treatment for advanced hepatocellular carcinoma (HCC). Antrocin and ovatodiolide constitute as the most potent secondary metabolites isolated from Antrodia camphorata and Anisomeles indica, respectively. Both natural compounds have recently gained a lot of attention due to their putative inhibition of MAPK and PI3K signaling in various solid cancers. However, whether their combination is effective in HCC remains unknown. Here, we investigated their effect, alone or in various combinations, on MAPK and PI3K signaling pathways in HCC cells. An array of in vitro study were used to investigate anticancer and stemness effects to treat HCC, such as cytotoxicity, drug combination index, migration, invasion, colony formation, and tumor sphere formation. Drug effect in vivo was evaluated using mouse xenograft models. In this study, antrocin and ovatodiolide synergistically inhibited the SNU387, Hep3B, Mahlavu, and Huh7 cell lines. Sequential combination treatment of Huh7 and Mahlavu with ovatodiolide followed by antrocin resulted stronger cytotoxic effect than did treatment with antrocin followed by ovatodiolide, their simultaneous administration, antrocin alone, or ovatodiolide alone. In the Huh7 and Mahlavu cell lines, ovatodiolide→antrocin significantly suppressed colony formation and proliferation as well as markedly downregulated ERK1/2, Akt, and mTOR expression. Inhibition of ERK1/2 and Akt/mTOR signaling by ovatodiolide→antrocin suppressed ribosomal biogenesis, autophagy, and cancer stem cell-like phenotypes and promoted apoptosis in Huh7 and Mahlavu cells. The sorafenib-resistant clone of Huh7 was effectively inhibited by synergistic combination of both compound in vitro. Eventually, the ovatodiolide→antrocin combination synergistically suppressed the growth of HCC xenografts. Taken together, our findings suggested that ovatodiolide→antrocin combination may represent potential therapeutic approach for patients with advanced HCC.
Collapse
Affiliation(s)
- Ming-Yao Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Chia-Hung Hsu
- Department of Emergency Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei City 110, Taiwan; Department of Emergency Medicine, School of Medicine, Taipei Medical University, Taipei City 110, Taiwan
| | - Syahru Agung Setiawan
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan; Department of Medical Research & Education, Taipei Medical University - Shuang-Ho Hospital, New Taipei City 235, Taiwan
| | - David T W Tzeng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; Lifebit, Mindspace Shoreditch, London, England, EC2A 2AP, UK
| | - Hon-Ping Ma
- Department of Emergency Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei City 110, Taiwan; Department of Emergency Medicine, School of Medicine, Taipei Medical University, Taipei City 110, Taiwan
| | - Jiann Ruey Ong
- Department of Emergency Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei City 110, Taiwan; Department of Emergency Medicine, School of Medicine, Taipei Medical University, Taipei City 110, Taiwan
| | - Yi Cheng Chu
- Department of Medicine, St. George's University School of Medicine, St. George, Grenada
| | - Ming-Shou Hsieh
- Department of Medical Research & Education, Taipei Medical University - Shuang-Ho Hospital, New Taipei City 235, Taiwan
| | - Alexander T H Wu
- Department of Medical Research & Education, Taipei Medical University - Shuang-Ho Hospital, New Taipei City 235, Taiwan
| | - Yew-Min Tzeng
- Department of Applied Science, National Taitung University, Taitung 95092, Taiwan.
| | - Chi-Tai Yeh
- Department of Medical Research & Education, Taipei Medical University - Shuang-Ho Hospital, New Taipei City 235, Taiwan; Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung 95092, Taiwan.
| |
Collapse
|
5
|
Liu H, Hu Y, Qi B, Yan C, Wang L, Zhang Y, Chen L. Network pharmacology and molecular docking to elucidate the mechanism of pulsatilla decoction in the treatment of colon cancer. Front Pharmacol 2022; 13:940508. [PMID: 36003525 PMCID: PMC9393233 DOI: 10.3389/fphar.2022.940508] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/28/2022] [Indexed: 01/01/2023] Open
Abstract
Objective: Colon cancer is a malignant neoplastic disease that seriously endangers the health of patients. Pulsatilla decoction (PD) has some therapeutic effects on colon cancer. This study is based on the analytical methods of network pharmacology and molecular docking to study the mechanism of PD in the treatment of colon cancer. Methods: Based on the Traditional Chinese Medicine Systems Pharmacology Database, the main targets and active ingredients in PD were filtered, and then, the colon cancer-related targets were screened using Genecards, OMIM, PharmGKB, and Drugbank databases. Then, the screened drug and disease targets were Venn analyzed to obtain the intersection targets. Cytoscape software was used to construct the “Components–Targets–Pathway” map, and the String database was used to analyze the protein interaction network of the intersecting targets and screen the core targets, and then, the core targets were analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Molecular docking was implemented using AutoDockTools to predict the binding capacity for the core targets and the active components in PD. Results: Sixty-five ingredients containing 188 nonrepetitive targets were screened and 180 potential targets of PD anticolon cancer were identified, including 10 core targets, namely, MAPK1, JUN, AKT1, TP53, TNF, RELA, MAPK14, CXCL8, ESR1, and FOS. The results of GO analysis showed that PD anticolon cancer may be related to cell proliferation, apoptosis, energy metabolism, immune regulation, signal transduction, and other biological processes. The results of KEGG analysis indicated that the PI3K-Akt signaling pathway, MAPK signaling pathway, proteoglycans in cancer, IL-17 signaling pathway, cellular senescence, and TNF signaling pathway were mainly involved in the regulation of tumor cells. We further selected core targets with high degree values as receptor proteins for molecular docking with the main active ingredients of the drug, including MAPK1, JUN, and AKT1. The docking results showed good affinity, especially quercetin. Conclusion: This study preliminarily verified that PD may exert its effect on the treatment of colon cancer through multi-ingredients, multitargets, and multipathways. This will deepen our understanding of the potential mechanisms of PD anticolon cancer and establish a foundation for further basic experimental research.
Collapse
Affiliation(s)
- Huan Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yuting Hu
- College of Integration Science, Yanbian University, Yanji, China
- *Correspondence: Yuting Hu, ; Liang Chen,
| | - Baoyu Qi
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chengqiu Yan
- Anorectal Diagnosis and Treatment Center, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Lin Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yiwen Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Liang Chen
- Anorectal Diagnosis and Treatment Center, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Yuting Hu, ; Liang Chen,
| |
Collapse
|
6
|
KLF16 enhances stress tolerance of colorectal carcinomas by modulating nucleolar homeostasis and translational reprogramming. Mol Ther 2022; 30:2828-2843. [PMID: 35524408 PMCID: PMC9372374 DOI: 10.1016/j.ymthe.2022.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 12/22/2022] Open
Abstract
Translational reprogramming is part of the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress, which acts to the advantage of cancer growth and development in different stress conditions. But the mechanism of ER stress-related translational reprogramming in colorectal carcinoma (CRC) progression remains unclear. Here, we identified that Krüppel-Like Factor 16 (KLF16) can promote CRC progression and stress tolerance through translational reprogramming. The expression of KLF16 was upregulated in CRC tissues and associated with poor prognosis for CRC patients. We found that ER stress inducers can recruit KLF16 to the nucleolus and increase its interaction with two essential proteins for nucleolar homeostasis, nucleophosmin1 (NPM1) and fibrillarin (FBL). Moreover, knockdown of KLF16 can dysregulate nucleolar homeostasis in CRC cells. Translation-reporter system and polysome profiling assays further showed that KLF16 can effectively promote cap-independent translation of ATF4, which can enhance ER-phagy and proliferation of CRC cells. Overall, our study unveils a previously unrecognized role for KLF16 as an ER stress regulator through mediating translational reprogramming to enhance stress tolerance of CRC cells and provides a potential therapeutic vulnerability.
Collapse
|
7
|
Clement EJ, Law HCH, Qiao F, Noe D, Trevino JG, Woods NT. Combined Alcohol Exposure and KRAS Mutation in Human Pancreatic Ductal Epithelial Cells Induces Proliferation and Alters Subtype Signatures Determined by Multi-Omics Analysis. Cancers (Basel) 2022; 14:cancers14081968. [PMID: 35454872 PMCID: PMC9027648 DOI: 10.3390/cancers14081968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma is a deadly disease wherein alcohol use increases the risk of developing this cancer. Mutations in the KRAS oncogene are required for alcohol to promote pancreatic cancer in mice, but little is known about the molecular events associated with the combined exposure of alcohol and mutant KRAS expression in pancreas cells. In this study, we use pancreas cell models with and without mutant KRAS to evaluate the impact of chronic alcohol exposure on transcription and protein expression. This study identifies numerous differentially expressed transcripts and proteins that could influence the emergence of oncogenic features, such as increased proliferation, in pancreas cells. Abstract Pancreatic Ductal adenocarcinoma (PDAC) is an aggressive cancer commonly exhibiting KRAS-activating mutations. Alcohol contributes to the risk of developing PDAC in humans, and murine models have shown alcohol consumption in the context of KRAS mutation in the pancreas promotes the development of PDAC. The molecular signatures in pancreas cells altered by alcohol exposure in the context of mutant KRAS could identify pathways related to the etiology of PDAC. In this study, we evaluated the combined effects of alcohol exposure and KRAS mutation status on the transcriptome and proteome of pancreatic HPNE cell models. These analyses identified alterations in transcription and translational processes in mutant KRAS cells exposed to alcohol. In addition, multi-omics analysis suggests an increase in the correlation between mRNA transcript and protein abundance in cells exposed to alcohol with an underlying KRAS mutation. Through differential co-expression, SERPINE1 was found to be influential for PDAC development in the context of mutant KRAS and ethanol. In terms of PDAC subtypes, alcohol conditioning of HPNE cells expressing mutant KRAS decreases the Inflammatory subtype signature and increases the Proliferative and Metabolic signatures, as we previously observed in patient samples. The alterations in molecular subtypes were associated with an increased sensitivity to chemotherapeutic agents gemcitabine, irinotecan, and oxaliplatin. These results provide a framework for distinguishing the molecular dysregulation associated with combined alcohol and mutant KRAS in a pancreatic cell line model.
Collapse
Affiliation(s)
- Emalie J. Clement
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (E.J.C.); (H.C.-H.L.); (F.Q.)
| | - Henry C.-H. Law
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (E.J.C.); (H.C.-H.L.); (F.Q.)
| | - Fangfang Qiao
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (E.J.C.); (H.C.-H.L.); (F.Q.)
| | - Dragana Noe
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Jose G. Trevino
- Department of Surgery, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Nicholas T. Woods
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (E.J.C.); (H.C.-H.L.); (F.Q.)
- Correspondence:
| |
Collapse
|
8
|
Translational control of E2f1 regulates the Drosophila cell cycle. Proc Natl Acad Sci U S A 2022; 119:2113704119. [PMID: 35074910 PMCID: PMC8795540 DOI: 10.1073/pnas.2113704119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
E2F transcription factors are master regulators of the eukaryotic cell cycle. In Drosophila, the sole activating E2F, E2F1, is both required for and sufficient to promote G1→S progression. E2F1 activity is regulated both by binding to RB Family repressors and by posttranscriptional control of E2F1 protein levels by the EGFR and TOR signaling pathways. Here, we investigate cis-regulatory elements in the E2f1 messenger RNA (mRNA) that enable E2f1 translation to respond to these signals and promote mitotic proliferation of wing imaginal disc and intestinal stem cells. We show that small upstream open reading frames (uORFs) in the 5' untranslated region (UTR) of the E2f1 mRNA limit its translation, impacting rates of cell proliferation. E2f1 transgenes lacking these 5'UTR uORFs caused TOR-independent expression and excess cell proliferation, suggesting that TOR activity can bypass uORF-mediated translational repression. EGFR signaling also enhanced translation but through a mechanism less dependent on 5'UTR uORFs. Further, we mapped a region in the E2f1 mRNA that contains a translational enhancer, which may also be targeted by TOR signaling. This study reveals translational control mechanisms through which growth signaling regulates cell cycle progression.
Collapse
|