1
|
Sun J, Boyle AL, Brünle S, Ubbink M. A low-barrier proton shared between two aspartates acts as a conformational switch that changes the substrate specificity of the β-lactamase BlaC. Int J Biol Macromol 2024; 278:134665. [PMID: 39134195 DOI: 10.1016/j.ijbiomac.2024.134665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Serine β-lactamases inactivate β-lactam antibiotics in a two-step mechanism comprising acylation and deacylation. For the deacylation step, a water molecule is activated by a conserved glutamate residue to release the adduct from the enzyme. The third-generation cephalosporin ceftazidime is a poor substrate for the class A β-lactamase BlaC from Mycobacterium tuberculosis but it can be hydrolyzed faster when the active site pocket is enlarged, as was reported for mutant BlaC P167S. The conformational change in the Ω-loop of the P167S mutant displaces the conserved glutamate (Glu166), suggesting it is not required for deacylation of the ceftazidime adduct. Here, we report the characterization of wild type BlaC and BlaC E166A at various pH values. The presence of Glu166 strongly enhances activity against nitrocefin but not ceftazidime, indicating it is indeed not required for deacylation of the adduct of the latter substrate. At high pH wild type BlaC was found to exist in two states, one of which converts ceftazidime much faster, resembling the open state previously reported for the BlaC mutant P167S. The pH-dependent switch between the closed and open states is caused by the loss at high pH of a low-barrier hydrogen bond, a proton shared between Asp172 and Asp179. These results illustrate how readily shifts in substrate specificity can occur as a consequence of subtle changes in protein structure.
Collapse
Affiliation(s)
- Jing Sun
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Aimee L Boyle
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Steffen Brünle
- Biophysical Structure Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Marcellus Ubbink
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands.
| |
Collapse
|
2
|
Singh A, Acharya B, Mukherjee B, Boorla VS, Boral S, Maiti S, De S. Stability and dynamics of extradenticle modulates its function. Curr Res Struct Biol 2024; 7:100150. [PMID: 38784963 PMCID: PMC11112286 DOI: 10.1016/j.crstbi.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/03/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Extradenticle (EXD) is a partner protein of the HOX transcription factors and plays an important role in the development of Drosophila. It confers increased affinity and specificity of DNA-binding to the HOX proteins. However, the DNA-binding homeodomain of EXD has a significantly weaker affinity to DNA compared to the HOX homeodomains. Here, we show that a glycine residue (G290) in the middle of the EXD DNA-binding helix primarily results in this weaker binding. Glycine destabilizes helices. To probe its role in the stability and function of the protein, G290 was mutated to alanine. The intrinsic stability of the DNA-binding helix increased in the G290A mutant as observed by NMR studies and molecular dynamics (MD) simulation. Also, NMR dynamics and MD simulation show that dynamic motions present in the wild-type protein are quenched in the mutant. This in turn resulted in increased stability of the entire homeodomain (ΔΔGG→A of -2.6 kcal/mol). Increased protein stability resulted in three-fold better DNA-binding affinity of the mutant as compared to the wild-type protein. Molecular mechanics with generalized Born and surface area solvation (MMGBSA) analysis of our MD simulation on DNA-bound models of both wild-type and mutant proteins shows that the contribution to binding is enhanced for most of the interface residues in the mutant compared to the wild-type. Interestingly, the flexible N-terminal arm makes more stable contact with the DNA minor groove in the mutant. We found that the two interaction sites i.e. the DNA-binding helix and the unstructured N-terminal arm influence each other via the bound DNA. These results provide an interesting conundrum: alanine at position 290 enhances both the stability and the DNA-binding affinity of the protein, however, evolution prefers glycine at this position. We have provided several plausible explanations for this apparent conundrum. The function of the EXD as a HOX co-factor requires its ability to discriminate similar DNA sequences, which is most likely comprom.
Collapse
Affiliation(s)
- Aakanksha Singh
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Bidisha Acharya
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Beas Mukherjee
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | | | | | | | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| |
Collapse
|
3
|
van Alen I, Chikunova A, van Zanten DB, de Block AA, Timmer M, Brünle S, Ubbink M. Asp179 in the class A β-lactamase from Mycobacterium tuberculosis is a conserved yet not essential residue due to epistasis. FEBS J 2023; 290:4933-4949. [PMID: 37335937 DOI: 10.1111/febs.16892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
Conserved residues are often considered essential for function, and substitutions in such residues are expected to have a negative influence on the properties of a protein. However, mutations in a few highly conserved residues of the β-lactamase from Mycobacterium tuberculosis, BlaC, were shown to have no or only limited negative effect on the enzyme. One such mutant, D179N, even conveyed increased ceftazidime resistance upon bacterial cells, while displaying good activity against penicillins. The crystal structures of BlaC D179N in resting state and in complex with sulbactam reveal subtle structural changes in the Ω-loop as compared to the structure of wild-type BlaC. Introducing this mutation in four other β-lactamases, CTX-M-14, KPC-2, NMC-A and TEM-1, resulted in decreased antibiotic resistance for penicillins and meropenem. The results demonstrate that the Asp in position 179 is generally essential for class A β-lactamases but not for BlaC, which can be explained by the importance of the interaction with the side chain of Arg164 that is absent in BlaC. It is concluded that Asp179 though conserved is not essential in BlaC, as a consequence of epistasis.
Collapse
Affiliation(s)
- Ilona van Alen
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | - Danny B van Zanten
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Amber A de Block
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Monika Timmer
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Steffen Brünle
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| |
Collapse
|
4
|
Sun J, Chikunova A, Boyle AL, Voskamp P, Timmer M, Ubbink M. Enhanced activity against a third-generation cephalosporin by destabilization of the active site of a class A beta-lactamase. Int J Biol Macromol 2023; 250:126160. [PMID: 37549761 DOI: 10.1016/j.ijbiomac.2023.126160] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/10/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
The β-lactamase BlaC conveys resistance to a broad spectrum of β-lactam antibiotics to its host Mycobacterium tuberculosis but poorly hydrolyzes third-generation cephalosporins, such as ceftazidime. Variants of other β-lactamases have been reported to gain activity against ceftazidime at the cost of the native activity. To understand this trade-off, laboratory evolution was performed, screening for enhanced ceftazidime activity. The variant BlaC Pro167Ser shows faster breakdown of ceftazidime, poor hydrolysis of ampicillin and only moderately reduced activity against nitrocefin. NMR spectroscopy, crystallography and kinetic assays demonstrate that the resting state of BlaC P167S exists in an open and a closed state. The open state is more active in the hydrolysis of ceftazidime. In this state the catalytic residue Glu166, generally believed to be involved in the activation of the water molecule required for deacylation, is rotated away from the active site, suggesting it plays no role in the hydrolysis of ceftazidime. In the closed state, deacylation of the BlaC-ceftazidime adduct is slow, while hydrolysis of nitrocefin, which requires the presence of Glu166 in the active site, is barely affected, providing a structural explanation for the trade-off in activities.
Collapse
Affiliation(s)
- Jing Sun
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Aleksandra Chikunova
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Aimee L Boyle
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Patrick Voskamp
- Biophysical Structural Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Monika Timmer
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Marcellus Ubbink
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands.
| |
Collapse
|
5
|
Economou Lundeberg E, Andersson V, Wijkander M, Groenheit R, Mansjö M, Werngren J, Cortes T, Barilar I, Niemann S, Merker M, Köser CU, Davies Forsman L. In vitro activity of new combinations of β-lactam and β-lactamase inhibitors against the Mycobacterium tuberculosis complex. Microbiol Spectr 2023; 11:e0178123. [PMID: 37737628 PMCID: PMC10580993 DOI: 10.1128/spectrum.01781-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 09/23/2023] Open
Abstract
As meropenem-clavulanic acid is recommended for the treatment of drug-resistant tuberculosis, the repurposing of new carbapenem combinations may provide new treatment options, including oral alternatives. Therefore, we studied the in vitro activities of meropenem-vaborbactam, meropenem-clavulanic acid, and tebipenem-clavulanic acid. One hundred nine Mycobacterium tuberculosis complex (MTBC) clinical isolates were tested, of which 69 were pan-susceptible and the remaining pyrazinamide- or multidrug-resistant. Broth microdilution MICs were determined using the EUCAST reference method. Meropenem and tebipenem were tested individually and in combination with vaborbactam 8 mg/L and clavulanic-acid 2 and 4 mg/L, respectively. Whole-genome sequencing was performed to explore resistance mechanisms. Clavulanic acid lowered the modal tebipenem MIC approximately 16-fold (from 16 to 1 mg/L). The modal meropenem MIC was reduced twofold by vaborbactam compared with an approximately eightfold decrease by clavulanic acid. The only previously described high-confidence carbapenem resistance mutation, crfA T62A, was shared by a subgroup of lineage 4.3.4.1 isolates and did not correlate with elevated MICs. The presence of a β-lactamase inhibitor reduced the MTBC MICs of tebipenem and meropenem. The resulting MIC distribution was lowest for the orally available drugs tebipenem-clavulanic acid. Whether this in vitro activity translates to similar or greater clinical efficacy of tebipenem-clavulanic acid compared with the currently WHO-endorsed meropenem-clavulanic acid requires clinical studies. IMPORTANCE Repurposing of already approved antibiotics, such as β-lactams in combination with β-lactamase inhibitors, may provide new treatment alternatives for drug-resistant tuberculosis. Meropenem-clavulanic acid was more active in vitro compared to meropenem-vaborbactam. Notably, tebipenem-clavulanic acid showed even better activity, raising the potential of an all-oral treatment option. Clinical data are needed to investigate whether the better in vitro activity of tebipenem-clavulanic acid correlates with greater clinical efficacy compared with the currently WHO-endorsed meropenem-clavulanic acid.
Collapse
Affiliation(s)
| | - Viktoria Andersson
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Wijkander
- Department of Microbiology, Public Health Agency of Sweden, Stockholm, Sweden
| | - Ramona Groenheit
- Department of Microbiology, Public Health Agency of Sweden, Stockholm, Sweden
| | - Mikael Mansjö
- Department of Microbiology, Public Health Agency of Sweden, Stockholm, Sweden
| | - Jim Werngren
- Department of Microbiology, Public Health Agency of Sweden, Stockholm, Sweden
| | - Teresa Cortes
- Pathogen Gene Regulation Unit, Biomedicine Institute of Valencia (IBV), CSIC, Valencia, Spain
| | - Ivan Barilar
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Matthias Merker
- German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- Evolution of the Resistome, Research Center Borstel, Borstel, Germany
| | - Claudio U. Köser
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Lina Davies Forsman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Division of Infectious Diseases, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
6
|
Kaderabkova N, Bharathwaj M, Furniss RCD, Gonzalez D, Palmer T, Mavridou DA. The biogenesis of β-lactamase enzymes. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001217. [PMID: 35943884 PMCID: PMC10235803 DOI: 10.1099/mic.0.001217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
The discovery of penicillin by Alexander Fleming marked a new era for modern medicine, allowing not only the treatment of infectious diseases, but also the safe performance of life-saving interventions, like surgery and chemotherapy. Unfortunately, resistance against penicillin, as well as more complex β-lactam antibiotics, has rapidly emerged since the introduction of these drugs in the clinic, and is largely driven by a single type of extra-cytoplasmic proteins, hydrolytic enzymes called β-lactamases. While the structures, biochemistry and epidemiology of these resistance determinants have been extensively characterized, their biogenesis, a complex process including multiple steps and involving several fundamental biochemical pathways, is rarely discussed. In this review, we provide a comprehensive overview of the journey of β-lactamases, from the moment they exit the ribosomal channel until they reach their final cellular destination as folded and active enzymes.
Collapse
Affiliation(s)
- Nikol Kaderabkova
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Manasa Bharathwaj
- Centre to Impact AMR, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - R. Christopher D. Furniss
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Diego Gonzalez
- Laboratoire de Microbiologie, Institut de Biologie, Université de Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Tracy Palmer
- Microbes in Health and Disease, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Despoina A.I. Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
7
|
Chikunova A, Ubbink M. The roles of highly conserved, non‐catalytic residues in class A β‐lactamases. Protein Sci 2022; 31:e4328. [PMID: 35634774 PMCID: PMC9112487 DOI: 10.1002/pro.4328] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 11/12/2022]
|
8
|
van Alen I, Chikunova A, Safeer AA, Ahmad MUD, Perrakis A, Ubbink M. The G132S Mutation Enhances the Resistance of Mycobacterium tuberculosis β-Lactamase against Sulbactam. Biochemistry 2021; 60:2236-2245. [PMID: 34250791 PMCID: PMC8383266 DOI: 10.1021/acs.biochem.1c00168] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
The current rise
of antibiotic resistant forms of Mycobacterium
tuberculosis is a global health threat that calls for new
antibiotics. The β-lactamase BlaC of this pathogen prevents
the use of β-lactam antibiotics, except in combination with
a β-lactamase inhibitor. To understand if exposure to such inhibitors
can easily result in resistance, a BlaC evolution experiment was performed,
studying the evolutionary adaptability against the inhibitor sulbactam.
Several amino acid substitutions in BlaC were shown to confer reduced
sensitivity to sulbactam. The G132S mutation causes a reduction in
the rate of nitrocefin and ampicillin hydrolysis and simultaneously
reduces the sensitivity for sulbactam inhibition. Introduction of
the side chain moiety of Ser132 causes the 104–105 peptide
bond to assume the cis conformation and the side
chain of Ser104 to be rotated toward the sulbactam adduct with which
it forms a hydrogen bond not present in the wild-type enzyme. The
gatekeeper residue Ile105 also moves. These changes in the entrance
of the active site can explain the decreased affinity of G132S BlaC
for both substrates and sulbactam. Our results show that BlaC can
easily acquire a reduced sensitivity for sulbactam, with a single-amino
acid mutation, which could hinder the use of combination therapies.
Collapse
Affiliation(s)
- Ilona van Alen
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Aleksandra Chikunova
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Adil A Safeer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Misbha Ud Din Ahmad
- Division of Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Anastassis Perrakis
- Division of Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|