1
|
Hu Y, Wang Y, Zhi L, Yu L, Hu X, Shen Y, Du W. SDC4 protein action and related key genes in nonhealing diabetic foot ulcers based on bioinformatics analysis and machine learning. Int J Biol Macromol 2024; 283:137789. [PMID: 39557273 DOI: 10.1016/j.ijbiomac.2024.137789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Diabetic foot ulcers (DFU) is a complication associated with diabetes characterised by high morbidity, disability, and mortality, involving chronic inflammation and infiltration of multiple immune cells. We aimed to identify the critical genes in nonhealing DFU using single-cell RNA sequencing, transcriptomic analysis and machine learning. The GSE165816, GSE134431, and GSE143735 datasets were downloaded from the GEO database. We processed and screened the datasets, and identified the cell subsets. Each cell subtype was annotated, and the predominant cell types contributing to the disease were analysed. Key genes were identified using the LASSO regression algorithm, followed by verification of model accuracy and stability. We investigated the molecular mechanisms and changes in signalling pathways associated with this disease using immunoinfiltration analysis, GSEA, and GSVA. Through scRNA-seq analysis, we identified 12 distinct cell clusters and determined that the basalKera cell type was important in disease development. A high accuracy and stability prediction model was constructed incorporating five key genes (TXN, PHLDA2, RPLP1, MT1G, and SDC4). Among these five genes, SDC4 has the strongest correlation and plays an important role in the development of DFU. Our study identified SDC4 significantly associated with nonhealing DFU development, potentially serving as new prevention and treatment strategies for DFU.
Collapse
Affiliation(s)
- Yungang Hu
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China; Department of Plastic Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Yiwen Wang
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Lin Zhi
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Lu Yu
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Xiaohua Hu
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Yuming Shen
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Weili Du
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China.
| |
Collapse
|
2
|
Ma X, Zhao B, Wang C, Sun M, Dai Y, E. L, Gao M, Liu X, Jia Y, Yue W, Liu H. ANXA1 Enhances the Proangiogenic Potential of Human Dental Pulp Stem Cells. Stem Cells Int 2024; 2024:7045341. [PMID: 39478978 PMCID: PMC11524703 DOI: 10.1155/2024/7045341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/21/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
Dental trauma is highly prevalent in children and adolescents, alongside tooth decay. This condition mainly induces pulp contamination, pulp necrosis, and tooth avulsion in the clinical context. The disturbance to root growth is prone to occur in immature permanent teeth. However, conventional endodontic treatment may not achieve favorable outcomes in these cases, necessitating conducting relevant exploration. Therefore, this study was performed to examine the impact of Annexin A1 (ANXA1) on the vascular repair of dental pulp using human dental pulp stem cells (DPSCs). Specifically, RNA sequencing (RNA-Seq) and functional clustering analyses were employed to identify key genes involved in pulp regeneration. ANXA1 was detected in DPSCs and may correlate with pulp restoration. However, it remains undefined about the potential of ANXA1 to promote the angiogenetic differentiation of DPSCs. The results of this study revealed that the addition of ANXA1 significantly enhanced the secretion of vascular endothelial growth factor-A (VEGF-A) in DPSCs. Moreover, the incubation of DPSCs with ANXA1 resulted in a higher expression level of endothelial markers and promoted vessel formation through the upregulation of the phosphorylated p38 (p-p38) pathway. The in vivo results corroborated that the ANXA1 group exhibited more blood vessels and an increased ratio of positive staining for CD31. In conclusion, these findings indicate that ANXA1 enhances the in vivo and in vitro vascularization of DPSCs, and the activation of p-p38 may play a pivotal role in mediating the differentiation process.
Collapse
Affiliation(s)
- Xiaocao Ma
- School of Medicine, Nankai University, Tianjin 300071, China
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, Chinese PLA General Hospital, Beijing 100853, China
| | - Bichun Zhao
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chao Wang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Manqiang Sun
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yawen Dai
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, Chinese PLA General Hospital, Beijing 100853, China
| | - Lingling E.
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, Chinese PLA General Hospital, Beijing 100853, China
| | - Mingzhu Gao
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiangwei Liu
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, Chinese PLA General Hospital, Beijing 100853, China
| | - Yali Jia
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hongchen Liu
- School of Medicine, Nankai University, Tianjin 300071, China
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
3
|
Pessolano E, Belvedere R, Spampinato SF. Editorial: The pharmacological modulation of angiogenesis. Front Pharmacol 2024; 15:1474918. [PMID: 39257390 PMCID: PMC11385008 DOI: 10.3389/fphar.2024.1474918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Affiliation(s)
- Emanuela Pessolano
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | | |
Collapse
|
4
|
Li L, Wang B, Zhao S, Xiong Q, Cheng A. The role of ANXA1 in the tumor microenvironment. Int Immunopharmacol 2024; 131:111854. [PMID: 38479155 DOI: 10.1016/j.intimp.2024.111854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
Annexin A1 (ANXA1) is widely expressed in a variety of body tissues and cells and is also involved in tumor development through multiple pathways. The invasion, metastasis, and immune escape of tumor cells depend on the interaction between tumor cells and their surrounding environment. Research shows that ANXA1 can act on a variety of cells in the tumor microenvironment (TME), and subsequently affect the proliferation, invasion and metastasis of tumors. This article describes the role of ANXA1 in the various components of the tumor microenvironment and its mechanism of action, as well as the existing clinical treatment measures related to ANXA1. These findings provide insight for the further design of strategies targeting ANXA1 for the diagnosis and treatment of malignant tumors.
Collapse
Affiliation(s)
- Lanxin Li
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Baiqi Wang
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuang Zhao
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Qinglin Xiong
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Ailan Cheng
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
5
|
Belvedere R, Novizio N, Palazzo M, Pessolano E, Petrella A. The pro-healing effects of heparan sulfate and growth factors are enhanced by the heparinase enzyme: New association for skin wound healing treatment. Eur J Pharmacol 2023; 960:176138. [PMID: 37923158 DOI: 10.1016/j.ejphar.2023.176138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/02/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Effective treatment strategies for skin wound repair are the focus of numerous studies. New pharmacological approaches appear necessary to guarantee a correct and healthy tissue regeneration. For these reasons, we purposed to investigate the effects of the combination between heparan sulfate and growth factors further adding the heparinase enzyme. Interestingly, for the first time, we have found that this whole association retains a marked pro-healing activity when topically administered to the wound. In detail, this combination significantly enhances the motility and activation of the main cell populations involved in tissue regeneration (keratinocytes, fibroblasts and endothelial cells), compared with single agents administered without heparinase. Notably, using an experimental C57BL/6 mouse model of skin wounding, we observed that the topical treatment of skin lesions with heparan sulfate + growth factors + heparinase promotes the highest closure of wounds compared to each substance mixed with the other ones in all the possible combinations. Eosin/hematoxylin staining of skin biopsies revealed that treatment with the whole combination allows the formation of a well-structured matrix with numerous new vessels. Confocal analyses for vimentin, FAP1α, CK10 and CD31 have highlighted the presence of activated fibroblasts, differentiated keratinocytes and endothelial cells at the closed region of wounds. Our results encourage defining this combined treatment as a new and appealing therapy expedient in skin wound healing, as it is able to activate cell components and promote a dynamic lesions closure.
Collapse
Affiliation(s)
| | - Nunzia Novizio
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | | | - Emanuela Pessolano
- Department of Pharmacological Sciences, University of Piemonte Orientale, Novara, Italy
| | | |
Collapse
|
6
|
Prevete N, Poto R, Marone G, Varricchi G. Unleashing the power of formyl peptide receptor 2 in cardiovascular disease. Cytokine 2023; 169:156298. [PMID: 37454543 DOI: 10.1016/j.cyto.2023.156298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/25/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
N-formyl peptide receptors (FPRs) are seven-transmembrane, G protein-coupled receptors with a wide distribution in immune and non-immune cells, recognizing N-formyl peptides from bacterial and mitochondrial origin and several endogenous signals. Three FPRs have been identified in humans: FPR1, FPR2, and FPR3. Most FPR ligands can activate a pro-inflammatory response, while a limited group of FPR agonists can elicit anti-inflammatory and homeostatic responses. Annexin A1 (AnxA1), a glucocorticoid-induced protein, its N-terminal peptide Ac2-26, and lipoxin A4 (LXA4), a lipoxygenase-derived eicosanoid mediator, exert significant immunomodulatory effects by interacting with FPR2 and/or FPR1. The ability of FPRs to recognize both ligands with pro-inflammatory or inflammation-resolving properties places them in a crucial position in the balance between activation against harmful events and maintaince of tissue integrity. A new field of investigation focused on the role of FPRs in the setting of heart injury. FPRs are expressed on cardiac macrophages, which are the predominant immune cells in the myocardium and play a key role in heart diseases. Several endogenous (AnxA1, LXA4) and synthetic compounds (compound 43, BMS-986235) reduced infarct size and promoted the resolution of inflammation via the activation of FPR2 on cardiac macrophages. Further studies should evaluate FPR2 role in other cardiovascular disorders.
Collapse
Affiliation(s)
- Nella Prevete
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy.
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy.
| |
Collapse
|
7
|
Li L, Cook C, Liu Y, Li J, Jiang J, Li S. Endothelial glycocalyx in hepatopulmonary syndrome: An indispensable player mediating vascular changes. Front Immunol 2022; 13:1039618. [PMID: 36618396 PMCID: PMC9815560 DOI: 10.3389/fimmu.2022.1039618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatopulmonary syndrome (HPS) is a serious pulmonary vascular complication that causes respiratory insufficiency in patients with chronic liver diseases. HPS is characterized by two central pathogenic features-intrapulmonary vascular dilatation (IPVD) and angiogenesis. Endothelial glycocalyx (eGCX) is a gel-like layer covering the luminal surface of blood vessels which is involved in a variety of physiological and pathophysiological processes including controlling vascular tone and angiogenesis. In terms of lung disorders, it has been well established that eGCX contributes to dysregulated vascular contraction and impaired blood-gas barrier and fluid clearance, and thus might underlie the pathogenesis of HPS. Additionally, pharmacological interventions targeting eGCX are dramatically on the rise. In this review, we aim to elucidate the potential role of eGCX in IPVD and angiogenesis and describe the possible degradation-reconstitution equilibrium of eGCX during HPS through a highlight of recent literature. These studies strongly underscore the therapeutic rationale in targeting eGCX for the treatment of HPS.
Collapse
Affiliation(s)
- Liang Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Liang Li, ; Shaomin Li,
| | - Christopher Cook
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Yale Liu
- Department of Dermatology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianzhong Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiantao Jiang
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shaomin Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Liang Li, ; Shaomin Li,
| |
Collapse
|
8
|
Wickstead ES, Solito E, McArthur S. Promiscuous Receptors and Neuroinflammation: The Formyl Peptide Class. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122009. [PMID: 36556373 PMCID: PMC9786789 DOI: 10.3390/life12122009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022]
Abstract
Formyl peptide receptors, abbreviated as FPRs in humans, are G-protein coupled receptors (GPCRs) mainly found in mammalian leukocytes. However, they are also expressed in cell types crucial for homeostatic brain regulation, including microglia and blood-brain barrier endothelial cells. Thus, the roles of these immune-associated receptors are extensive, from governing cellular adhesion and directed migration through chemotaxis, to granule release and superoxide formation, to phagocytosis and efferocytosis. In this review, we will describe the similarities and differences between the two principal pro-inflammatory and anti-inflammatory FPRs, FPR1 and FPR2, and the evidence for their importance in the development of neuroinflammatory disease, alongside their potential as therapeutic targets.
Collapse
Affiliation(s)
- Edward S. Wickstead
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: (E.S.W.); (S.M.)
| | - Egle Solito
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
- Department of Medicina Molecolare e Biotecnologie Mediche, University of Naples “Federico II”, 80131 Naples, Italy
| | - Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, Blizard Institute, 4, Newark Street, London E1 2AT, UK
- Correspondence: (E.S.W.); (S.M.)
| |
Collapse
|
9
|
Belvedere R, Novizio N, Morello S, Petrella A. The combination of mesoglycan and VEGF promotes skin wound repair by enhancing the activation of endothelial cells and fibroblasts and their cross-talk. Sci Rep 2022; 12:11041. [PMID: 35773320 PMCID: PMC9247059 DOI: 10.1038/s41598-022-15227-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/21/2022] [Indexed: 12/14/2022] Open
Abstract
Skin wound healing requires accurate therapeutic topical managements to accelerate tissue regeneration. Here, for the first time, we found that the association mesoglycan/VEGF has a strong pro-healing activity. In detail, this combination induces angiogenesis in human endothelial cells promoting in turn fibroblasts recruitment. These ones acquire a notable ability to invade the matrigel coating and to secrete an active form of metalloproteinase 2 in presence of endothelial cells treated with mesoglycan/VEGF. Next, by creating intrascapular lesions on the back of C57Bl6 mice, we observed that the topical treatments with the mesoglycan/VEGF promotes the closure of wounds more than the single substances beside the control represented by a saline solution. As revealed by eosin/hematoxylin staining of mice skin biopsies, treatment with the combination mesoglycan/VEGF allows the formation of a well-structured matrix with a significant number of new vessels. Immunofluorescence analyses have revealed the presence of endothelial cells at the closed region of wounds, as evaluated by CD31, VE-cadherin and fibronectin staining and of activated fibroblasts assessed by vimentin, col1A and FAP1α. These results encourage defining the association mesoglycan/VEGF to activate endothelial and fibroblast cell components in skin wound healing promoting the creation of new vessels and the deposition of granulation tissue.
Collapse
Affiliation(s)
- Raffaella Belvedere
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Salerno, Italy.
| | - Nunzia Novizio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Salerno, Italy
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Salerno, Italy
| | - Antonello Petrella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Salerno, Italy.
| |
Collapse
|
10
|
Jang B, Song HK, Hwang J, Lee S, Park E, Oh A, Hwang ES, Sung JY, Kim YN, Park K, Lee YM, Oh ES. Shed syndecan-2 enhances colon cancer progression by increasing cooperative angiogenesis in the tumor microenvironment. Matrix Biol 2022; 107:40-58. [DOI: 10.1016/j.matbio.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/12/2022] [Accepted: 02/02/2022] [Indexed: 12/24/2022]
|
11
|
The Pyrazolyl-Urea Gege3 Inhibits the Activity of ANXA1 in the Angiogenesis Induced by the Pancreatic Cancer Derived EVs. Biomolecules 2021; 11:biom11121758. [PMID: 34944403 PMCID: PMC8699007 DOI: 10.3390/biom11121758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
The pyrazolyl-urea Gege3 molecule has shown interesting antiangiogenic effects in the tumor contest. Here, we have studied the role of this compound as interfering with endothelial cells activation in response to the paracrine effects of annexin A1 (ANXA1), known to be involved in promoting tumor progression. ANXA1 has been analyzed in the extracellular environment once secreted through microvesicles (EVs) by pancreatic cancer (PC) cells. Particularly, Gege3 has been able to notably prevent the effects of Ac2-26, the ANXA1 mimetic peptide, and of PC-derived EVs on endothelial cells motility, angiogenesis, and calcium release. Furthermore, this compound also inhibited the translocation of ANXA1 to the plasma membrane, otherwise induced by the same ANXA1-dependent extracellular stimuli. Moreover, these effects have been mediated by the indirect inhibition of protein kinase Cα (PKCα), which generally promotes the phosphorylation of ANXA1 on serine 27. Indeed, by the subtraction of intracellular calcium levels, the pathway triggered by PKCα underwent a strong inhibition leading to the following impediment to the ANXA1 localization at the plasma membrane, as revealed by confocal and cytofluorimetry analysis. Thus, Gege3 appeared an attractive molecule able to prevent the paracrine effects of PC cells deriving ANXA1 in the tumor microenvironment.
Collapse
|
12
|
ANXA1 Contained in EVs Regulates Macrophage Polarization in Tumor Microenvironment and Promotes Pancreatic Cancer Progression and Metastasis. Int J Mol Sci 2021; 22:ijms222011018. [PMID: 34681678 PMCID: PMC8538745 DOI: 10.3390/ijms222011018] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022] Open
Abstract
The tumor microenvironment (TME) is a dynamic system where nontumor and cancer cells intercommunicate through soluble factors and extracellular vesicles (EVs). The TME in pancreatic cancer (PC) is critical for its aggressiveness and the annexin A1 (ANXA1) has been identified as one of the oncogenic elements. Previously, we demonstrated that the autocrine/paracrine activities of extracellular ANXA1 depend on its presence in EVs. Here, we show that the complex ANXA1/EVs modulates the macrophage polarization further contributing to cancer progression. The EVs isolated from wild type (WT) and ANXA1 knock-out MIA PaCa-2 cells have been administrated to THP-1 macrophages finding that ANXA1 is crucial for the acquisition of a protumor M2 phenotype. The M2 macrophages activate endothelial cells and fibroblasts to induce angiogenesis and matrix degradation, respectively. We have also found a significantly increased presence of M2 macrophage in mice tumor and liver metastasis sections previously obtained by orthotopic xenografts with WT cells. Taken together, our data interestingly suggest the relevance of ANXA1 as potential diagnostic/prognostic and/or therapeutic PC marker.
Collapse
|