1
|
Henriques-Santos BM, Baker D, Zhou N, Snavely T, Sacchettini JC, Pietrantonio PV. Target-based discovery of antagonists of the tick (Rhipicephalus microplus) kinin receptor identifies small molecules that inhibit midgut contractions. PEST MANAGEMENT SCIENCE 2024; 80:5168-5179. [PMID: 38899490 DOI: 10.1002/ps.8242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND A GPCR (G protein-coupled receptor) target-based approach was applied to identify antagonists of the arthropod-specific tick kinin receptor. These small molecules were expected to reproduce the detrimental phenotypic effects that had been observed in Rhipicephalus microplus females when the kinin receptor was silenced by RNA interference. Rhipicephalus microplus, the southern cattle tick, cattle fever tick, or Asian blue tick, is the vector of pathogenic microorganisms causing the deadly bovine babesiosis and anaplasmosis. The widespread resistance to acaricides in tick populations worldwide emphasizes that exploring novel targets for effective tick control is imperative. RESULTS Fifty-three structural analogs of previously identified tick kinin antagonists were screened in a 'dual-addition' calcium fluorescence assay using a CHO-K1 cell line expressing the tick kinin receptor. Seven molecules were validated as non-cytotoxic antagonists, four of which were partial (SACC-0428764, SACC-0428780, SACC-0428800, and SACC-0428803), and three were full antagonists (SACC-0428799, SACC-0428801, and SACC-0428815). Four of these antagonists (SACC-0428764, SACC-0428780, SACC-0428799, and SACC-0428815) also inhibited the tick midgut contractions induced by the myotropic kinin agonist analog 1728, verifying their antagonistic bioactivity. The small molecules were tested on recombinant human neurokinin (NK) receptors, the one most similar to the invertebrate kinin receptors. Most molecules were inhibitors of the NK1 receptor, except SACC-0412066, a previously identified tick kinin receptor antagonist, which inhibited the NK1 receptor only at the highest concentration tested (25 μm). None of the molecules inhibited the NK3 human receptor. CONCLUSION Molecules identified through this approach could be useful probes for studying the tick kinin signaling system and midgut physiology. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Dwight Baker
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Nian Zhou
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Thomas Snavely
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
2
|
Marco HG, Glendinning S, Ventura T, Gäde G. The gonadotropin-releasing hormone (GnRH) superfamily across Pancrustacea/Tetraconata: A role in metabolism? Mol Cell Endocrinol 2024; 590:112238. [PMID: 38616035 DOI: 10.1016/j.mce.2024.112238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Affiliation(s)
- Heather G Marco
- Department of Biological Sciences, University of Cape Town, Rondebosch, 7701, South Africa.
| | - Susan Glendinning
- Centre for BioInnovation, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Tomer Ventura
- Centre for BioInnovation, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Rondebosch, 7701, South Africa
| |
Collapse
|
3
|
Choi MY, Price B, Hafeez M, Martin R, Richart C, Donnell RM. Bioactive peptides inhibit feeding activity in the grey garden slug, Deroceras reticulatum. PEST MANAGEMENT SCIENCE 2024. [PMID: 39193860 DOI: 10.1002/ps.8386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND The grey garden slug (Deroceras reticulatum) is considered the most damaging slug pest in global agriculture. Control methods primarily rely on chemical pesticides, which pose environmental risks and potential hazards to human health. There is a need for sustainable management alternatives such as biologically-based slug control options. However, the efficacy of nonchemical measures for controlling pest slug populations remains limited, particularly in the context of variable outdoor conditions. Neuropeptides and their corresponding receptors have been proposed as promising biological targets for the development of new pest management strategies. RESULTS A total of 23 bioactive peptides belonging to the PRX family, previously identified from the grey garden slug, D. reticulatum, were injected into or fed to this species. The detrimental effects of these peptides, including a reduction in body weight and an inhibition of feeding activity, were evaluated in feeding choice tests with D. reticulatum. Furthermore, the bioactive peptide formulated with a lipid particle demonstrated a feeding deterrent effect. One of the myomodulin (MM) peptides, APPLPRY, demonstrated a significant reduction in feeding activity, resulting in a reduction in slug weight or mortality in just 30 min. CONCLUSION The results represent the first evidence of a bioactive peptide having detrimental effects on D. reticulatum including causing feeding deterrent for this slug pest. The in vivo results provide insights into the potential development of active ingredients for managing slugs in the field. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Man-Yeon Choi
- USDA-ARS, Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Briana Price
- USDA-ARS, Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Muhammad Hafeez
- USDA-ARS, Horticultural Crops Research Laboratory, Corvallis, OR, USA
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Ruth Martin
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Casey Richart
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA
| | - Rory Mc Donnell
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
4
|
Cardoso JCR, Mc Shane JC, Li Z, Peng M, Power DM. Revisiting the evolution of Family B1 GPCRs and ligands: Insights from mollusca. Mol Cell Endocrinol 2024; 586:112192. [PMID: 38408601 DOI: 10.1016/j.mce.2024.112192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Family B1 G protein-coupled receptors (GPCRs) are one of the most well studied neuropeptide receptor families since they play a central role in many biological processes including endocrine, gastrointestinal, cardiovascular and reproduction in animals. The genes for these receptors emerged from a common ancestral gene in bilaterian genomes and evolved via gene/genome duplications and deletions in vertebrate and invertebrate genomes. Their existence and function have mostly been characterized in vertebrates and few studies exist in invertebrate species. Recently, an increased interest in molluscs, means a series of genomes have become available, and since they are less modified than insect and nematode genomes, they are ideal to explore the origin and evolution of neuropeptide gene families. This review provides an overview of Family B1 GPCRs and their peptide ligands and incorporates new data obtained from Mollusca genomes and taking a comparative approach challenges existing models on their origin and evolution.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Jennifer C Mc Shane
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Zhi Li
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Maoxiao Peng
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
5
|
Kahveci K, Düzgün MB, Atis AE, Yılmaz A, Shahraki A, Coskun B, Durdagi S, Birgul Iyison N. Discovering allatostatin type-C receptor specific agonists. Nat Commun 2024; 15:3965. [PMID: 38730017 PMCID: PMC11087482 DOI: 10.1038/s41467-024-48156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Currently, there is no pesticide available for the selective control of the pine processionary moth (Thaumetopoea pityocampa-specific), and conventional methods typically rely on mechanical techniques such as pheromone traps or broad-spectrum larvicidal chemicals. As climate change increases the range and dispersion capacity of crop and forest pests, outbreaks of the pine processionary occur with greater frequency and significantly impact forestry and public health. Our study is carried out to provide a T. pityocampa-specific pesticide targeting the Allatostatin Type-C Receptor (AlstR-C). We use a combination of computational biology methods, a cell-based screening assay, and in vivo toxicity and side effect assays to identify, for the first time, a series of AlstR-C ligands suitable for use as T. pityocampa-specific insecticides. We further demonstrate that the novel AlstR-C targeted agonists are specific to lepidopteran larvae, with no harmful effects on coleopteran larvae or adults. Overall, our study represents an important initial advance toward an insect GPCR-targeted next-generation pesticide design. Our approach may apply to other invertebrate GPCRs involved in vital metabolic pathways.
Collapse
Affiliation(s)
- Kübra Kahveci
- Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Türkiye
| | | | - Abdullah Emre Atis
- Plant Protection Product and Toxicology Department, Plant Protection Central Research Institute, Ankara, Türkiye
| | - Abdullah Yılmaz
- Plant Protection Product and Toxicology Department, Plant Protection Central Research Institute, Ankara, Türkiye
| | - Aida Shahraki
- Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Türkiye
- Kolb Lab, Department of Pharmacy, The Philipp University of Marburg, Marburg, Germany
| | - Basak Coskun
- Plant Protection Product and Toxicology Department, Plant Protection Central Research Institute, Ankara, Türkiye
| | - Serdar Durdagi
- Molecular Therapy Lab, Department of Pharmaceutical Chemistry, School of Pharmacy, Bahçeşehir University, İstanbul, Türkiye.
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahçeşehir University, İstanbul, Türkiye.
- Lab for Innovative Drugs (Lab4IND), Computational Drug Design Center (HITMER), Bahçeşehir University, İstanbul, Türkiye.
| | - Necla Birgul Iyison
- Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Türkiye.
| |
Collapse
|
6
|
Ye F, Kang Z, Kou H, Yang Y, Chen W, Wang S, Sun J, Liu F. G-Protein Coupled Receptor Gpr-1 Is Important for the Growth and Nutritional Metabolism of an Invasive Bark Beetle Symbiont Fungi Leptographium procerum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3354-3362. [PMID: 38230891 DOI: 10.1021/acs.jafc.3c07547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Leptographium procerum has been demonstrated to play important roles in the invasive success of red turpentine beetle (RTB), one of the most destructive invasive pests in China. Our previous studies found that bacterial volatile ammonia plays an important role in the maintenance of the RTB-L. procerum invasive complex. In this study, we found a GPCR gene Gpr-1 that was a response to ammonia but not involved in the ammonia-induced carbohydrate metabolism. Deletion of Gpr-1 significantly inhibited the growth and pathogenicity but thickened the cell wall of L. procerum, resulting in more resistance to cell wall-perturbing agents. Further analyses suggested that Gpr-1 deletion caused growth defects that might be due to the dysregulation of the amino acid and lipid metabolisms. The thicker cell wall in the ΔGpr-1 mutant was induced through the cell wall remodeling process. Our results indicated that Gpr-1 is essential for the growth of L. procerum by regulating the nutritional metabolism, which can be further explored for potential applications in the management of RTB.
Collapse
Affiliation(s)
- Fangyuan Ye
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Kang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Hongru Kou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunwen Yang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Wei Chen
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Saige Wang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Fanghua Liu
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
7
|
Bi Y, Wu L, Li B, Hao Y, Li Z, Zhang J, Cheng A, Yuan G, Fan J. Effects of beauvericin on the blood cells of Bombyx mori. J Invertebr Pathol 2023; 201:108003. [PMID: 37838064 DOI: 10.1016/j.jip.2023.108003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
In this study, silkworms were treated by injection of the bioactive depsipeptide beauvericin (BEA) to explore its effect on the cellular immunity of larvae of the silkworm Bombyx mori. The results showed that: The LC50 of BEA for silkworms on the 3rd day of the 4th instar was 362.36 µM. The total count of circulating hemocytes in the silkworms decreased at 12 h after injection with 350 µM BEA, and reached the minimum value at 72 h post-treatment; at 48 h post-treatment, a large number of nodules formed by the aggregation of blood cells of the silkworms were observed under the light microscope. The survival rate of hemocytes in the larvae treated with BEA was significantly reduced in a dose-dependent manner in vivo and in vitro. The encapsulation of Q-Sepharose Fast Flow (QFF) gel particles by hemocytes in the treatment group was significantly higher than that in the control group at 1.5 h and 3 h post-treatment (P < 0.05). Moreover, the melanization ratio of QFF gel particles kept increasing with treatment time. The melanization rate at 24 h after treatment was significantly higher than that at other times (P < 0.05), reaching 55.33 %. Under the scanning electron microscope, BEA-treated larvae showed protrusions on the surface of their blood cells in vivo. Under the transmission electron microscope, it was observed that silkworm hemocytes were vacuolated. This study demonstrated that BEA had an effect on the blood cells of silkworms, and has thrown some light on the inhibitory effect and mechanism of BEA on insect cellular immunity.
Collapse
Affiliation(s)
- Yong Bi
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China
| | - Lingzhi Wu
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China
| | - Baozhen Li
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong 030619, China.
| | - Yanping Hao
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China
| | - Zixiao Li
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China
| | - Jiwei Zhang
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China
| | - Aiying Cheng
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China
| | - Guizhen Yuan
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China
| | - Jinhua Fan
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China.
| |
Collapse
|
8
|
Chinta S, Vander Meer R, O’Reilly E, Choi MY. Insecticidal Effects of Receptor-Interference Isolated Bioactive Peptides on Fire Ant Colonies. Int J Mol Sci 2023; 24:13978. [PMID: 37762281 PMCID: PMC10530802 DOI: 10.3390/ijms241813978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Receptor-interference (Receptor-i) is a novel technology used to identify bioactive peptides as agonists or antagonists against a specific receptor, primarily targeting G-protein-coupled receptors (GPCRs). Using Receptor-i methodology, we targeted the pheromone biosynthesis activating neuropeptide receptor (PBAN-R) of the red imported fire ant (Solenopsis invicta). Based on previous studies, we selected four bioactive peptides cyclized with two cysteines: CVKLGSHFC, CIQQGSHFC, CERVGSHFC, and CMARYMSAC, and we conducted small-scale feeding bioassays, measuring fire ant worker mortality. All peptides reduced ant survival; however, CMARYMSAC (MARY) and CIQQGSHFC (IQQG) were the most effective and were selected for feeding trials against large, fully functional fire ant field colonies containing queen, brood, and up to 8000 workers. At the end of the experiment, day 84, synthetic peptide MARY killed over 80% of the workers and two of four queens. IQQG killed over 70% of the workers and three of four queens. The surviving two MARY queens lost an average of 21% of their starting weight. The surviving IQQG queen lost 31% of its weight. In contrast, control colony queens gained an average of 11% of their starting weight. These results provide proof-of-concept for the Receptor-i technology and will synergize applications to other agricultural and medical pests.
Collapse
Affiliation(s)
- Satya Chinta
- Center for Medical, Agricultural, and Veterinary Entomology, USDA-ARS, Gainesville, FL 32608, USA; (S.C.); (E.O.)
- Foresight Science and Technology, Hopkinton, MA 01748, USA
| | - Robert Vander Meer
- Center for Medical, Agricultural, and Veterinary Entomology, USDA-ARS, Gainesville, FL 32608, USA; (S.C.); (E.O.)
| | - Erin O’Reilly
- Center for Medical, Agricultural, and Veterinary Entomology, USDA-ARS, Gainesville, FL 32608, USA; (S.C.); (E.O.)
| | - Man-Yeon Choi
- Horticultural Crops Research Laboratory, USDA-ARS, Corvallis, OR 97330, USA
| |
Collapse
|
9
|
Vaudry H, Schoofs L, Civelli O, Kojima M. Editorial: Neuropeptide GPCRs in neuroendocrinology, Volume II. Front Endocrinol (Lausanne) 2023; 14:1219530. [PMID: 37415662 PMCID: PMC10321770 DOI: 10.3389/fendo.2023.1219530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/25/2023] [Indexed: 07/08/2023] Open
Affiliation(s)
- Hubert Vaudry
- Institute of Biomedical Research and Innovation, University of Rouen Normandy, Mont-Saint-Aignan, France
| | | | - Olivier Civelli
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| | - Masayasu Kojima
- Institute of Life Science, Kurume University, Fukuoka, Japan
| |
Collapse
|
10
|
Yoon JS, Ahn SJ, Choi MY. Selection and Comparative Gene Expression of Midgut-Specific Targets for Drosophila suzukii. INSECTS 2023; 14:76. [PMID: 36662004 PMCID: PMC9864236 DOI: 10.3390/insects14010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Spotted-wing drosophila (SWD), Drosophila suzukii, is a destructive and invasive pest that attacks most small fruits and cherries. The current management for SWD involves the use of conventional insecticides. In an effort to develop a biologically based control option, the application of RNA interference (RNAi) has been investigated. To develop an RNAi approach, suitable targets must be identified, and an efficient delivery method must be developed for introducing the double-stranded RNA (dsRNA) in the midgut. In D. suzukii, we previously found that dsRNA nucleases actively degrade dsRNA molecules in the midgut. In this study, we focused on identifying biological targets focused on the midgut membrane. The profile of midgut-specific genes was analyzed and compared with the genes expressed in the whole-body using transcriptome analysis. Differential gene expression analysis revealed that 1921 contigs were upregulated and 1834 contigs were downregulated in the midgut when compared to genes from other body tissues. We chose ten midgut-specifically upregulated genes and empirically confirmed their expressions. We are particularly interested in the midgut membrane proteins, including G protein-coupled receptors (GPCRs) such as diuretic hormone 31 (DH31) receptor, neuropeptide F (NPF) recepror, toll-9, adhesion receptors, methuselah (mth), and gustatory receptor, because insect GPCRs have been offered great potential for next-generation pest management.
Collapse
Affiliation(s)
- June-Sun Yoon
- USDA Agricultural Research Service, Horticultural Crops Research Unit, Corvallis, OR 97331, USA
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54596, Republic of Korea
| | - Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Man-Yeon Choi
- USDA Agricultural Research Service, Horticultural Crops Research Unit, Corvallis, OR 97331, USA
| |
Collapse
|
11
|
Li Y, Gao H, Zhang H, Yu R, Feng F, Tang J, Li B. Characterization and expression profiling of G protein-coupled receptors (GPCRs) in Spodoptera litura (Lepidoptera: Noctuidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 44:101018. [PMID: 35994891 DOI: 10.1016/j.cbd.2022.101018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 01/27/2023]
Abstract
Spodoptera litura is a highly destructive omnivorous pest, and they caused serious damage to various crops. G protein-coupled receptors (GPCRs) mediate dozens of physiological processes including reproduction, development, life span and behaviors, but the information of these receptors has been lacking in S. litura. Here, we methodically identified 122 GPCRs in S. litura and made an assay of their expression patterns in different tissues. Comparing the identified GPCRs with homologous genes of other insects, it is obvious that the subfamily A2 (biogenic amine receptors) and the subfamily A3 (neuropeptide and protein hormone receptors) of S. litura have expanded to a certain extent, which may be related to the omnivorous nature and drought environment resistance of S. litura. Besides, the large Methuselah (Mth)/Methuselah-like (Mthl) subfamily of S. litura may be involved in many physiological functions such as longevity and stress response. Apart from duplicate receptors, the loss of parathyroid hormone receptor (PTHR) and the bride of sevenless (Boss) receptor in the lepidopteran insects may imply a new pattern of wing formation and energy metabolism in lepidopteran insects. In addition, the high expression level of GPCRs in different tissues reflects the functional diversity of GPCRs regulating. Systemic identification and initial characterization of GPCRs in S. litura provide a basis for further studies to reveal the functions of these receptors in regulating physiology and behavior.
Collapse
Affiliation(s)
- Yanxiao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Han Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Hui Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Runnan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Fan Feng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jing Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
12
|
Zhu H, Liu Z, Ma H, Zheng W, Liu J, Zhou Y, Man Y, Zhou X, Zeng A. Pharmacological Properties and Function of the PxOctβ3 Octopamine Receptor in Plutella xylostella (L.). INSECTS 2022; 13:735. [PMID: 36005359 PMCID: PMC9409995 DOI: 10.3390/insects13080735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
The diamondback moth (Plutella xylostella) is one of the most destructive lepidopteran pests of cruciferous vegetables, and insights into regulation of its physiological processes contribute towards the development of new pesticides against it. Thus, we investigated the regulatory functions of its β-adrenergic-like octopamine receptor (PxOctβ3). The open reading frame (ORF) of PxOctβ3 was phylogenetically analyzed, and the levels of expression of the receptor mRNA were determined. This ORF was also cloned and expressed in HEK-293 cells. A series of octopamine receptor agonists and antagonists were tested against PxOctβ3. We showed that the receptor is a member of the Octβ3 protein family, and an analysis using quantitative PCR showed that it was expressed at all developmental stages of P. xylostella. Octopamine activated PxOctβ3, resulting in increased levels of intracellular cAMP. Furthermore, the agonists naphazoline, clonidine, 2-phenethylamine, and amitraz activated the PxOctβ3 receptor, and naphazoline was the most effective. Only metoclopramide and mianserin had significant antagonistic effects on PxOctβ3, whereas yohimbine, phentolamine, and chlorpromazine lacked obvious antagonistic effects. The injection of double-stranded RNA in an RNA interference assay indicated that PxOctβ3 regulates development in P. xylostella. This study demonstrated the pharmacological properties and functions of PxOctβ3 in P. xylostella, thus, providing a theoretical basis for the design of pesticides that target octopamine receptors.
Collapse
Affiliation(s)
- Hang Zhu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zheming Liu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haihao Ma
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Wei Zheng
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jia Liu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yong Zhou
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yilong Man
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xiaoao Zhou
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Aiping Zeng
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
13
|
In Search of Synergistic Insect Repellents: Modeling of Muscarinic GPCR Interactions with Classical and Bitopic Photoactive Ligands. Molecules 2022; 27:molecules27103280. [PMID: 35630759 PMCID: PMC9147842 DOI: 10.3390/molecules27103280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Insect vector-borne diseases pose serious health problems, so there is a high demand for efficient molecules that could reduce transmission. Using molecular docking and molecular dynamics (MD) simulation, we studied a series of compounds acting on human and insect muscarinic acetylcholine receptors (mAChRs), a novel target of synergistic agents in pest control. We characterized early conformational changes of human M1 and fruit fly type-A mAChR G protein-coupled receptors (GPCRs) in response to DEET, IR3535, and muscarine binding based on the MD analysis of the activation microswitches known to form the signal transduction pathway in class A GPCRs. We indicated groups of microswitches that are the most affected by the presence of a ligand. Moreover, to increase selectivity towards insects, we proposed a new, bitopic, photoswitchable mAChR ligand—BQCA-azo-IR353 and studied its interactions with both receptors. Modeling data showed that using a bitopic ligand may be a promising strategy in the search for better insect control.
Collapse
|
14
|
Liu L, Wilcox XE, Fisher AJ, Boyd SD, Zhi J, Winkler DD, Bulla LA. Functional and Structural Analysis of the Toxin-Binding Site of the Cadherin G-Protein-Coupled Receptor, BT-R 1, for Cry1A Toxins of Bacillus thuringiensis. Biochemistry 2022; 61:752-766. [PMID: 35438971 DOI: 10.1021/acs.biochem.2c00089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The G-protein-coupled receptor BT-R1 in the moth Manduca sexta represents a class of single-membrane-spanning α-helical proteins within the cadherin family that regulate intercellular adhesion and contribute to important signaling activities that control cellular homeostasis. The Cry1A toxins, Cry1Aa, Cry1Ab, and Cry1Ac, produced by Bacillus thuringiensis bind BT-R1 very tightly (Kd = 1.1 nM) and trigger a Mg2+-dependent signaling pathway that involves the stimulation of G-protein α-subunit, which subsequently launches a coordinated signaling cascade, resulting in insect death. The three Cry1A toxins compete for the same binding site on BT-R1, and the pattern of inhibition of insecticidal activity against M. sexta is strikingly similar for all three toxins. The binding domain is localized in the 12th cadherin repeat (EC12: Asp1349 to Arg1460, 1349DR1460) in BT-R1 and to various truncation fragments derived therefrom. Fine mapping of EC12 revealed that the smallest fragment capable of binding is a highly conserved 94-amino acid polypeptide bounded by Ile1363 and Ser1456 (1363IS1456), designated as the toxin-binding site (TBS). Logistical regression analysis revealed that binding of an EC12 truncation fragment containing the TBS is antagonistic to each of the Cry1A toxins and completely inhibits the insecticidal activity of all three. Elucidation of the EC12 motif of the TBS by X-ray crystallography at a 1.9 Å resolution combined with results of competitive binding analyses, live cell experiments, and whole insect bioassays substantiate the exclusive involvement of BT-R1 in initiating insect cell death and demonstrate that the natural receptor BT-R1 contains a single TBS.
Collapse
Affiliation(s)
- Li Liu
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75083, United States
| | | | | | - Stefanie D Boyd
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75083, United States
| | - Jiahe Zhi
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75083, United States
| | - Duane D Winkler
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75083, United States
| | - Lee A Bulla
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75083, United States
| |
Collapse
|
15
|
Orchard I, Leyria J, Al-Dailami A, Lange AB. Fluid Secretion by Malpighian Tubules of Rhodnius prolixus: Neuroendocrine Control With New Insights From a Transcriptome Analysis. Front Endocrinol (Lausanne) 2021; 12:722487. [PMID: 34512553 PMCID: PMC8426621 DOI: 10.3389/fendo.2021.722487] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/03/2021] [Indexed: 01/25/2023] Open
Abstract
Rhodnius prolixus (the kissing bug and a major vector of Chagas disease) is an obligate blood feeder that in the case of the fifth instar consumes up to 10 times its unfed body weight in a single 20-minute feed. A post-prandial diuresis is initiated, within minutes of the start of gorging, in order to lower the mass and concentrate the nutrients of the meal. Thus, R. prolixus rapidly excretes a fluid that is high in NaCl content and hypo-osmotic to the hemolymph, thereby eliminating 50% of the volume of the blood meal within 3 hours of gorging. In R. prolixus, as with other insects, the Malpighian tubules play a critical role in diuresis. Malpighian tubules are not innervated, and their fine control comes under the influence of the neuroendocrine system that releases amines and neuropeptides as diuretic or antidiuretic hormones. These hormones act upon the Malpighian tubules via a variety of G protein-coupled receptors linked to second messenger systems that influence ion transporters and aquaporins; thereby regulating fluid secretion. Much has been discovered about the control of diuresis in R. prolixus, and other model insects, using classical endocrinological studies. The post-genomic era, however, has brought new insights, identifying novel diuretic and antidiuretic hormone-signaling pathways whilst also validating many of the classical discoveries. This paper will focus on recent discoveries into the neuroendocrine control of the rapid post-prandial diuresis in R. prolixus, in order to emphasize new insights from a transcriptome analysis of Malpighian tubules taken from unfed and fed bugs.
Collapse
Affiliation(s)
- Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | | | | | | |
Collapse
|
16
|
Shukla AK. Emerging paradigms in activation, signaling, and regulation of G protein-coupled receptors. FEBS J 2021; 288:2458-2460. [PMID: 33818907 PMCID: PMC7614522 DOI: 10.1111/febs.15839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
This Special Issue of The FEBS Journal brings together a set of review articles focused on recent developments in the field of GPCR biology, with particular emphasis on novel paradigms of their activation, signaling, and regulation. These articles cover a broad repertoire of cellular, physiological, and structural aspects ranging from the interaction of GPCRs with their signal transducers, allosteric modulation of these receptors with therapeutic implications, and emerging technologies aimed to probe critical aspects of receptor signaling and regulation.
Collapse
Affiliation(s)
- Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| |
Collapse
|
17
|
Gao H, Li Y, Wang M, Song X, Tang J, Feng F, Li B. Identification and Expression Analysis of G Protein-Coupled Receptors in the Miridae Insect Apolygus lucorum. Front Endocrinol (Lausanne) 2021; 12:773669. [PMID: 34899608 PMCID: PMC8660763 DOI: 10.3389/fendo.2021.773669] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/08/2021] [Indexed: 01/31/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest and most versatile family of transmembrane receptors in the cell and they play a vital role in the regulation of multiple physiological processes. The family Miridae (Hemiptera: Heteroptera) is one of the most diverse families of insects. Until now, information on GPCRs has been lacking in Miridae. Apolygus lucorum, a representative species of the Miridae, is an omnivorous pest that occurs worldwide and is notorious for causing serious damage to various crops and substantial economic losses. By searching the genome, 133 GPCRs were identified in A. lucorum. Compared with other model insects, we have observed GPCR genes to be remarkably expanded in A. lucorum, especially focusing on biogenic amine receptors and neuropeptide receptors. Among these, there is a novel large clade duplicated from known FMRFamide receptors (FMRFaRs). Moreover, the temporal and spatial expression profiles of the 133 genes across developmental stages were determined by transcriptome analysis. Most GPCR genes showed a low expression level in the whole organism of A. lucorum. However, there were a few highly expressed GPCR genes. The highly expressed LW opsins in the head probably relate to nocturning of A. lucorum, and the expression of Cirl at different times and in different tissues indicated it may be involved in growth and development of A. lucorum. We also found C2 leucine-rich repeat-containing GPCRs (LGRs) were mainly distributed in Hemiptera and Phthiraptera among insects. Our study was the first investigation on GPCRs in A. lucorum and it provided a molecular target for the regulation and control of Miridae pests.
Collapse
|